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Abstract 

Freund, R.W., Quasi-kernel polynomials and their use in non-Hermitian matrix iterations, Journal of 
Computational and Applied Mathematics 43 (19921 135-158. 

Some of the most efficient iterative algorithms for large sparse Hermitian matrix computations are based on 
orthogonal or kernel polynomials. For the case of non-Hermitian matrices, methods based on orthogonal or 
kernel polynomials are less satisfactory, in that the resulting algorithms involve long recurrences. Conse- 
quently, it is usually too expensive to run the full algorithms and restarts are necessary. A typical example is 
the generalized minimal residual method (GMRES) for solving non-Hermitian linear systems, where work and 
storage per iteration grow linearly with ;he iteration number. Recently, two quasi-minimal residual methods 
(QMR) for solving non-Hermitian linear systems have been proposed, which - unlike GMRES - are based 
on short recurrences and hence can be used as true iterative schemes, without restarts. In this paper, the 
concept of quasi-kernel polynomials is introduced. Some general theory for quasi-kernel polynomials is 
developed, such as recurrence relations and a characterization of roots of quasi-kernel polynomials as 
generalized eigenvalues. It is pointed out that the QMR approaches are based on two particular instances of 
quasi-kernel polynomials. Also, the use of quasi-kernel polynomials for approximating eigenvalues or pseu- 
dospectra of large sparse non-Hermitian matrices is briefly discussed. 

Keywords: Non-Hermitian matrices; matrix iterations; orthogonal polynomials; kernel polynomials; generalized 
minimal residual method; quasi-kernel polynomials; recurrence relation; roots of quasi-kernel polynomials; 
quasi-minimal residual algorithm; eigcnvalue approximations. 

1. Introduction 

In the 195Os, Stiefel wrote his classical paper [26] on orthogonal and kernel polynomials and 
their use in iterative computations for Hermitian matrices. Today, two of the methods 
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discussed in [26], namely the conjugate gradient algorithm (CG) due to Hestenes and Stiefel 
[IS] for solving Hermitian positive definite linear systems and the symmetric Lanczos process 
(141 for the Hermitian eigenvalue problem, are recognized as very powerful tools for large 
sparse Hermitian matrix computations. An especially attractive feature of both methods is that 
they can be implemented using only short vector recursions, which just reflects the three-term 
recurrences for orthogonal and kernel polynomials corresponding to inner products on the real 
line. 

Since the early 198Os, there has been considerable interest in developing generalizations of 
CG and the symmetric Lanczos process for non-Hermitian matrix computations. Such exten- 
sions can again be based on orthogonal or kernel polynomials, but now corresponding to inner 
products in the complex plane. Examples of methods of this type are the generalized minimal 
residual algorithm (GMRES) due to Saad and Schultz [22] for solving non-Hermitian linear 
systems and the Arnoldi process [1,19] for the non-Hermitian eigenvalue problem. However, in 
general these methods now involve long vector recursions, which reflects the fact that complex 
orthogonal and kernel polynomials only satisfy long recurrences. Consequently, it is usually too 
expensive to run the full version of these algorithms and restarts are necessary, which often 
leads to very slow convergence. 

For this reason, recent research in non-Hermitian matrix iterations has focused mainly on 
schemes that are based on short recurrences. In particular, there has been a revival of the 
nonsymmetric Lanczos process, and it is now well understood how the possible breakdowns and 
potential instabilities in the classical algorithm [14] can be overcome by using look-ahead 
techniques (see [6,11,18] and the references given therein). Based on the look-ahead Lanczos 
method, Freund and Nachtigal [S] have developed a novei CG-type approach for solving 
general non-Hermitian linear systems, the quasi-m _,.inimal residual algorithm (QMR). The QMR 
sshcme products iterates that are characterized by a quasi-minimization of the residual norm, 
rather than a true residual minimization property as in GMRES. The point is that the QMR 
iterates - unlike the GMRES iterates - can be computed using only short recurrences and 
hence QMR can be used as a true iterative scheme, without restarts. Furthermore, the 
quasi-minimization property is powerful enough to ensure that QMR converges smoothly, with 
convergence rates comparable to those of full GMRES without restarts (see [7,8] for theoretical 
and numerical results). 

The QMR iteration is based on the nonsymmetric Lanczos process and, like the latter, 
requires matrix-vector multiplications with the coefficient matrix A, as well as its transpose AT. 
This is a disadvantage for some applications, where AT is not readily available. In [5], we 
developed a variant of QMR, the transpose-free QMR algorithm, which does not require 
matrix-vector multiplications with AT. 

The GMRES method is closely connected with classical kernel polynomials in the complex 
plane. This naturally leads to the question about the corresponding polynomials for QMR and 
its transpose-free variant. 

In this paper, an answer to this question is given. First, we introduce the general concept of 
quasi-kernel polynomials, and then we point out that QMR and transpose-free QMR are basei: 
on two particular instances of quasi-kernel polynomials. Moreover, we develop some theory for 
general quasi-kernel polynomials, such as recurrence relations and a characterization of roots 
of quasi-kernel polynomials as generalized eigenvalues. As a by-product, we obtain a new 
algorithm for computing zeros of standard kernel polynomials. Finally, we discuss the use of 
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quasi-kernel polynomials for approximating eigenvalues or pseudospectra of large sparse 
non-Hermitian matrices. 

The remainder of this paper is organized as follows. In Section 2, we briefly review residual 
and standard kernel polynomials. In Section 3, we introduce the concept of quasi-kernel 
polynomials. In Section 4, we derive a recurrence relation. In Section 5, it is shown how zeros 
of kernel and quasi-kernel polynomials can be computed by solving a generalized eigenvalue 
problem. In Section 6, we turn to GMRES, QMR and transpose-free QMR and consider the 
kernel and quasi-kernel polynomials on which these algorithms are based. In Section 7 some 
numerical examples are presented. Finally, in Section 8, we make some concluding remarks. 

Throughout the paper, all vectors and matrices, unless otherwise stated, are assumed to be 
complex. As usual, MT = [mkj] and M” = [G] denote the transpose and the conjugate 
transpose, respectively, of the matrix A4 = [mik]. We use the symbol I,, for ~be n X n identity 

matrix. The vector norm ]I x ]I 2 = F * x x is a ways the Euclidean norm. The set of eigenvalues 1 
of a square matrix M is denoted by A( E/I), and if M is Hermitian, ,? ,,,(MJ is the largest 
eigenvalue of M. We use tht;t notation 

p,, := (cp(AJ =a,,+cr,A + l *. +a,,A’*]a,,, Ul,..., f&EC) 

for the set of all complex polynomials of degree at most n. The set of all complex polynomials is 
Pm, and deg cp denotes the degree of cp ~9~. The symbol 0 will be used for the number zero, 
the zero matrix, and the polynomial cp(h) = 0; its actual meaning and, in the case of the zero 
matrix, its dimension will be apparent from the context. 

2. Residual and kernel polynomials 

Kernel polynomials arise naturally in iterative matrix computations. For example, consider 
linear systems 

Ax=b, (2 1) . 

where A is a large sparse nonsingular, in general complex, N x N matrix. Many iterative 
schemes for solving (2.1), such as GMRES and QMR, belong to the class of KryZov subspace 
methods: they produce approximations X, to A - 'b of the form 

x,,~x~+K,,(r~, A), n = 1, 2 ,... . (2 2) . 

Here x0 E CN is any initial guess for the solution of (2.1), r0 := b - Ax, is the corresponding 
residual vector, and 

K,,(ro 3 A) := span(r,, ArO,. . . , A”-‘ro} (2 3) . 

is the nth KryZo~ subspace generated by Y() and A. In view of 

K&0 7 4 = {mh I cp =?I- 119 (2 4) . 

the nth iterate (2.2) can be expressed in terms of polynomials: 

x?l =xo+p,,(A)ro, where p,, ~9,,_~. (2 5) . 

Therefore, schemes with iterates (2.2) are also referred to as polynomial acceleration methods. 
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We remark that the residual vector corresponding to the iterate (2.5) is given by 

r,.? := b -Ax, = fi,#( A)+ 

where pn and $n are connected as follows: 

@Q(h) = 1 - hP,,(@ 

ote that 

(2 6) . 

(2 7) . 

(k, EP,, and #JO) = 1. (2 8) . 

Generally, any #,# satisfying (2.8) is called an nth residual polynomial. 
Clearly, the goal for the design of polynomial acceleration methods is to choose $n in (2.6) 

such that rra is as small as possible, subject to the constraint (2.8). A standard approach is to 
require that the Euclidean norm of the residual is minimal. i.e., 

(2 9 . 

RES is an algorithm that computes iterates defined by the minimization property (2.9). 
Setting A, := 0 and 

(cp. @> :=rr(#(A))“4p(A)r,, (2.10) 

we see that (2.9) is an instance of a polynomial approximation problem of the more general 
class 

min (+, $i. (2.11) 
*-a: &(A,)= I 

Here A, E C is any fixed number and ( - , - ) is a given positive definite inner product on P,,. 
We remark that other strategies (see [21,24]) for choosing the residual polynomial #,,, in (2.6) 
also lead to problems of the form (2.11), e.g., with inner products given by 

(2.12) 

Typically, C c a3 is a compact set containing the spectrum A( A) of A or some approximation to 
A( A), and C is a curve bounding such a set G. Moreover, o > 0 is some suitably chosen weight 
function on G or C, respectively. Finally, we remark that approximation problems (2.11) also 
arice in the context of iterative algorithms for computing a few eigenvalues of large sparse 
matrices A, where polynomials defined via (2.11) are used to dampen components of the 
starting vector along the unwanted parts of A( A) (see [20]). 

It is well known (see [2, Chapter I], [26], [27, Chapter XVI] or Corollary 3.3 below) that the 
solution of (2.11) can be expressed in terms of kernel polynomials. More precisely, let qj @$, 
j=o, l,..., n, be a set of orthonormal polynomials with respect to ( l , - ), i.e., 

1 if j-k - , , 
(2.13) 

and set 

(2.14) 
j = 0 
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Then, the normalized polynomial 

(2.15) 

is the unique solution of the approximation problem (2.11). Note that the function xn(Ao, A) is 
called nth kernel polynomial, since for each fixed A, E C it satisfies 

((p(*), x,l(A,,, l )> =rp(A,) for all cp Egnm 

For the discussion of kernel and quasi-kernel polynomials one may assume, without loss of 
generality, that A, = 0 is fixed. Clearly, the general case A, E C can be reduced to this special 
case by means of the linear transformation A * A - A,. Therefore, from now on, we only 
consider the case A, = 0. Finally, in the sequel, the notation & is used to denote an nth kernel 
or quasi-kernel polynomial corresponding to A, = 0 and normalized as in (2.19, i.e., &JO> = 1. 
Note that, in view of (2.81, $,, is always a residual polynomial. 

3. Quasi-kernel polynomials 

In this section, we introduce the concept of quasi-kernel polynomials. We use the following 
general setting. 

3.1. The setting 

From now on, it is always assumed that ( l , l ) is a given positive semidefinite inner product 
on 9%, i.e., for all cp Is q2, cp, 9 ~9~ and or, a2 E @: 

hQ, +~,Q,, $1 =dQ,, ‘h) +a,(Q2, $), 

(50,= (4% Q>, (Q, Q> 3 0. 
(3 1) . 

Notice that we do not require (Q, Q) > 0 for Q # 0, i.e., ( - , - ) is not assumed to be positive 
definite. Clearly, the inner products defined in (2.10) and (2.12) all fulfil the conditions (3.1). 
Furthermore, let nJ := {Qj)iJ_o~ where J can either be a finite integer or equal to 00, be q given 
sequence of polynomia!s 

. Qj Egj, with deg 'pi = j, (32) . 

which span gJ. Note that (p. is a nonzero constant polynomial. 
We will use the notation @J~( A), where A E @, for the row vector 

@n(A) := [ Qo@) Q,(A) ’ l * Qn@)]. (3 3) . 

In the sequel, it is always assumed that n E { 1, 2, . . . , J}, if J is finite, respectively n E (1, 2, . . . ), 
if J=w 

Notice that, by (3.2), each go!ynomial AQj can be represented as a linear combination of Q~, 

Ql?. l l 7 <pi+ 1’ Therefore, we have the identity 

A@n-,(A) = @n(A)H,,, (3 4) . 
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It h;: -9. 1 

:: I’s I,, 

h . . 
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21 
. 

. . 

9 l . . . : 
. . . 

. . 

. . 4l.,- 1 %n 

6 0.: 0 hn+,,n 

(3 51 . 

is an (n + 1) x n upper Hessenberg matrix. Furthermore, all subdiagonal elements of Hn are 
nonzero, i.e., 

hj,,.i#O, j= 1, 2,....11. (3 6) . 

and this ensures that 

rank H, =n. (3 7) . 

We remark that, from (3.4) (with A = O), one obtains 

@JO)& = 0, where @JO) # 0; (3 8) . 

here the last inequality is guaranteed by cp,(O) = ‘p. + 0. 

3.2. The concept of quasi-kernel polynomials 

If the polynomials in fl, satisfy the orthogonality relations (2.131, then the kernel polynomi- 
als corresponding to ( - , - ) are simply given by (2.14) and (2.15). Unfortunately, for inner 
products in the complex plane, such as (2.10) and (2.121, orthogonal polynomials do not satisfy 
short recurrences in general (cf. [ 151). As a consequence, for iterative matrix computations 
based on an orthogonal basis fl,, work per iteration and storage requirements grow linearly 
with the iteration index n, and typically, it is not practical to use such schemes for large n. 
However, useful nonorthogonal bases ZI, can often be generated cheaply, e.g., using simple 
three-term recurrences (cf. Section 6). Roughly speaking, quasi-kernel polynomials are approxi- 
mations to the true kernel polynomiais, which are derived from a given general basis L!,, rather 
than an orthogonal basis. 

Next, we turn to the exact definition of quasi-kernel polynomials. Obviously, in view of (3.2), 
one has the parametrization 

&Jh) = 1 -h@!,_,(h)z, z E C”, (3 9) . 

for all possible residual polynomials (2.8). Using (3.41, we rewrite (3.9) in the form 

$,,(A) = Gn(A)(dn - Hnz), where d, := 

which implies 

($n, Ik,> = (dn -H,z)HGn(dn -Hnz). (3.11) 

(3.10) 



R. U! Freund / Quasi-kernel polynomials 141 

Here 

G, := [(cpil Cp,)] j,k=O.*.....n 

is the Gram matrix of qo, ‘pI,. . . , (P,,. Note that G,, is Hermitian positive semidefinite, and from 
(3.11) one obtains the estimate 

M,,, rlt,,> < A,,,(G,,) II d,, - H,,z II:. (3.12) 

Recall that, in (3.9), z E C” is still a free parameter vector. If we choose z such that the 
right-hand side in (3.11) is minimal, then I,$, is just the true kernel polynomial. However, this 
would require knowledge of the matrix c,t, which is not available in typical applications (cf. 
Section 6). Therefore, instead of (3.111, we only minimize the second factor in the upper bound 
(3.12). The precise definition is as follows. 

Definition 3.1. Let n 2 1 and let z,, E @‘I be the solution of the least-squares problem 

II d,, - I&z,, II 2 = min II d,, - H,z II 2 l 
ZEc” 

(3.13) 

The polynomial #,, given by (3.9) (with z := z,,) is called the nth quasi-kernel polynomial 
(corresponding to the inner product ( l , l ) and derived from nJ>. For n = 0, we set t,!&(h) = 1. 

Note that, by (3.7), the matrix H, has full column rank, and therefore the least-squares 
problem (3.13) has exactly one solution. Hence, (li,, is always uniquely determined by Definition 
3.1. 

For the special case th?t the basis polynomials in I7, are orthonormal (see (2.13)), we have 

G,I =In+,r and (3.11) reduces to 

(en, @,I> = II 4, - H,A II,‘. 
Therefore, for orthonormal bases I7,, quasi-kernel polynomials are identical with standard 
kernel polynomials. Here and in the sequel, we use the adjectives true and standard to 

distinguish kernel polynomials from quasi-kernel polynomials. 
Finally, we remark that often (cf. Section 6) the polynomials in I& are chosen to have unit 

norm, i.e., 

(4pi, cpi> = 1 for all j. (3.14) 

From (3:14), by the Cauchy-Schwarz inequality, one obtains the estimates 

I(qj, (gk) I G 1 for all L k 

which readily imply that the first factor in (3.12) is bounded as follows: 

A,,(G,,) <n + 1. 

3.3. A formula for quasi-kernel polynomials 

(3.15) 

Next, we show that quasi-kernel polynomials can be represented directly in terms of the basis 
polynomials in 17,. 
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TMWWB 9.L ?ite nth quasi-kernel polynomial #,, is given by 

i cp,(O)@j(W 

Ik,(h) = “=Z 
C Icpi(")l' l 

j=O 

(3.16) 

Proof. From Definition 3.1 and (3.10), we have 

rt,( h) = an( A)y,, where y,, := d, - H,,z,, = Id, H,1[ --!i&_]= (3.17) 

Furthermore, as solution of (3.131, z, satisfies the normal equations corresponding to (3.13), 
and thus 

H,Hyn = 0. (3.18) 

Note that, in view of (3.51, (3.6) and (3.10), the matrix [d, H11] in (3.17) is upper triangular and 
nonsingular, and this guarantees y, f 0. On the other hand, by (3.8), we have 

H,H@,JO)H = 0, where en(O)” + 0. (3.19) 

By (3.7), the n x (n + 1) matrix HF has a one-dimensional null space. Hence, from (3.18) and 
(3.191, it follows that 

1 
Y -111 = -@JO)“, where WE& o+O. (3.20) 

U 

Finally, by inserting (3.20) in (3.17) and using the fact that $n(0) = 1, we obtain the identity 

(3.21) 

which is just (3.16). ~3 

For the special case of orthonormal bases nJ, Theorem 3.2 reduces to the following 
well-known property (cf. Section 2) of standard kernel polynomials. 

Comllary 33. Assume that the polynomi;zls II, satisfy the orthonomzality relations (2.13). Then 
the polynomial &, gir*en by f 3.16) is the unique optimal solution of the approximation problem 
(2.11). In particular, 1G;, is the nth kernel polynomial corresponding to A, = 0 and normalized such 
that &JO) = 1. 

4. A recumnce relation 

For practical purposes, the representation (3.16) is not very useful, since in general all 
previous basis polynomials are required. In this section, we show that 3/, can always be updated 
by means of a short recursion, which involves only en, rG;, _ I and (P,,. 
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Our starting point is the least-squares problem (3.13). We use the standard approach (see, 
e.g., [9, Chapter 51) to solving (3.13) based on a QR factorization of H,+ 

Q,,Hn= ; 3 

[ 1 
(4 1) . 

where Q,* is unitary and R, is a nonsingular upper triangular matrix. Since Hn is an upper 
Hessenberg matrix, the matrix Q, can be chosen as a product of n Givens rotations, i.e., 

Qn=c,[ ‘;-l ;][ G;-2 ;] l -* [ “ol z,r,], (4 2) . 

where, for j = 1, 2,. . . , n, zj-1 0 0 Gj= 0 Cj -si , [ 1 with cjEIW, siE~, Ci’+ Isi12=1. (4 3) . 

0 Sj Cj 

Furthermore, Q,, and the matrix Q,_ , obtained from the QR factorization of the previous 
Hessenberg matrix H,, _ 1 differ only in the nth Givens rotation: 

IQ Qn=Gn, ‘6-l 0 1 1 . (4 4) . 

Using (4.1) and the fact that Q,* is unitary, we obtain the identity 

11d,-H,z112 =1/e.+ [~]z~i, for all zEC”, 

from which it follows that 

ztl = R; ‘fn, where t,, = := Q,d,, (4.5) 

is the solution of (3.13). Moreover, we have 

Qn(dn-Hnz,)=?,+le,+l and ild,-H,qJ2=~?,+,~, (4 6) . 

where e,+,:=[O l . . 0 l]T~R”fl. With (4.4) and (4.3) one easily verifies that T, and ?n + 1 in 
(4.5) can be updated as follows: 

1 
rrl = cnfn and +n+l =s~+~, where, if n = 1, ?I := - . (4 7) . 

00 

Finally, by combining (3.10) (with z = zn) and the first relation in (4.6), one gets 

+,,(A) = C,+,@n(~)e,Hen+v (4 8) . 

Using (4.8), (3.3), (4.4), (4.3) (for j = n), the second relation in (4.7) and again (4.8) (with n 
replaced by n - l), we obtain 

k,(h) =C+,[@n-dh)Q,“-1 (~n(A)]G,Herz+, 
= -~,,+%k&)Q Len + cntl+Icpn(A) 

= Is,, I ‘h-10) + c??,+,%(A)* 
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The last identity is the desired recurrence relation. Notice that, in view of j4.7), f,,+ , can be 
expressed in terms of the parameters si of the Givens rotations: 

1 

%I+1 = -s,sz l l l s,. 

90 

Hence we have proved the following result. 

Theorem 4.1. For n = 1, 2,. . . ,.I, if J is finite, respectkyely n = 1, 2, . . . , if J = 00, it holds 

(4 9) . 

We remark that, as a by-product of our derivation, we obtain the estimate 

1 

which follows from (3.12) and the second relations in (4.6) and (4.9). 
Recall from Section 2 that, for polynomial acceleration methods, the iterates (2.5) involve the 

polynomials pn defined by (2.7). Next, we give an update formula for these polynomials. 

m-rem 4.~ For II = 1, 2,. . . , J, if J is finite, respectively n = 1, 2,. . . , if J = 00, it holds 

1 
Pn =pn_* + 7,5,+ Tm = -s& - l - S”-~C,~ (4.10) 

PO 

where S;, _ , is defined by 

k-,(A) := [d-o(A) l,(A) - - - &-,(A)] := @,,- ,(A)R,;‘. (4.1 I) 

Proof. Using (2.71, (3.9) (with z = z,), (4.5) and (4.11), we obtain that 

p,(A)~~~_,(A)z,~~,_,(A)R,‘t,~~,_,(A)t,. (4.12) 

Thz first relation in (4.10) is then an immediate consequence of (4.12) (considered for n and for 
n - 11, (4.5) and (4.11). The formula for T, in (4.10) follows from (4.7). •I 

Theorems 4.1 and 4.2 show that quasi-kernel polynomials rcS, and the corresponding polyno- 
mials pn can be generated by means of short recurrences, provided that the basis polynomials 
qjv respectively the polynomials ~j. satisfy short recursions. Note that, in view of (3.4), the 
polynomials <pi can be geny.uc ~rn*ed by s-term recurrence relations if, and only if, the matrix 
H, = [hjk] is banded with upper bandwidth s - 2, i.e., hi, = 0 if k > j + s - 2. Using (4.2) aud 
(4.31, one readily verifies that the upper triangular matrix R, in (4.1) is banded with s 
diagonals, if H, is banded with upper bandwidth s - 2. Consequently, by (4.1 l), the polynomi& 
als’ gj can be generated by s-term recurrence relations, if the polynomials ‘pi satisfy s-term 
recursions. For example, consider the important special case s = 3, i.e., the matrix Hn is 
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tridiagonal and the basis polynomials ‘pi fulfil three-term recurrences. Here the matrix R, is of 
the form 

R,= 

Pl t2 8, 0 l -- 0 

0 P2 53 l ** l ’ . i 
. . . 
. . P3 l ** l _ 0 . . 
. . . . . . . . 8n . . . . 
. . . . Et, 
; . . . . . . ..: ;* Pn 

1 where pi z 0, i = 

and the polynomials ~~ satisfjr the recurrences 

5. 
9j+l -tjlj-@j5,-1 

1+1 
=- 

Pj ’ 

5. Zeros of quasi-kernel polynomials 

In this section, we consider the problem of computing zeros of quasi-kernel polynomials. In 
particular, it is shown that zeros of quasi-kernel polynomials can be characterized as general- 
ized eigenvalues. Recall from Section 3 that kernel polynomials are a special case of quasi-kernel 
polynomials. It appears that the results in this section are new even for standard kernel 
polynomials. 

5.1. Preliminaries 

Throughout this section, n is assumed to be fixed. We denote by A,, h,, . . . , A, E @ U (00) the 
distinct zeros (possibly including 00) of & and m, is the multiplicity of A,, 2 = 1, 2, . . . , L. Since 
#n(O) = 1, we have.the representation 

A 
&f(A) = 42 1 - < ( I 

mi 

I=1 
(5 1) . 

of +,, Here an infinite zero 
and we set m, := n - deg & 
terization of infinite zeros. 

Al = 00 is included if, and only if, JI, does not have full degree n, 
then. From (3.16), one immediately obtains the following charac- 

Proposition 5.1. The following conditions !re equivalent: 
(i) #,, has an infinite zero A, = m of- multiplicity ml; 

(ii) q,(O) = (Pi _ JO) = l . l = qo, _m,+ ,CCQ = 0 and (Pi _,,CO> # 0; 
(iii) (tin = +,,_l = . l l =+n-,,+l =~n-,,,,#lcr,-,,,-~~ 
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For the derivation of Theorem 5.2 below, an infinite zero would require a special treatment. 
To avoid this, it will be more convenient to work with the reversed polynomial 

instead of & Note that & always has finite eigenvalues pl := 1/A, E @, I = 1,2,. . . , L, and, by 
(5.1) and (5.21, it holds 

We will also need transformed versions of the row vectors (3.31, and we set, for all p E @, 

(5 3) . 

otice that &,Jp) and dn_ Jp) are row vectors of length n + 1 and n, respectively, and they 
are connected by the relation 

(5 4) . 

In terms of (5.3), the relation (3.4) now reads 

Furthermore, with (3.21) and (5.3), we obtain the representation 

(5 6) . 

of the reversed quasi-kernel polynomial (5.2). 
By (3.3) and (5.3), the entries of @,Jp) and Gn__ l(p) are polynomials in p and hence analytic. 

Therefore, all derivatives 

exist. We remark that the condition (3.2) guarantees that 

6Ak)(p)#0 forall ~EC and k=O, l,..., n. (5 7) . 

By differentiating (5.4) k times and applying Leibniz’s rule for the differentiation of the 
product on the right-hand side of (5.41, one readily verifies that 

oreover, by (5.51, it holds 

(5 8) * 

@‘,(p) = $k’(p)Hn, k = 0, 1,. . . . (5 9) . 
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Finally, in the sequel, we will denote by 

fi,, := [ I,, 01 M, (5.10) 

the 12 x n matrix obtained from H,, by deleting the last row in (3.5). Also, we will make use of 
the identity 

S( H,,) := (H,,a 1 a E (I?‘) 

= {y E a=,*+’ 1 @,,(O)y = 0) =:N(@,,(O)), 

which follows from (3.7) and (3.8). 

(5.11) 

5.2. Connection with a generalized eigenvalue problem 

After these preliminaries, we now prove the main result of this section. 

Theorem 5.2. The zeros pI, I= 1, 2, . . . , L, of the polynomial I&, are the eigenvalues of 

C,, := Li,,,H( H,,HH,,) - ‘. 

Moreover, each uL: has algebraic multiplicity m, and unit geometric multiplicity, and the vectors 
a’,“#0 k=O , 3 1 S-*-Y m, - 1, which are uniquely defined by 

H,,af’ = $ (@)(p,))“, a:’ c c,‘, 
. 

(5.12) 

are corresponding Left eigenvectors, respectively left principal vectors: 

(4?)“(G - P/I,,) = 09 

(a$))“(C,, - pII,,) = (af!_l)H, k = 1, 2,. . . ,m, - 1. (5.13) 

Proof. Let lE{l, 2 ,..., L} be arbitrary, but fixed. FOJ simplicity, we suppress indices I and set 

cc := PI, m := m, and ak := ak . (I) Thus p is a zero of $,, of multiplicity m, i.e., 

&j:)(l_~)=O, k=O,l?..., m-l, &,n)( p) # 0. (5.14) 

In the sequel, it is always assumed that k E (0, 1,. . . , m - 1). 
From (5.14), (5.6) and (5.7), we obtain the identity 

@,,(O)( @‘(l-L))” = 0, where (g,,(y))” # 0, 

which, since 9( H,,) = M( Q,,(O)) (cf. (5.1 l)), implies that there exists a vector ak # 0 satisfying 
(5.12). Furthermore, by (3.71, H,, has full column rank, and therefore ak is uniquely deter- 
mined by (5.12). 

It remains to show that ak fulfils (5.13). With (5.12) and (5.9), it follows that 

k! aFH,yH,, = 6!“‘(u) H,, = &,I”-‘,( u), 

and, if k >, 1, 

( 
*, :\ - l)! aF_ ,H,yH,, = &,I”_;‘)@). 

(5.15) 

(5.16) 
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By using (5.10?, (5.12?, (5X?, (5.15) and (X16?, we obtain 

k’a!‘H” = k!a,HH,; .L R 

= k! pa~'H~Hn+ I 
0, if k = 0, 

\k!ar_,H,FH I1 ’ if kal. 
(5.17) 

FinalLy, by multiplying (5.17) from the right by (l/k!?( H,rH,,?- ‘, one arrives at 6.13). q 

By rewriting the main result of Theorem 5.2 for the original quasi-kernel polynomial (5.1), 
the following corollary results. 

Corollary 53. l7re nth quasi-kernel polynomial satisfies 

In particular, the zeros of #,, are the eigenralues of the generalized eigem?alue problem 

H,!%,z=Atj,Hz, ZEF, z#O. (5.18) 

5.3. Computing zeros of quasi-kemel polynomials 

In view of Corollary 5.3, zeros of quasi-kernel polynomials can be computed by solving a 
generalized eigenvalue problem. The standard method for this task is the QZ algorithm 
[ 161. However, since cond,(H,rH,) = (~nnd~(1Y,??~ (here we denote by cond,CM? := 
max .r:I,_rII__I II MIX II ~/min,.,,_~,,__, II M. II z the E UC I I’d ean condition number of a matrix M?, the 
matrix Hi”H, can be ill-conditioned, even if the condition number of H,, is moderate, and thus 
in general it is not advisable to solve the generalized eigenvalue problem in the form (5.18). 

ext, we show how this problem can be avoided by rewriting (5.18) by means of the QR 
decomposition (4-l?, which we have already used in Section 4. 

Let Q, and R, be the unitary and upper triangular factors in (4Ai; =here again we assume 
that Qn is a product (4.2) of rz Givens rotations (4.3). Then, by (4.1?, it holds 

R,HH,HH,8 = R ?I ’ (5.19) 

and, by (5.10) and (4.1?, we have 

R,; “fin” = R, “H” ,, [ ;] = [I,, O]Q,,[ ‘0.1 =: b,,- 

ote that, by (4.2) and (4.3) (for j = n?, 

(5.20) 

(5.21) 



R. W. Freund / Quasi-kernel polynomials 149 

Finally, by multiplying (5.18) from the left by R,yH and by using (5.19) and (5.20), we obtain the 
following equivalent formulation of (5.18): 

R,,z=h&z, ZEC", z#O. (5.22) 

Therefore, the roots of quasi-kernel polynomials can be computed as follows. 

Algorithm 5.4 (For computing the zeros of en). 
(1) Compute the QR factorization (4.1) of H,, with Q,, of the form (4.2), (4.3); 
(2) Compute & using (5.21); 
(3) Apply the QZ algorithm to the genera& ?*--d eigenvalue problem (5.22). The resulting 

eigenvalues are the zeros of $,,. 

Since R,, is nonsingular, A = 00 is an eigenvalue of (5.22) if, and only if, o,, is singular. In 
view of (5.20, it follows that rli,, has an infinite zero if, and only if, c, = 0. 

We would like to point out that Algorithm 5.4 seems to be new even for the special case of 
standard kernel polynomials. Saylor and Smolarski [23] have proposed an algorithm for 
computing roots of kernel polynomials, which is based on a formulation of the problem as a 
standard eigenvalue problem. However, this formulation is only possible if 3/, has full degree n, 
and the case deg $,,, < 11 is treated in [23] by applying the algorithm to ens, where n’ = deg +,, 
(cf. Proposition 5.1). The problem with this approach is that it requires the numerical 
determination of the degree of #,,, which can be tricky if $n has leading coefficients close to 
zero. Note that in Algorithm 5.4 this decision is avoided by always working with a generalized 
eigenvalue problem. 

6. GMRES, QMR and transpose-free QMR 

In this section, we return to linear systems (2.11, and we consider the algorithms GMRES, 
QMR and transpose-free QMR for solving (2.1). 

All three methods can be formulated using the setting from Section 3, and their iterates can 
be expressed via kernel or quasi-kernel polynomials. In all cases, ( l , - ) is the inner product 
defined in (2.10), and in the sequel, we denote by 

II cp II ( ) :-- (cp, qY2, <p =%, 

the corresponding seminorm. Note that ( - , l ) is positive definite on YJA _ I, i.e., 

(cp, +O for all <PE~+~, cp#O, 

where 

JA :=dim K,(r,, A) (6 1) . 

denotes the degree of the minimal polynomial of r0 with respect to A (cf. [29, p.371). 
All three algorithms generate a sequence of basis vectors L!“, L’], . . . , L’~ for the Krylov 

subspaces (2.3): 

K,,( ro 3 A)=span(u,,u ,,..., u,!_,), n=l,2 ,..., J. 
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In view of (2.4). these basis vectors are of the form 

1) = pj( A)r,,, where ~j E~j, deg qj = j, (6 2) . 

and. as in Section 3, we denote by l7j = (Cpi},S,” the set of these basis polynomials. Then, the 
iterates produced by all three methods are given by 

s, =x,+[r., L’1 l *= &P &,* 

where z, is defined in (3.13), and the corresponding residual vectors are 

5, = (I,,(&-,, (6 3) . 

where 3r, is the nth quasi-kernel polynomial (corresponding to the inner product ( l , l ) and 
derived from n,). We remark that, by (2.10), (6.2) and (6.3), it holds 

(), j=O, l,....J, and IIr,ll~= II#.&j, n=O, l,...,J. (6 4) . 

The three algorithms GMRES, QMR and transpose-free QMR differ in the choice of the set 
of basis polynomials J7,. Next we discuss the three different cases. 

6. I. GMRES 

Here J=JA (cf. (6.111, ‘po, cp ,,..., ‘pj+ are orthonormal with respect to the positive definite 
inner product (2.101, and pJ is a minimal polynomial of r. with respect to A. In view of 
Corollary 3.3, the residual polynomials (I, in (6.3) are true kernel polynomials corresponding to 
(2.10), and the GMRES iterates are characterized by the minimal residual property (2.9). 
Moreover, in exact arithmetic, the full GMRES algorithm stops after J iterations with the 
solution x, = A - ‘6 of (2-l), a n d a 11 roots of the last kernel polynomial & are eigenvalues of A. 

In the actual GMRES algorithm, the vectors (6.2) are constructed by means of the Arnoldi 
process [l], based on the recurrences (3.4) for the polynomials in 17~. Unfortunately, except for 
very special cases [4]. the matrix J?n in (3.1) is a full upper Hessenberg matrix, and conse- 
quently. the construction of a new basis vector ~7~ in general involves all previous basis vectors 
I’,,, 1’ 1,“‘. 5, - I’ In particular, work and storage per iteration grow linearly with the iteration 
number II. Therefore, in practice, it becomes prohibitive to run the full algorithm for a large 
number of iterations, and usually GMRES is used with restarts. 

We would like to point out that the linear growth of work and storage requirements per 
iteration is not a consequence of the particular implementation used in GMRES, but - as was 
shown in [4] - it is indeed true for any method that generates iterates defined by the minimal 
residual property (2.9). 

6.2. QMR 

In the QMR approach, the nonsymmetric Lanczos process is used to generate the polynomi- 
als in 17,. 

The nonsymmetric Lanczos method is based on the bilinear form 

[cp, $1 :=$$(A)~(+,,, cp* +ipX. (6 5) . 

Here s,, E a3 .‘, s,, z 0, is a second starting vector, which can be chosen freely; usually, one sets 

so = < or chooses s,, as a vector with random entries. The Lanczos process generates 
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polynomials &, 4 1, . . . , 4, that are orthogonal with respect to (6.5): 

[~j, 4k] =O, if jzk. F-6) 
We remark that, for the Hermitian case, i.e., A = AH and s0 = 6, the Lanczos polynomials ~j 
are real [26]. Therefore, in the Hermitian case, it suffices to consider the bilinear form (6.5) for 
real polynomials only, and then (6.5) and the inner product (2.10) are identical. However, in the 
general non-Hermitian case, the bilinear form is not a positive semidefinite inner product (cf. 
(3.1)). In particular, there exist polynomials cp f 0 with negative “length” [cp, cp] < 0. 

Generally, polynomials that satisfy the orthogonality relations (6.6) for a given bilinear form 
[ l , l ] are called formally orthogonal polynomials (FOPS) (see [3,1 l] and the references given 
therein). Unlike true orthogonal polynomials in the complex plane, FOPS can always be 
generated by means of short recursions; usually, they even satisfy three-term recurrences of the 
type 

Yj+*~j(h) G (A -aj)@j-l(A) -pi4j-2(A)9 Yj+lY *jy PjE ‘, Yj+l #O* (6 7) . 

However, if one insists on three-term recurrences (6.7) in each step, then exact or near-break- 
downs of the process cannot be excluded. Fortunately, such an event is extremely unlikely in 
practice; moreover, if it occurs, it can be overcome by resorting to slightly longer recursions and 
relaxing the orthogonality conditions (6.6). For details, we refer the reader to [6,11,12]. 

In the QMR algorithm [8], the Lanczos polynomials 

<pi’=+j, j=O, l,...,J, 

corresponding to the bilinear form (6.6) are chosen as the basis polynomials in n,. Here J := J, 
where J, is defined as the largest integer such that there exists a unique manic polynomial cp of 
degree J, with [cp, +I= 0 for all $ EP,~_ 1. We remark that J is the termination index of the 
Lanczos method (see [6]) and that J, < JA. 

For the actual construction of the vectors (6.2), we use the implementation of the Lanczos 
process that was recently developed in [6]. In this particu!ar variant of the Lanczos method, 
exact or near-breakdowns are handled by means of so-called look-ahead techniques (see [6,18]). 
If all the Lanczos polynomials can be generated by three-term recurrences (6.7), then the 
matrix H, in (3.4) is a tridiagonal matrix; this is the generic case. If look-ahead steps of size 
bigger than 1 are taken due to exact or near-breakdowns, then H, still remains upper 
Hessenberg and also exhibits a block tridiagonal structure: 

a1 p2 0 -a- 0 - 
. 

Y2 a2 l * . -‘* : 

0 . . 
Y3 l 

. 0 
Hn= . . : : . . . . p 

I(n) . . . . 
. . . . Yl(n) al(n) 
0 . . . 0’ 0 Y/(n)+ 1 

(6 8) . 

Here Z(n) is the number of steps in the look-ahead Lanczos algorithm, and the diagonal blocks 
cyk are small square matrices whose size corresponds to the length of the k th look-ahead step. 
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In particular, I(n) = n and all cyk’s are 1 x 1 blocks if no exact or near-breakdowns were 
encountered. 

The block tridiagonal structure (6.8) of H, is the reason why QMR UT! be implemented 
using short recurrences only. Indeed, with (6.8), (3.4) and (3.3), it follows that the basis vectors 
(6.2) can be generated by means of short recursions. In the generic case they even satisfy 
three-term recurrences. Notice that, in view of Theorem 4.1, the nth QMR residual vector (6.3) 
is always a linear combination of rn _ , srrc! !Tnm Updating the corresponding iterate x,, is slightly 
more complicated, but it can also be computed by means of a short recursion (see [8] for 
details). which again reduces to a three-term recurrence in the generic case. 

We remark that, in the QMR algorithm, the vectors Uj are normalized to have unit length. 
Therefore, in view of (6.41, it holds 

(cpi, vi> = ]I L) ]]f = 1 for all j, 

and thus the condition (3.14) is satisfied. Then, with (3.12), (X3), (3.15) and the second 
relation in (6.41, we obtain the following upper bound for the norm of the QMR residual vector 
“$ 

Based on the estimate (6.9), it is possible to prove a convergence theorem for QMR (see [8, 
Theorem 6.l]i. 

6.3. Transpose-free QMR 

In addition to the basis vectors (6.21, the standard QMR method based on the look-ahead 
Lanczos process also involves a second sequence of vectors given by 

Wj=&j(AT)S(J, j=O, l,...,J,. 

Generating these vectors requires matrix-vector multiplications with Awr, which is a disadvan- 
tage for certain applications where AT is not readily available. On the other hand, in the QMR 
algorithm, the vectors wi are only used in the computations of vector products of the form 

w’%= [cp, $1, where c=cp(A)r,, w=@(AT)sO, <p, #CC?&. (6.10) 

Now, by nmeans of (6.51, the product in (6.10) can be rewritten as follows: 

(6.11) 

Therefore, if we choose any set of basis polynomials II, where J > 2( J, - 1), then all possible 
products (6.10) can be obtained - without using AT - as linear combinations of 

T SUL)=S;fY;j(A)TO, j-0, l,..., J. 

We remark that the crucial relation (6.11) was first used in [25] in the derivation of the 
transpose-free conjugate gradients squared algorithm. 

For the transpose-free QMR method (TFQMR), which we proposed in [5], the basic 
polynomials in n/, where J := 2J, - 1, are chosen as products of the Lanczos polynomials &, 
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k=O, 1 , . . . , J,, defined by (6.6). More precisely, the TFQMR algorithm is based on the 
polynomials 

<pi = 

We remark th 

4,’ 
lb II f 0 

9 if j=2k, k=O, l,...) J,-1, 

dk- I& 
,,4k_,+k,,o, ifj=2k-1, k=l,2,...,Jt.-l, 

(6.12) 

+I,.- hJ,_, if j=2J,- 1. 

t, using the fact that 1, < JA, one can easily check that the denominators in 
_ _ 

(6.12) are always positive. 
Note that the polynomials (6.121, except for the last one (p2J,._ ,, are normalized such that 

(3.14) holds. Consequently, for TFQMR, we again have an estimate of the type (6.9), where, 
however, H,, is now the recurrence matrix corresponding to the polynomials (6.12), rather than 
the Lanczos matrix (6.8). In particular, we would like to stress that the iterates produced by 
TFQMR and standard QMR are different in general. 

For details of an actual implementation of TFQMR, we refer the reader to [S]. 

7. Xumerical experiments 

In this section, we present two numerical examples. 

7.1. Example I 

This example is a nonsymmetric linear system (2.1). We consider the partial differential 
equation 

Lu =f on (0, 1) X (0, 1) X (0, l), (7 1) . 

where 

au ( 1 
+P(x+y+z)ax+ Y+ 

l+x+y+z I 
u, 

with Dirichlet boundary conditions u = 0. The right-hand side f is chosen such that 

u = (1 -x)(1 -y)(l -z)(l - e-“)(l - e-‘)(l - e-‘) 

is the exact solution of (7.1). We set the parameters in (7,l) to _B = 30 and y = - 250, and then 
we discretize (7.1) using centered differences on a uniform 15 x 15 x 15 grid with mesh size 
h = -&. This leads to a linear system (2.1) with a sparse nonsymmetric coefficient matrix A of 
order N = 3375. We have solved this system with GMRES, QMR and TFQMR. In all three 
cases, we chose x0 as starting vector, and 2s stopping criterion we used 

!! rn II 2 

II i0 ii 2 

4 lo-“. (7 2) . 
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Fig. 7.1. Relative residual norms H rn Ii 2 / 11 r. II z plotted versus n, for Example 1. 

For the second starting vector sg in QMR and TFQMR, a vector with random entries was 
chosen. To avoid excessive storage requirements, the GMRES algorithm was restarted after 
each cycle of 50 iterations. In Fig. 7.1, we have plotted the relative residual norm (7.2) versus 
the iteration number n. The solid line is the convergence curve for standard QMR, the dotted 
line shows the behavior of TFQMR, and the dashed line is the GMRES convergence curve. We 
remark that, in terms of work and storage requirements, one iteration of QMR corresponds to 
two iterations of TFQMR. Therefore, for this example TFQMR is the best method. Note that 
GMRES - due to its minimal residual property - is optimal before it is restarted for the first 
time after 50 steps; after that it begins to stagnate. 

7.2. Example 2 

In this example, we compute roots of the kernel and quasi-kernel polynomials associated 
with GMRES and QMR, respectively, using Algorithm 5.4. 

Both GMRES and QMR were applied to the linear system (2.0, where A is a 200 x 200 
Toeplitz matrix of the form 

1 

-1 

0 

1 

1 

-1 

1 

1 

1 

1 

0 

1 . 

A= 
. 
. 

0 

. 
. 

. 

. 

. 
. 

. 

-1 

0 

i 

1 

1 

-1 

(7 3) . 
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Fig. 7.2. Zeros of GMRES and QMR residual polynomials, for Example 2. 

We, remark that the matrix (7.3) was first introduced in [lOI as a test example for iterative 
algorithms. The starting residual r,, and, for QMR, the second starting vector s0 were both 
chosen as random vectors. in Fig. 7.2, we show the zeros (marked by +) of the kernel 
polynomial $,“,““” corresponding to the GMRES residual Pan GMRES after 30 steps, as well as 
the zeros (marked by *) of the quasi-kernel polynomial t,%5$MR corresponding to the QMR 
residual rsQ6”” after 50 steps. 

Recall from Section 6 that, in exact arithmetic, GMRES will terminate after a finite number 
of steps J, and all roots of @FMRES are eigenvalues of A. For n < J, the zeros of $zMRES can 
be considered as approximations to the eigenvalues of A. Figure 7.2 shows that the approxi- 
mate eigenvalues obtained from GMRES and QMR exhibit a similar convergence behavior. 
Since QMR is based on!y on a quasi-minimization property, the convergence for QMR is 
slower than for GMRES. Hence, in Fig. 7.2, we compare the roots of $gMR with those of 

+ZMRES* 
The matrix A also appears in [17] as an example to demonstrate that, for nonnormal 

matrices ‘A, the convergence behavior of Krylov subspace methods depends on the pseudospec- 
trum [28] of A, rather than the spectrum h(A). Unfortunately, pseudospectra for large 
matrices A cannot be computed directly. Instead, it was pointed out in [17] that the sets 
bounded by lemniscates 

of GMRES polynomials usually are good approximations to pseudospectra. Of course, for 
practical applications, one needs to pick a value for the parameter q; a heuristic for this choice 
can be found in [17]. The GMRES polynomials are generated by computing their coefficients 
explicitly in [17], which is an unstable procedure for polynomials of high degree, and then the 
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4 -3 -2 -1 0 1 2 3 4 

Fig. 7.3. GMRES lemniscates, for Example 2. 

l- 

,_ 

I J 
-3 -2 -1 0 1 2 3 4 

Fig. 7.4. QMR lemniscates, for Example 2. 

roots are obtained. By using Algorithm 5.4, roots of general quasi-kernel polynomials can be 
computed directly and in a numerically stable manner. 

In Fig. 7.3, the lemniscates 

C,(q) for 7j = e-‘, t = 0, 1,2, (7 4) . 

of the GMRES polynomial #gMRES are plotted. In Fig. 7.4, we show the corresponding 
lemniscates (7.4) for the QMR polynomial & OMR In both cases, the polynomials were obtained . 

from their roots, which were computed by means of Algorithm 5.4. As can be seen from the 
plots, both approaches give roughly the same approximations to the pseudospectrum. 

8. Concluding remarks 

In this paper, we have introduced the concept of quasi-kernel polynomials. Roughly speak- 
ing, quasi-kernel polynomials are approximations to true kernel polynomials obtained from a 
se;: of arbitrary basis polynomials, rather than orthonormal polynomials. We have presented 
some results for general quasi-kernel polynomials, such as recurrence relations and a character- 
ization of roots of quasi-kernel polynomials as generalized eigenvalues. If the basis polynomials 
satisfy short recurrences, then the corresponding quasi-kernel polynomials can also be gener- 
ated by means of short recursions. As a result, matrix iterations based on such quasi-kernel 
polynomials can be implemented with short vector updates. In contrast, true kernel polynomials 
usually do not fulfil short recursions, and consequently, iterative schemes based on true kernel 
polynomials generally involve !ong vector recurrences. 

We have shown that two recently proposed quasi-minimal residual algorithms for solving 
non-Hermitian linear systems are based on particular instances of quasi-kernel polynomials. 
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Finally, the use of quasi-kernel polynomials for approximating eigenvalues and pseudospectra 
of non-Hermitian matrices was discussed briefly. 
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