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Abstract. In this paper, we investigate the local superconvergence of the discontin-
uous Galerkin (DG) solutions on quasi-graded meshes for nonlinear delay differential
equations with vanishing delay. It is shown that the optimal order of the DG solution
at the mesh points is O(h2m+1). By analyzing the supercloseness between the DG
solution and the interpolation Πhu of the exact solution, we get the optimal order
O(hm+2) of the DG solution at characteristic points. We then extend the convergence
results of DG solutions to state dependent delay differential equations. Numerical
examples are provided to illustrate the theoretical results.

Keywords. superconvergence, nonlinear delay differential equations, discontinuous
Galerkin methods, vanishing delay, state dependent delay .

1 Introduction

We consider the following nonlinear vanishing delay differential equation (DDE)

u′(t) = f(t, u(t), u(θ(t))), t ∈ J = [0, T ],

u(0) = u0,
(1.1)

where the delay function θ is subject to the following conditions:

1. θ(0) = 0 and θ(t) < t for t > 0,

2. mint∈J θ′(t) =: q0 > 0,

and the function f ∈ C(J).
Delay differential equations are important mathematical models that describe various

real-life phenomena such as biological, physical and chemical systems. The exact ana-
lytical solutions of the DDEs are not available in general, one has to rely on numerical
methods to find approximate solutions. There are many numerical methods for DDEs in-
cluding Runge-Kutta methods ([2, 19, 30]), linear multi-step methods [25], θ-methods [20],
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collocation methods [6, 29], discontinuous (continuous) Galerkin methods [11, 17, 32, 33],
and spectral methods [1, 24].

Discontinuous Galerkin (DG) methods are efficient numerical methods in solving var-
ious partial differential equations. There are extensive research works on DG methods.
See, for example, the papers [9, 28] and the monograph [10]. DG methods are also applied
successfully to ordinary differential equations (ODEs) [13, 27], DDEs with constant delay
[21, 22], and DDEs with (non-) linear vanishing delay [7, 16].

For DDEs of pantograph type it was shown in [7] that on uniform meshes Jh the optimal
order of the DG solution U at the mesh points in the space S−1

m (Jh) of (discontinuous)
piecewise polynomial of degree m ≥ 1 cannot exceed O(hm+2). This is in sharp contrast to
DG solutions for ODEs [13] and DDEs of constant delay [21] where DG solution at the grid
points leads to O(h2m+1) superconvergence. A plausible explanation of the convergence
order reduction is that the delay term qt maps current mesh into two former adjacent
subintervals which leads to the decrease of the regularity of the auxiliary problem. This
also increased the computational complexity and difficulties of theoretical analysis. To
avoid this phenomenon and reduce the computational complexity, different meshes relating
to the delay coefficient were proposed [3, 4, 8].

Bellen et al. [3] showed that, for functional differential equations with vanishing de-
lay, the optimal superconvergence of collocation solutions are valid for suitably chosen
quasi-graded meshes. Recently, Huang et al. [17] studied the optimal order of global con-
vergence and local superconvergence of CG methods on quasi-geometric meshes for linear
pantograph-type DDEs, and showed that the optimal order at the mesh points is O(h2m)
in the space S0

m(Jh) of piecewise polynomial of degree m ≥ 2. Xu and Huang [31] applied
DG methods to solve linear DDEs with vanishing delay, they showed that the optimal
order at the mesh points in the space S−1

m (Jh) of piecewise polynomial of degree m ≥ 1
is O(h2m+1) on quasi-graded meshes. However, the superconvergence analysis of these
methods remain largely open in nonlinear DDEs. For DG methods of nonlinear DDEs of
constant delay, Li and Zhang [22] showed that the global convergence order is O(hm+1),
but the superconvergence results were not mentioned. We therefore want to obtain the
superconvergecne of DG solutions for nonlinear DDEs of vanishing delay.

It is the aim of this paper to present global convergence and superconvergence analysis
of DG solution for nonlinear DDEs of time dependent vanishing delay (1.1). The super-
convergence results are also extended to DDEs with state dependent vanishing delay. For
investigation to the numerical literature on this problem we refer the reader to papers
[5, 12, 14, 15, 18].

The outline of the paper is as follows: In section 2, we introduce the DG method
for (1.1) under quasi-graded meshes. The main results on the optimal order of global
convergence and local superconvergence of the DG solution are stated in section 3. Section
4 presents the DG scheme of state dependent DDEs and describes how to get the suitable
partition that results in the optimal nodal superconvergence. In section 5, we provide
results of numerical experiments to illustrate our theory. Conclusions and plans for future
research work are summarized in the final section 6.
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2 DG Method for Nonlinear DDEs

Suppose that on a given (small) initial subinterval J0 = [0, t0] of [0, T ], t0 = θk(T ) for a
suitable value of k, we have already computed the approximation ϕ(t) by the DG method
or by the truncation of the Taylor expansion of the exact solution u(t), such that

∥u(t) − ϕ(t)∥∞ = max
t∈[0,t0]

| u(t) − ϕ(t) |≤ C0t
p
0, (2.2)

here
θk(T ) := (θ ◦ θ ◦ . . . ◦ θ︸ ︷︷ ︸

k

)(T ).

Subsequently, we solve the following equation:

u′(t) = f(t, u(t), u(θ(t))), t ∈ J = [t0, T ],

u(t) = ϕ(t), θ(t0) ≤ t ≤ t0.
(2.3)

We assume that the nonlinear term f of (2.3) satisfies

|f(t, u1, v1) − f(t, u2, v2)| ≤ L(|u1 − u2| + |v1 − v2|), L > 0, (2.4)

then we get the existence and uniqueness for the solution of (2.3).

Remark 2.1. Suppose the above condition 2.4 holds, and assume that the initial function
ϕ(t) is Lipschitz continuous for t. Then the problem (2.3) possesses a unique solution
which depends continuously on the initial data (see chapter 2 of [2] for details).

On the interval [t0, T ], we introduce the macro-mesh {ξµ} by setting

t0 = ξ0 < ξ1 < · · · < ξk = T, ξµ := θk−µ(T ) (0 ≤ µ ≤ k),

with increasing size Hµ := ξµ − ξµ−1 (µ = 1, · · · , k) denoting the macro-steps. In the
subinterval Iµ := [ξµ−1, ξµ] (µ = 1, · · · , k), we insert l − 1 nodes

t0 = ξ0 < t1 < · · · < tl = ξ1 < · · · < t2l = ξ2 < · · · < tkl = ξk = T.

defined recursively by
tn−l = θ(tn), n = l, · · · , kl.

In the last macro subinterval Ik, t(k−1)l+1, · · · , tkl can be chosen arbitrarily (see [3] for
details). Jh : t0 = ξ0 < t1 < · · · < tl = ξ1 < · · · < t2l = ξ2 < · · · < tkl = ξk = T is called
quasi-graded mesh. We will use the notation

N = kl, In := [tn−1, tn], hn := tn − tn−1, h := max
1≤n≤N

hn (1 ≤ n ≤ N).

Define the corresponding DG finite element space

S(−1)
m (Jh) = {v ∈ L2(J) : v|In ∈ Pm, 1 ≤ n ≤ N},
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where Pm denotes the space of (real) polynomials of degree up to m, with m ≥ 0.
At the nodes {tn}N

n=0, the left-hand and right-hand limits (i.e., the jump of disconti-

nuities) of v ∈ S
(−1)
m (Jh) are defined by

v+
n := lim

s→0,s>0
v(tn + s), 0 ≤ n ≤ N − 1,

v−
n := lim

s→0,s>0
v(tn − s), 1 ≤ n ≤ N,

and set [v]n := v+
n − v−

n .

The DG method for (2.3) read as: find U ∈ S
(−1)
m (Jn) such that

N∑

n=1

∫

In

[U ′(t) − f(t, U(t), U(θ(t)))]v(t)dt +
N−1∑

n=1

[U ]nv+
n + U+

0 v+
0 = u(t0)v

+
0 , ∀v ∈ S(−1)

m (Jh).(2.5)

Here we set U(t) = ϕ(t) (θ(t0) ≤ t ≤ t0). Note that the exact solution u of (2.3) also
satisfies (2.5),

N∑

n=1

∫

In

[u′(t) − f(t, u(t), u(θ(t)))]v(t)dt +

N−1∑

n=1

[u]nv+
n + u+

0 v+
0 = u(t0)v

+
0 , ∀v ∈ S(−1)

m (Jh).(2.6)

Setting e(t) = u(t) − U(t) and U−
0 := u(t0), then subtracting (2.6) from (2.5) gives

BDG(e, v) :=
N∑

n=1

∫

In

(
e′(t) − [f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t)))]

)
v(t)dt

+

N∑

n=1

[e]n−1v
+
n−1 = 0, ∀v ∈ S(−1)

m (Jh). (2.7)

It is obvious that the error satisfy
∫

In

(
e′(t) − [f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t)))]

)
v(t)dt

+[e]n−1v
+
n−1 = 0. ∀v ∈ S(−1)

m (Jh). (2.8)

The DG method (2.5) can be interpreted as a time-stepping scheme. If U is known on the
time intervals Ik, 1 ≤ k ≤ n − 1, we find U |In ∈ Pm(In) by solving

∫

In

[U ′(t) − f(t, U(t), U(θ(t)))]v(t)dt + [Un−1]v
+
n−1 = 0, ∀v ∈ Pm(In). (2.9)

Here, we use again U−
0 := u(t0). For a continuous function u, we define the interpolation

operator Πh : C[0, 1] 7→ S
(−1)
m (Jh) by

Πhu(t−n ) = u(t−n ); (2.10)∫

In

Πhuvdt =

∫

In

uvdt, ∀v ∈ Pm−1(In), m ≥ 1. (2.11)
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This interpolation operator was used to get error estimates of the DG solution (see for
example [27, 28]). It is well known that this interpolation operator admits the error
estimate

∥u − Πhu∥In,∞ ≤ Chm+1∥u∥In,m+1,∞. (2.12)

3 Error analysis

In this section, we present main results of the paper. We first describe optimal global order
of the DG solution and then briefly discuss the existence and uniqueness of this solution
in Remark. The superconvergence at quasi-graded mesh points is given by subsection 3.2.
We then prove the supercloseness between the DG solution and the interpolant of the
exact solution to get all the superconvergence points.

3.1 Global convergence of the DG solution

This subsection gives the error bound for the DG solution.

Theorem 3.1. Assume the following.

1. the functions f, ϕ(t) are in Cm(J) in DDE (2.3).

2. u ∈ Wm+1,∞(J) is the exact solution of the initial value problem for the DDE (2.3).

3. U ∈ S
(−1)
m (Jh) defined in (2.5) is the DG solution of u.

4. Jh is a quasi-graded partition for [t0, T ] and h is sufficiently small.

5. the nonlinear term f of (2.3) satisfies the condition (2.4).

Then the m-degree DG solution U satisfies

∥u − U∥∞ ≤ Chm+1, (3.1)

where the constant C depends on t, θ(t), L, u and its derivatives but is independent of h.

The proof of this theorem is similar to the proof of Theorem 3.1 in [22], we leave it
the reader.

3.2 Nodal Superconvergence of the DG solution

The following theorem gives the superconvergence result of the DG solution at mesh points.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold, then the attainable su-
perconvergence order of DG solution at the mesh point tn is

|(u − U)(t−n )| = O(h2m+1), n = 1, · · · , N, (m ≥ 1). (3.2)
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Proof. Expanding the nonlinear term, we obtain

f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t))) =
∂

∂u(t)
f(t, U(t), U(θ(t)))e(t)

+
∂

∂u(θ(t))
f(t, U(t), U(θ(t)))e(θ(t))

+ O(e2(t) + e2(θ(t))).

Setting a(t) = ∂
∂u(t)f(t, U(t), U(θ(t))), b(t) = ∂

∂u(θ(t))f(t, U(t), U(θ(t))) and R(t) = O(e2(t)+

e2(θ(t))), (2.7) becomes

BDG(e, v) :=

N∑

n=1

∫

In

(
e′(t) − a(t)e(t) − b(t)e(θ(t))

)
v(t)dt +

N∑

n=1

[e]n−1v
+
n−1

−
N∑

n=1

∫

In

R(t)v(t)dt = 0. ∀v ∈ Pm(In). (3.3)

In each subinterval, (3.3) can be written as the following form:
∫

In

(
e′(t) − a(t)e(t) − b(t)e(θ(t))

)
v(t)dt + [e]n−1v

+
n−1

−
∫

In

R(t)v(t)dt = 0. ∀v ∈ Pm(In). (3.4)

When n ≤ l, equation (2.3) can be seen as the following ordinary differential equation:

u′(t) = f(t, u(t), ϕ(t)), t ∈ [t0, tn−l].

Then |(u − U)(t−n )| = O(h2m+1), n = 1, · · · , l. This estimate has been shown in [13].
When n > l, we construct the auxiliary problem :

φ′(t) + a(t)φ(t) + b̃(t)φ(θ−1(t)) = 0, t ∈ [t0, tn),

φ(tn) = α := e−
n ,

where b̃(t) is defined by

b̃(t) :=





θ′(θ−1(t))b(θ−1(t)), t0 ≤ t ≤ θ(tn),

0, θ(tn) < t ≤ tn.

Then one has error estimate ∥φ∥q ≤ C|α|, 0 ≤ q ≤ m + 1. Therefore, from the initial
condition e(t) = u(t) − U(t) = ϕ(t) − ϕ(t) = 0, θ(t0) ≤ t ≤ t0, we have

B(e, φ) :=
n∑

j=1

{∫

Ij

(e′(s) − a(s)e(s) − b(s)e(θ(s)))φ(s)ds + [e]j−1φ
+
j−1

}

=
n∑

j=1

{
(eφ)−

j − (eφ)−
j−1 −

∫

Ij

e(s)(φ′(s) + a(s)φ(s) + b̃(s)φ(θ−1(s)))ds
}

= (eφ)−
n = |e−

n |2.
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We assume φh ∈ S
(−1)
m (Jh) (m ≥ 1) is the mth degree piecewise polynomial interpolation

of φ (with (φ − φh)+j = 0). Combining with (3.4), we obtain

|e−
n |2 = B(e, φ − φh) +

n∑

j=1

∫

Ij

R(t)φ(t)dt

=

n∑

j=1

∫

Ij

(e′(s) − a(s)e(s) − b(s)e(θ(s)))(φ(s) − φh(s))ds

+

n∑

j=1

∫

In

R(t)φ(t)dt

=
n−l∑

j=1

∫

Ij

(e′(s) − a(s)e(s) − b(s)e(θ(s)))(φ(s) − φh(s))ds

+
n∑

j=n−l+1

∫

Ij

(e′(s) − a(s)e(s) − b(s)e(θ(s)))(φ(s) − φh(s))ds

+
n∑

j=1

∫

In

R(t)φ(t)dt

≤ C∥e∥1,∞,[t0,tn−l)∥φ − φh∥0,1,[t0,tn−l)

+C∥e∥1,∞,[tn−l+1,tn]∥φ − φh∥0,1,[tn−l+1,tn] + C||e||20,∞,[t0,tn] max
t∈[t0,tn]

||φ||

≤ Chmhm+1∥u∥m+1,∞,[t0,tn−l)|e−
n | + Chmhm+1∥u∥m+1,∞,[tn−l+1,tn]|e−

n |
+Ch2m+2∥u∥m+1,∞,[t0,tn]|e−

n |
≤ Ch2m+1∥u∥m+1,∞,[t0,tn]|e−

n |. (3.5)

The estimate (3.5) means that

|e−
n | ≤ Ch2m+1∥u∥m+1,∞, n = l + 1, . . . , N. (3.6)

The proof is completed.

Remark 3.1. From the auxiliary problem, we observe that b̃(t) is discontinuous at θ(tn),
and so φ′(t) is discontinuous at t = θ(tn). Therefore, the convergence ∥φ−φh∥0,1,[tn∗ ,tn∗+1] =

Chm+1∥φ∥m+1,∞,[tn∗ ,tn∗+1] (n∗ = l, . . . , n − 1) is valid if and only if θ(tn) /∈ (tn∗ , tn∗+1).
That is, θ(t) maps the current mesh points onto some previous ones. This is the purpose
of choosing the quasi-graded mesh.

To illustrate the effectiveness of DG method, we make a comparison between DG
method and collocation method. For the m-point (arbitrary set) collocation method for the
equation (2.3) on quasi-graded meshes, the order of the collocation solution V ∈ S0

m(Jh)
is given by (see [3] for details)

∥u − V ∥∞ ≤Chm∥u∥m+1,∞. (3.7)
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If the m collocation parameters ci are subject to the orthogonality condition

∫ 1

0

m∏

j=1

(s − cj) ds = 0 (3.8)

Then there follows the global convergence estimation

∥u − V ∥∞ ≤Chm+1∥u∥m+2,∞. (3.9)

and the optimal nodal superconvergence

|(u − U)(tn)| ≤Ch2m∥u∥m+2,∞. (3.10)

To obtain the same global convergence order, the regularity requirements for the colloca-
tion method are more than those for DG method. Moreover, the optimal nodal supercon-
vergence order of DG solution is higher than that of collocation solution on quasi-graded
meshes.

3.3 Supercloseness analysis for U and Πhu

In order to derive all the superconvergent points, we first analyze the supercloseness be-
tween the DG solution U and the interpolation Πhu of the exact solution u.

In general, there is a crucial phenomenon in finite element error estimation: the L∞
norm of error for DG solution U and the interpolation Πhu of the exact solution u is much
less than that of U and the exact solution u, that is,

∥Πhu − U∥∞ ≤ Chα∥u − U∥∞, α > 0.

This phenomenon is called the “supercloseness”.

Theorem 3.3. Suppose the conditions of Theorem 3.1 hold. Then there follows the su-
percloseness result:

∥Πhu − U∥∞ ≤Chm+2∥u∥m+1,∞, (m ≥ 2). (3.11)

Proof. Let ζ = Πhu − U, η = u − Πhu, then e = η + ζ. By (3.4), we obtain

∫

In

(ζ ′(t) − a(t)ζ(t) − b(t)ζ(θ(t)))v(t)dt + [ζ]n−1v
+
n−1

= −
∫

In

(η′(t) − a(t)η(t) − b(t)η(θ(t)))v(t)dt − [η]n−1v
+
n−1 +

∫

In

R(t)v(t)dt.(3.12)

Integrating by parts and combining with (2.11), we have

−
∫

In

η′(t)v(t)dt − [η]n−1v
+
n−1 = −[ηv]|t

−
n

t+n−1

+

∫

In

η(t)v′(t)dt − [η]n−1v
+
n−1

= −η−
n v−

n + η−
n−1v

+
n−1. (3.13)

8



From the definition of Πhu, we have η−
n = η−

n−1 = 0. Hence, (3.12) becomes

∫

In

(ζ ′(t) − a(t)ζ(t) − b(t)ζ(θ(t)))v(t)dt + [ζ]n−1v
+
n−1

=

∫

In

(a(t)η(t) + b(t)η(θ(t)))v(t)dt +

∫

In

R(t)v(t)dt,

and there follows
∫

In

ζ ′(t)v(t)dt + [ζ]n−1v
+
n−1 =

∫

In

(a(t)e(t) + b(t)e(θ(t)))v(t)dt +

∫

In

R(t)v(t)dt.

Choose v(t) = (t − tn−1)ζ
′(t) and we get v+

n−1 = 0, then we have

∫

In

(t − tn−1)|ζ ′(t)|2dt =

∫

In

(a(t)e(t) + b(t)e(θ(t)))(t − tn−1)ζ
′(t)dt

+

∫

In

R(t)(t − tn−1)ζ
′(t)dt, (3.14)

and by the mean value inequality αβ ≤ εα2 + β2

4ε (with ε > 0 being an arbitrary constant),
we obtain

∫

In

(a(t)e(t) + b(t)e(θ(t)))(t − tn−1)ζ
′(t)dt

≤ ε

∫

In

(t − tn−1)|ζ ′(t)|2dt +
1

4ε

∫

In

(
a(t)e(t) + b(t)e(θ(t))

)2
(t − tn−1)dt. (3.15)

∫

In

R(t)(t − tn−1)ζ
′(t)dt ≤ ε

∫

In

(t − tn−1)|ζ ′(t)|2dt +
1

4ε

∫

In

R2(t)(t − tn−1)dt. (3.16)

We now combine (3.14), (3.15), (3.16) and Theorem 3.1 with ε ̸= 1
2 , and obtain

∫

In

(t − tn−1)|ζ ′(t)|2dt ≤ C

∫

In

(
a(t)e(t) + b(t)e(θ(t))

)2
(t − tn−1)dt + C

∫

In

R2(t)(t − tn−1)dt

≤ Ch2m+4∥u∥m+1,∞. (3.17)

It can be proved that the two norms h
∫
In

|ζ ′(s)|2ds and
∫
In

(t− tn−1)|ζ ′(t)|2dt are equiv-
alent (see [16] for details). Hence,

∣∣
∫ t

t−n
ζ ′(s)ds

∣∣2 ≤ C

∫

In

(t − tn−1)|ζ ′(t)|2dt. (3.18)

Moreover, by the definition of Πhu and Theorem 3.2, we have

|ζ(t−n )| = |Πhu(t−n ) − U(t−n )| = |u(t−n ) − U(t−n )| ≤ Ch2m+1∥u∥m+1,∞. (3.19)
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Writing

ζ(t) = ζ(t−n ) +

∫ t

t−n
ζ ′(s)ds.

and combining (3.17), (3.18) and (3.19), we obtain that

∥ζ∥In,∞ ≤ |ζ(t−n )| +

∥∥∥∥
∫ t

t−n
ζ ′(s)ds

∥∥∥∥
In,∞

≤ Chm+2∥u∥m+1,∞.

This completes the proof of Theorem 3.3.

3.4 Superconvergent points of the DG approximation

On the basis of the supercloseness between U and Πhu, we now discuss the superconver-
gent points of the DG approximation. To determine all the superconvergence points, we
introduce Legendre’s polynomials in interval [−1, 1],

ln =
1

2nn!

dn

dsn
(s2 − 1)n, n = 0, 1, 2, · · · .

We recall the definition of the Radau II polynomials:

φ0(s) = 1, φi(s) = li(s) − li−1(s), i ≥ 1.

Then the zeros of the polynomials φi(s) define the i Radau II points sl (l = 1, · · · , i) in
[−1, 1].

Theorem 3.4. Assume the conditions of Theorem 3.1 hold, and let u ∈ Wm+2,∞(J).
Then the m + 1 Radau II points in each interval In are the superconvergence points of the
DG solution and

|u(tnr) − U(tnr)| ≤ Chm+2∥u∥m+2,∞,

where tnr stands for any of the Radau II points in In (1 ≤ n ≤ N, 1 ≤ r ≤ m + 1).

The proof of this theorem is similar with the proof of Theorem (3.3) in [7].

Remark 3.2. Observe that the maximum stepsize of the partition Jh for (t0, T ] is attained
in the last interval Ik, if we want DG solutions described above to be global convergent and
local superconvergent on the original interval [0, T ], we must consider how to choose t0. It
is suggested that t0 is chosen, such that

t0 = θκ(T ) ≤ h, (3.20)

Here, κ is the minimum integer for which (3.20) holds.
When p = m+1, 2m+1,m+2,m+2, Theorems 3.1, 3.2, 3.3, 3.4 hold in [0, T ], respec-

tively.
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4 DG for State dependent vanishing DDEs

We can extend the time dependent delay term θ(t) to more complicated state dependent
delay α(t, u(t)). That is, state dependent DDEs

u′(t) = f(t, u(t), u(α(t, u(t)))), t ∈ J = [0, T ],

u(0) = u0,
(4.1)

and the delay function α(t, u(t)) is subject to the conditions 1 and 2. We require the
approximation ϕ(t) of the solution u(t) in some initial interval [0, t0] furnished by any
approximation to order p, and we solve the following problem

u′(t) = f(t, u(t), u(α(t, u(t)))), t ∈ J = (t0, T ],

u(t) = ϕ(t), 0 ≤ t ≤ t0
(4.2)

When we choose suitable partition that the delay term α(t, u(t)) maps the current mesh
points onto some previous ones, the optimal global convergence and local superconvergence
results of the DG solutions remain valid. Because the delay is state dependent, the mesh
points are only known after solving (4.2) numerically (using DG method) and cannot be
included directly in the partition. We first propose the DG scheme of state dependent
DDEs and then describe how to get the suitable partition that α(t, u(t)) maps the current
mesh points onto some previous ones.

4.1 DG scheme for state dependent DDEs

For a given step size hn, On In = (tn−1, tn−1 + hn], the DG solution Un(t) can be written
as

Un(t) =
m+1∑

i=1

un,iln,i(t) =
m+1∑

i=1

un,iLi(
t − tn−1

hn
).

where Li(s) are given Lagrange basis functions in [0, 1]. We assume that there are two
integers αn,0 and αn,1 such that α(tn−1, Un(tn−1)) ∈ Iαn,0 and α(tn−1+hn, Un(tn−1+hn)) ∈
Iαn,1 . By (2.9) and replaced θ(t) by α(t, u(t)), we solve un,i by

m+1∑

i=1

un,iLi(0)Lj(0) +

m+1∑

i=1

∫ 1

0
un,iL

′
i(s)Lj(s)ds

= hn

αn,1−αn,0+1∑

λ=1

∫ s∗
λ

s∗
λ−1

f(tn−1 + shn,
m+1∑

i=1

un,iLi(s), Uαn,0+λ−1(s))Lj(s)ds

+
m+1∑

i=1

un−1,iLi(1)Lj(0) j = 1, . . . ,m. (4.3)

Here, let s∗
0 = 0, s∗

αn,1−αn,0+1 = 1, and 0 < s∗
1 < . . . < s∗

αn,1−αn,0
< 1 satisfying

α(tn−1 + s∗
λhn, Un(tn−1 + s∗

λhn)) = tαn,0+λ−1, λ = 1, . . . , αn,1 − αn,0.

The computational scheme of delay terms Uαn,0+λ−1(s) passes through the two distinct
phases described below.
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• Phase 1: If α(tn−1, Un(tn−1)) ≤ t0, let I0 = [0, t0]

Uαn,0(s) = ϕ(α(tn−1 + shn,

m+1∑

i=1

un,iLi(s))).

Uαn,0+λ−1(s) =

m+1∑

i=1

uαn,0+λ−1,iLi(

α(tn−1 + shn,
m+1∑
i=1

un,iLi(s)) − tαn,0+λ−2

hαn,0+λ−1
),

λ = 2, . . . , αn,1 − αn,0 + 1.

Here, Uαn,0+λ−1(s) = 0 if α(tn, Un(tn)) ≤ t0.

• Phase 2: If α(tn−1, Un(tn−1)) ≥ t0,

Uαn,0+λ−1(s) =
m+1∑

i=1

uαn,0+λ−1,iLi(

α(tn−1 + shn,
m+1∑
i=1

un,iLi(s)) − tαn,0+λ−2

hαn,0+λ−1
),

λ = 1, . . . , αn,1 − αn,0 + 1.

4.2 Methods of generating the partition

Since superconvergence occurred in mesh points which α(t, u(t)) maps the current mesh
points onto some previous ones, we expect to choose the mesh points tn < T satisfying

α(tn, Un(tn)) = tq, q < n.

We start with ξ0 = t0. Assume ξ1 to be found and satisfy α(ξ1, U1(ξ1)) = ξ0, we insert
arbitrarily l − 1 nodes

ξ0 = t0 < t1 < . . . < tl−1 < tl = ξ1,

in the interval (ξ0, ξ1]. Once tq (0 < q ≤ l) are given in the interval (ξ0, ξ1], we then take
tn < T that α(tn, Un(tn)) = tn−l (n > l) to be mesh points. In order to compute the mesh
points, algorithm is described as following.
Assume that the mesh points are found successfully until tn−1 and a step size hn is proposed
for the next step.

1. The Newton iteration is employed to solve the system (4.3) to derive approximation
solution Un(t). We look for the zeros of the function

dξ(t) = α(t, Un(t)) − tn−l, n ≥ l. (4.4)

12



2. If dξ(tn−1) · dξ(tn−1 + hn) > 0, we let hn = 2hn, and then solve the system (4.3)
to derive approximation solution Un(t). Repeat this process until solution Un(t)
satisfying dξ(tn−1) · dξ(tn−1 + hn) ≤ 0 be calculated, then there exists a zero point
ζn of the function dξ(t) in the interval (tn−1, tn−1 + hn].

Once this point is detected inside the interval (tn−1, tn−1 + hn], we expect to compute

it more accurately. The main idea comes from recent work [5, 14]. Starting with h
[0]
n =

ζ
[0]
n − tn−1, where ζ

[0]
n is obtained by solving (4.3), we consider the following algorithm.

Algorithm 4.1. 1. Newton iteration is applied to solve the system (4.3) with respect

to the variables u
[k]
n,i with fixed hn = h

[k]
n .

2. By extrapolation from the previous step, we provide an approximation function

Ũ [k]
n (tn−1 + sh[k]

n ) =

m+1∑

i=1

u
[k]
n,iLi(s) s > 0.

3. Compute h
[k+1]
n by solving equation α(tn−1 + h

[k+1]
n , Ũ

[k]
n (tn−1 + h

[k+1]
n )) − tn−l = 0.

If iterative scheme is converges (its efficiency depends on the speed of convergence),

we then let point tn = tn−1 +h
[k]
n be a mesh point. In fact, this iterative method converges

(see [14] for Lemma 3.4 ). We also make a flowchart of the partition generating method
in Figure 1.

Remark 4.1. In fact, strategies of generating the mesh points are similar to the methods
of tracking the jump discontinuities of state DDEs [5, 14]. The difference is that we add
some inner nodes satisfying (4.4) between every two discontinuous points to form the new
partition.

5 Numerical Experiments

In this section, two examples are given to illustrate the theory established in the previous
section. In the following tables we use the notations

e = ||u − U ||∞, R =
log(eN1/eN2)

log(hN1/hN2)
,

eπ = ||Πhu − U ||∞, Rπ =
log((eπ)N1/(eπ)N2)

log(hN1/hN2)
,

er = max
1≤n≤N

1≤r≤m+1

|u(tnr) − U(tnr)|, Rr =
log((er)N1/(er)N2)

log(hN1/hN2)
,

en = max
1≤n≤N

|u(tn) − U(tn)|, Rn =
log((en)N1/(en)N2)

log(hN1/hN2)
,

where tnr denote Radau II points, tn denote nodal points.
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start

start with small t0, give a step size h1, solve system (4.3) to

derive approximation solution U1(t) in the interval (t0, t0 + h1]

Is there a points ζ1 with

(α(t0, U1(t0))− t0) · (α(t0 + h1, U1(t0 + h1))− t0) ≤ 0

1. Calculate the zero ζ
[0]
1 of α(t, U1(t))− t0

2. Starting with h
[0]
1 = ζ

[0]
1 − t0

3. calculate h
[k]
1 and u

[k]
1,i by algorithm 4.1

1. Let ξ1 = t0 + h
[k]
1

2. Insert l − 1 nodes t0 < t1 < . . . < tl−1 < tl = ξ1 in (t0, ξ1]

3. calculate un,i via system (4.3) on (tn−1, tn]

tn−1 + hn ≤ T , n > lend

solve system (4.3) to derive approximation

solution Un(t) in the interval (tn−1, tn−1 + hn]

Is there a points ζn with

dξ(tn−1) · dξ(tn−1 + hn) ≤ 0

1. Calculate the zero ζ
[0]
n of dξ(t)

2. Starting with h
[0]
n = ζ

[0]
n − ξn−1

3. calculate h
[k]
n and u

[k]
n,i by algorithm 4.1

Let tn = tn−1 + h
[k]
n

n := n+ 1

YES

NO h1 = 2h1

NO

YES

NO hn = 2hn

YES

Figure 1: Flowchart of strategy
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Figure 2: Errors for the DDE of Example 5.1

5.1 Nonlinear vanishing delay case

Example 5.1. (nonlinear proportional delay) We first use the DG method to solve the
following nonlinear proportional DDE:

u′(t) = au2(t) + bu(qt) + cos(t) − asin2(t) − bsin(qt), 0 ≤ t ≤ 1,

u(0) = 0.
(5.1)

Its exact solution is u(t) = sin(t) for any 0 < q < 1.
In the initial subinterval J0 = [0, t0], we select t0 = qk with k = κ + 1, and the

approximation ϕ(t) = t − t3

3! + t5

5! − t7

7! to the exact solution u(t) by Taylor expansion.
We choose a quasi-graded mesh Jh with last l + 1 nodes being assigned equidistant,

Ñ = N + 1 = kl + 1. In this example we use the Newton-iterative method to solve the
nonlinear term.

The numerical results are obtained by piecewise quadratic DG solution (m = 2). In
the first interval of quasi-graded mesh Jh the initial values are [0.1, 0.2, 0.4], and for the
following intervals, their initial values are acquired from their previous intervals values
Un−1 := (un−1,1, . . . , un−1,m+1) which have been calculated.

The following Figure 2 exhibits the behavior of the error of the piecewise quadratic DG
solution for Example 5.1. We find that superconvergence occurs at the Radau II points
and the error of DG solution at the nodal points is smaller than that at the other Radau
II points.

In Tables 1, 2, 3, we present the error and convergence order of the piecewise quadratic
DG solution for (5.1), with a = −1, b = 0.5, q = 0.1, 0.5, 0.9.
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Table 1. Errors of the piecewise quadratic DG solution q = 0.1

l Ñ h e R er Rr en Rn eπ Rπ

8 9 0.11 1.68e-05 1.57e-07 5.49e-09 2.23e-07
16 33 0.05 2.11e-06 2.99 1.01e-08 3.97 1.74e-10 4.98 1.42e-08 3.97
32 65 0.02 2.64e-07 2.99 6.38e-10 3.98 5.51e-12 4.99 8.99e-10 3.99
64 129 0.01 3.31e-08 2.99 4.01e-11 3.99 1.89e-13 4.87 5.64e-11 3.99

Table 2. Errors of the piecewise quadratic DG solution q = 0.5

l Ñ h e R er Rr en Rn eπ Rπ

4 17 0.13 1.95e-05 2.27e-07 6.86e-09 3.16e-07
8 41 0.06 2.51e-06 2.96 1.46e-08 3.96 2.18e-10 4.98 2.03e-08 3.96
16 97 0.03 3.17e-07 2.98 9.28e-10 3.98 6.88e-12 4.99 1.29e-09 3.98
32 225 0.01 3.99e-08 2.99 5.29e-11 3.99 2.35e-13 4.87 8.10e-11 3.99

Table 3. Errors of the piecewise quadratic DG solution q = 0.9

l Ñ h e R er Rr en Rn eπ Rπ

2 59 0.05 8.95e-07 5.11e-09 2.21e-11 6.34e-09
3 100 0.03 2.69e-07 2.97 1.02e-09 3.98 2.93e-12 4.98 1.27e-09 3.97
4 145 0.025 1.14e-07 2.98 3.24e-10 3.98 7.09e-13 4.93 4.03e-10 3.98
5 191 0.02 5.87e-09 2.98 1.33e-10 3.99 2.47e-13 4.73 1.66e-10 3.99

From numerical results of the example above, we see that for m = 2:

∥u − U∥∞ = O(hm+1), ∥Πhu − U∥∞ = O(hm+2),

max
1≤n≤N

1≤r≤m+1

|u(tnr) − U(tnr)| = O(hm+2), max
1≤n≤N

|u(tn) − U(tn)| = O(h2m+1).

These illustrate the correctness of the main theoretical results.
Example 5.2. (vanishing delay system) Here we solve a nonlinear delay differential

system with nonlinear vanishing delay,

u′
1(t) = au1(t) + bu2(t) + cu2

1(θ(t)) + f1(t), 0 < t ≤ 2,

u′
2(t) = bu1(t) + au2(t) + cu2

2(θ(t)) + f2(t), 0 < t ≤ 2,

u1(0) = 1, u2(0) = 1,

(5.2)

with θ(t) = arctan(t). We set f1(t), f2(t) to make the exact solution u1(t) = e−t, u2(t) =
e−2t. In initial subinterval J0 = [0, t0], the approximations ϕ1(t), ϕ2(t) of the exact solu-
tions u1(t), u2(t) are provided by Taylor expansion. We choose a quasi-graded mesh Jh

with l − 1 nodes in the last subinterval being assigned equidistant, Ñ = N + 1 = κl + 1.
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In Tables 4, 5 we show the error behavior of the piecewise quadratic DG solutions (m = 2)
for (5.2), with a = −6, b = 1, c = 10.

Table 4. Errors of the piecewise quadratic CG solution for u1(t)

l Ñ h e R er Rr en Rn

5 236 0.1792 1.9432e-05 6.6405e-07 7.3167e-08
8 961 0.1120 5.0216e-06 2.8785 1.0873e-07 3.8492 5.5412e-09 5.4894
10 1881 0.0894 2.6203e-06 2.8913 4.5258e-08 3.8960 1.6892e-09 5.2802
13 4135 0.0687 1.2137e-06 2.9235 1.6049e-08 3.9383 4.6467e-10 4.9031

Table 5. Errors of the piecewise quadratic CG solution for u2(t)

l Ñ h e R er Rr en Rn

5 236 0.1792 4.4948e-05 2.7600e-06 2.7626e-07
8 961 0.1120 1.2170e-05 2.7792 4.8642e-07 3.6927 2.9157e-08 4.7834
10 1881 0.0894 6.4552e-06 2.8186 2.0895e-07 3.7560 9.9850e-09 4.7632
13 4135 0.0687 3.0366e-06 2.8649 7.6393e-08 3.8222 2.7238e-09 4.9348

Numerical data are demonstrated in Tables 4, 5 and convergence rates are m + 1 for e,
m + 2 for er and 2m + 1 for en, respectively. These results verify our theoretical findings.

5.2 DG vs collocation

To illustrate the effectiveness of DG method for nonlinear DDEs with nonlinear vanishing
delay, we compare the global convergence and local superconvergence at mesh points of
our method with those of the collocation method in [3] under quasi-graded mesh. We take
the above Example 5.2 to illustrate these differences. The collocation points employed to

compute Vh ∈ S
(0)
m (Jh) (m = 2) are the arbitrary points (c1 = 1

4 , c2 = 3
4) and Gaussian

points (c1 = 3−
√

3
6 , c2 = 3+

√
3

6 ).

Table 6. Errors of the collocation solution for u1(t)

c1 = 1
4 , c2 = 3

4 c1 = 3−
√

3
6 , c2 = 3+

√
3

6

l e R en Rn e R en Rn

5 1.7202e-04 2.3896e-05 1.5024e-05 1.6816e-06
8 6.8677e-05 1.9532 8.9714e-06 2.0840 3.6782e-06 2.9935 2.6453e-07 3.9344
10 4.4218e-05 1.9570 5.6744e-06 2.0361 1.8824e-06 2.9776 1.0889e-07 3.9456
13 2.6295e-05 1.9744 3.3208e-06 2.0351 8.5624e-07 2.9925 3.8323e-08 3.9668

Table 7. Errors of the collocation solution for u2(t)

c1 = 1
4 , c2 = 3

4 c1 = 3−
√

3
6 , c2 = 3+

√
3

6

l e R en Rn e R en Rn

5 2.1639e-04 4.0669e-05 3.6985e-05 4.8935e-06
8 8.8298e-05 1.9068 1.4420e-05 2.2057 9.4436e-06 2.9041 7.4599e-07 4.0012
10 5.7301e-05 1.9220 9.0370e-06 2.0769 4.8886e-06 2.9267 3.0778e-07 3.9353
13 3.4341e-05 1.9448 5.2532e-06 2.0608 2.2426e-06 2.9602 1.0763e-08 3.9912
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We observe Tables 6, 7 and find the global convergence rate of order m + 1, and local
superconvergence rate 2m at nodal points only if collocation parameters satisfy the or-
thogonality condition (3.8). Furthermore, note that the superconvergence rate 2m + 1 of
DG solution at nodal points is 1 order higher than those of the collocation solution.

5.3 State dependent delay case

Example 5.3. We present numerical results of the DG solutions for the state dependent
delay DDE with vanishing delay. See the following example.

u′(t) = u(u(t)) + π
4 cos(π

4 t) − sin(π
4 sin(π

4 t)), t ∈ J = [0, 1],

u(0) = 0,

where u(t) = sin(π
4 t) is the exact solution. We use the piecewise linear DG method to

approximate the exact solution. The mesh points are derived by §4.2 with t0 = 0.01. The
global convergence of order m+1 and local superconvergence of order 2m+1 at the nodal
points are shown in Table 8.

Table 8. Errors of piecewise linear DG solution

l N e R en Rn

3 54 5.6257e-04 1.1280e-06
5 90 2.1453e-04 1.9819 2.4027e-07 3.1792
7 126 1.1229e-04 1.9885 8.3923e-08 3.2312
9 162 6.8923e-05 1.9916 3.6808e-08 3.3626

6 Concluding remarks

The following three problems remain to be addressed in future research work:

• CG/DG solutions for state dependent systems.

• Postprocessing of the CG/DG solutions for pantograph-type DDEs with multiple
delays.

• Analysis of the attainable order of global convergence and local superconvergence of
the DG method for delay reaction-diffusion equations.
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