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Abstract 

In this paper we define second order C-differentiable functions and second order C-differential operators, describe their 
some properties and propose an inexact generalized Newton method to solve unconstrained optimization problems in which 
the objective function is not twice differentiable, but second order C-differentiable. We prove that the algorithm is linearly 
convergent or superlinearly convergent including the case of quadratic convergence depending on various conditions on 
the objective function and different values for the control parameter in the algorithm. @ 1998 Elsevier Science B.V. All 
rights reserved. 
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I. Introduction 

Consider the nonlinear programming problem 

min f (x ) ,  xE ff~n. (1) 

If  f (x)  is twice differentiable, a classical algorithm for finding a solution to problem (1) is the 
Newton method (see [4]). Given an initial guess x0, we compute a sequence of steps (sk} and 
iterates {xk} as follows: 

Step O. Give x0 and let k = 0. 
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Step 1. Solve 

~72f (xk )sk = -9k, (2) 

where ~72f(xk) is the Hessian of  f ( x )  at xk and 9k = 9(xk) = ~7f(xk), the gradient of  f ( x )  at xk. 
Step 2. If  g (xk )=0  then stop, otherwise let xk+~ =xk +sk  and k = k  + 1, goto Step 1. 
The Newton method is attractive because it converges rapidly from any sufficiently close initial 

guess. Indeed, it is often taken as a standard convergent method because one way of  characterizing 
superlinear convergence is that the step should approach the Newton step asymptotically in both 
magnitude and direction [5]. 

However, if the number of  variables is large, solving the Newton equation may be prohibitively 
expensive. For this reason, special methods have been developed to solve large-scale problems. One 
of  them is inexact Newton method (see [2, 3]) in which we solve Eq. (2) only approximately. A 
natural stopping rule would be based on the size of  the relative residual Ilrkl[/llgkll (throughout this 
paper the vector norms are Euclidean), where the residual rk is given by 

rk =  72f(xk)sk + (3) 

and sk is the step actually computed (i.e., the approximate solution to Eq. (2)). Such inexact Newton 
methods may offer a trade-off between the accuracy with which the Newton equations are solved 
and the amount of  work per iteration. An important question is what level of accuracy is required 
to preserve the rapid local convergence of Newton's method. 

Specifically, we consider the class of  inexact Newton methods which compute an approximate 
solution to the Newton equations in some unspecified manner such that 

Ilrkll 
- -  ~<t/k,  ( 4 )  
IIg ll 

where the nonnegative forcing sequence {t/k} is used to control the level of accuracy. To be precise, 
an inexact Newton method is any variation of Newton method in which (3) replaces (2) and for a 
given initial guess x0, a sequence {xk} of  approximations to x .  is generated. 

If f is not twice differentiable, Newton method cannot be used. Some generalized Newton methods 
for solving nonsmooth equations 

F(x) = 0 (5) 

have been developed in recent years (see [7, 9, 11]), which are based upon Clarke's generalized 
Jacobian OF(x) or B-differential aBF(x) as well as semismoothness. [6] proposed a class of inexact 
generalized Newton methods for nonsmooth equations and proved their convergence. 

However, exact calculus rules do not hold for Clarke's generalized Jacobians and B-differentials. 
For example, ~f+~g ~ ~ ( f+g)  in general. This causes some trouble in implementing these methods. 
Qi [10] introduced new tools, C-differential operator and C-differentiability, to ease this difficulty and 
to extend further the applicable area of generalized Newton methods. Qi gives in [ 10] the following 
definition: 
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Definition 1.1. Suppose that T : R" --. ~m×n is a set-valued operator, i.e., for any x E R n, any V E T(x) 
is an m × n matrix. We say that the function F : R n --~ R" is C-differentiable at x E ~" if  

(1) T(y) is nonempty and compact for any y in a neighborhood of  x; 
(2) T is upper semicontinuous at x; 
(3) for any V E T(x + d), 

F(x + d ) = F ( x )  + Vd + o(lldll). 

And call T a C-differential operator of  F.  If  furthermore, 
(4) for any V E T(x + d), 

F(x + d) = F ( x )  + Vd + O([[dll2), 

we say that F is strongly C-differentiable at x. 

In this paper we will extend the above definition to the second order case and propose an inexact 
generalized Newton method to solve some unconstrained optimization problems (1) in which the 
objective functions are not twice differentiable, but second order C-differentiable. We will prove 
that the algorithm is linearly convergent or quadratically convergent under some mild conditions. 
Comparing with the methods in [6], we discuss the method in this paper for different type of  objective 
functions and its convergence under some different conditions. For example, we do not assume that 
all r/k are small enough in the method of  this paper. 

Finally, we propose a globally convergent inexact generalized Newton method for second order 
C-differentiable optimization problems in which we do not need additional conditions in proving its 
convergence. 

The paper is organized as follows: in Section 2, we first define second order C-differentiable func- 
tions and second order C-differential operators, then describe some of their properties. In Section 3, 
we discuss uniformly C-convex functions. Then, we will propose a generalized Newton method and 
prove its convergence in Section 4. Finally, in Section 5 we introduce a globally converegent inexact 
generalized Newton method. 

2. Second order C-differentiable functions 

In this section we first extend the definition of  C-differentiability in [10] for nonsmooth equations 
to the second order C-differentiable functions and second order C-differential operators for non-twice 
continuously differentiable functions, and then discuss their properties. 

Definition 2.1. A first order differentiable function f : E" --~ R is said second order C-differentiable 
at x with a second order C-differential operator (or called C2 operator for short) T if the gradient g 
of  f is C-differentiable at x with T. Furthermore, we say that f is second order C-differentiable at 
x with a C2 operator T and degree p, p > l, if f is second order C-differentiable at x with T and 
for any V E T(x + d), 

g(x + d) = g(x) + Vd + o(lldll ). 
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We say that f is second order C-differentiable in D with a C2 operator T (and degree p) if f is 
second order C-differentiable at each point x E D with T (and degree p). 

Remark 1. The second order C-differential operator is defined as a set-valued operator in a neigh- 
borhood of  x, not only at a single point, even when we discuss the second order C-differentiability 
at x. 

Remark 2. We define the C-differentiability of  f without using local Lipschitz and directional 
differentiability assumptions. 

Remark 3. If f is second order C-differentiable then it may have various C2-differential operators, 
e.g., if T is a second order C-differential operator of  f then we can define other second order 
C-differential operators T by one of  the following ways: 

1. let D be any finite set in R n and define ~?(x) 3 T(x),  T(x)  can be any bounded set for x E D 
and/~(x) = T(x)  for x ~ D; 

2. T ( x ) = c o { T ( x ) }  for all x; 
3. 7~(x) ---- {limx,__.x T(xk)}. 

Remark 4. If TI and /'2 are two second order C-differential operators of f and 7 ~ = T1 tA T2, then 
is also a C2-operator of  f .  

The concept of  second order C-differentiability has some relations with the requirement for the 
gradient 9 to be semismooth or Lipschitz continuous. Semismoothness was originally introduced 
by Mifflin in 1977. Convex functions, smooth functions and subsmooth functions are examples of  
semismooth functions. For a locally Lipschitz function F : Rn ____+ ~n we say that F is semismooth at 
x if 

lim , {Vh'} 
VE~F(x+th ) 

h~---~h, tlO 

exists for any h E R n, where OF(x + th') is the generalized Jacobian of F at x + th' in the sense of 
[1]. When F is differentiable at xk and xk ~ x, we know that 

OF(x ) = co ( xk--*x V'F(xk)}. 

If F is semismooth at x then for any V E OF(x + h), when h --* O, F(x  + h) - F (x )  = Vh + o([[hll). 
Define F as strongly semismooth at x if for any V E OF(x + h), when h --+ O, F(x  + h) - F (x )  = Vh + 
O(llhll 2) (see [9]). 

If the gradient function 9 is Lipschitzian then we know that V'Ok = ~72f(xk) exists almost every- 
where, and we can define 

t32f(x) = {lira x V'2f(xk) } (6) 
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where the limit is taken for the xk at which f is twice differentiable. Similar to Clarke's generalized 
Jacobian we define 

02 f ( x )  = co{OZ f ( x ) } .  (7) 

Using the above results we obtain the following proposition immediately. 

Proposition 2.2. Suppose the gradient function g o f  f is locally Lipschitzian. 
I f  g is a semismooth function, then f is second order C-differentiable with a second order 

C-differential operator O2 f (or O2Bf ). 
I f  g is strongly semismooth, then f is second order C-differentiable with degree 2 and the 

associated second order C-differential operator is O2 f (or O2Bf ). 

However, it remains unknown that if f is second order C-differentiable and g is directionally 
differentiable, whether g must be semismooth. 

We now show other properties about the second order C-differentiable functions. 

Proposition 2.3. I f  g is C-differentiable at x with a C2 operator T, then g is HSlder-continuous 
with exponent 1 at x, i.e., there exists a di>0, a neighborhood B ~ ( x ) = { z l l l x - z l l  ~ 6 }  o f  x and a 
constant L > 0 such that for  any y E B6(x), 

I lg(y)  - g(x)]] ~LI Iy  - x[[. ( 8 )  

Proof. If this proposition is not true, then there exists a sequence of points {Xk}, xk---~x and 

IIx~ - x l l  = o ( l l g k  - g ( x ) l l ) .  (9) 

On the other hand Definition 2.1 implies 

gk - g ( x )  = Wk(xk - x )  + o ( l l x ~  - x l l ) ,  ( l o )  

where Vk E T(xk). Condition (1) of Definition 2.1 implies that Ilvkl[ is bounded and therefore, there 
exists a Co such that for sufficiently large k, 

Ilgk - g(x)[I ~ Collxk - xll. (11) 

The contradiction between (9) and (11) proves this proposition. [] 

Proposition 2.4. I f  g is C-differentiable in domain D with a C2 operator T, then g is locally 
Lipschitzian at any x E int D. 

Proof. For any x E int D, the local boundedness of T implies that there exists a closed neighborhood 
B6(x) of x, x C in tB6(x)C D, and a constant L > 0 such that for any y E intB6(x) and any Vy E T(y),  
L > 211 Vy I I. As f is second order C-differentiable in D, for any y E B6(x) and any Vy+d C T(y  + d), 

g(y + d) - g ( y ) =  Vy+dd + o(lldll). (12) 
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For each y C int B~(x) there exists an open neighborhood B~(y)(y) of  y such that when y + d  E B~(y)(y) 
C Ba(x) the following inequality holds. 

IIg(y + d)  - v(y)ll  ~<Zlldll. (13) 

Now for any z and z + d in intB6(x), [z,z + d] is a closed set and 

[z,g + d] C U B6(y)(y). (14) 
yG[z,z+d] 

By real analysis, there exist finitely many B~(y,)(yi), Yi C [z,z -q- d] such that 

[z,2 + d] C UB6(yi)(yi). (15) 
i 

In fact we can find out p points zi, zi = z + tid, 0 = to < tl < t2 < • • • < tp - -  1, each pair of  successive 
points zi and zi+l are in the same B6~y~)(yi) and Yi E [zi,zi+l]. Hence by (13), 

p--I 

IIg(z + d )  - g(z)ll ~ ~ Ilia(z,÷,) - g(y,)l l  + IIg(y,) - g(z,)lH 
i=0 

p--I 

<% ~ t(b+, - ti)lldll =t l ld l l ,  
i=0 

i.e., the proposition is true. [] 

The semicontinuity of T(x) implies the following proposition (see [10]) 

Proposit ion 2.5. Assume that g is C-differentiable at x ,  with a C2 operator T. I f  [IV, Ill, where 
V, E T(x ,  ), is bounded, then there exists a 6 > 0 such that ./'or all x E B~(x, ) and any ~ E T, ]1 z~-' II 
is bounded. 

We can further define the concept of  uniformly second order C-differentiable. 

Definition 2.6. Assume that f is second order C-differentiable at x with a C2 operator T. f is 
called uniformly second order C-differentiable at x with a C2 operator T if for any given e > 0, 
there exists a neighborhood B6(x) of x such that for any y satisl~ing y + d E B6(x), (y  + d ~ x )  and 
any Vy+d C T(y  + d) the following result holds. 

IIg(y + d )  - g ( y )  - Vy+ddll ~cl ldl l .  (16) 

3. C2-differentiable convex functions 

In this section, we discuss second order C-differentiable convex function. 
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Definition 3.1. We say that f is a second order C-differentiable convex function, or called a 
C2-convex function for short, at x with a C2 operator T (and degree p) if f is second order 
C-differentiable at x with a C2 operator T (and degree p) and any V E T is positive semidefi- 
nite; f is said to be a second order uniformly C-differentiable convex function, or called uniformly 
C2-convex for short, at x (or in D) with a C2 operator T (and degree p), if  f is second order 
C-differentiable at x (or in D) with a C2 operator T (and degree p) and all Vx E T(x) (and any 
x E D) are uniformly positive definite. 

Proposition 3.2. I f  f is uniformly C2-convex at x ,  with a C2 operator T, then there exist e > 0 
and a neighborhood B~(x,) o f  x ,  such that for  any x E B~(x,) and any V E T, V is uniformly 
positive definite and 

JVy>~cllYl[ 2, VyE ~". (17) 

Proof. Suppose the proposition is not true, then there exists a sequence of  points {xk} satisfying 
1. all xk are in a neighborhood B~(x,) of x ,  which meets the assumption (1) of  Definition 2.1 

and xk ~ x , ;  
2. each T(xk) includes a Vk whose smallest eigenvalue 21(Vk) is less than e~, where ck > 0  and 

ek ~ 0 .  
Because {~}  is bounded it has a convergent subsequence. For simplicity assume that {~}  con- 

verges to a matrix V. V is not positive definite because for each k, 21(Vt)<¢k. But the upper 
semicontinuity of  T implies that V E T(x . )  and hence V is positive definite. This contradiction 
implies that the proposition is true. [] 

Proposition 3.3. I f  f b uniformly C2-convex at x , ,  then f is strictly convex at x, .  

Proof. Proposition 3.2 implies that if  f is uniformly C2-convex at x ,  with a C2 operator T, then 
there are an e > 0  and a 6 > 0  such that for any xEB6(x , ) ,  any Vx E T(x) and any zE  ~n 

zT Vxz >.  llzll =. (18) 

Because f is second order C-differentiable at x . ,  we know that there exists a 61, 0<61 ~<6 such 
that for any x E B ~ , ( x . )  and any V~E T(x), 

(X - -  X~¢ ) T ( g ( X )  - -  g ( X , )  - -  Vx(x - x : ~ ) )  ~ > - 1 8 l l x  - x ,  II 2. (19) 

So, we obtain that for any x E Ba, ( x , )  and any V~ E T(x), 

f ( x )  - f ( x ,  ) - (x - x ,  )T g(x,  ) 
P 1 

= Jo ((x - x , )Tg(x ,  + t(x -- X, )  -- g ( x , ) ) )d t  

/o Io >>. (t(x -- x ,  )TVx,+t(x_x,)(x -- x , ) )  at  - e l lx  - x ,  112/2 td t  

 >cllx - x ,  1 1 2 / 4 > 0 .  (20) 

This completes the proof of  the proposition. [] 



114 D. Pu, J. Zhangl Journal of Computational and Applied Mathematics 93 (1998) 107-122 

Propositions 3.2 and 3.3 immediately imply the following results. 

Proposition 3.4. I f  f & uniformly C2-convex at x ,  with a C2 operator T and g(x, )= 0, then x ,  
is a locally strict minimum point o f  f .  

Proposition 3.5. Assume that f ( x )  is uniformly C2-convex in D with a C2 operator T, x ,  E D 
and g(x, )= O. I f  Xo is sufficiently close to x , ,  then there exists a neighborhood Ba(x, ) of  x ,  such 
that the level set 

S(x)  = {x I f ( x )  <~ f(xo), and x C D} (21) 

belongs to B6(x. ). 

4. An algorithm and its convergence properties 

In this section we assume that function f is second order C-differentiable at x with a C2 operator T. 

Algorithm 4.1 (Inexact generalized Newton algorithm). Given a nonnegative sequence {r/k} and an 
initial guess x0, we compute a sequence of  steps {sk} and iterates {xk} as follows: 

Step O. Give x0 and let k = 0. 
Step 1. Solve 

Vksk : --gk + rk, (22) 

where Vk C T(xk) and 

Ilrkll 
Ilgkl---i ~<nk. (23) 

Step 2. If g(xk)=O then stop, otherwise let x,+l =xk +sk  and k = k  + 1, goto Step 1. 

Lemma 4.2. Assume that f is second order C-differentiable at x ,  with a C2 operator T and 
g(x, )= O. Let Algorithm 4.1 be implemented with r/k <<. r/max < t < 1. I f  xk is SUfficiently close to x , ,  
then the following inequality holds: 

II ~(xk+, - x,) l l  ~ tll ~(xk - x , ) l l .  (24) 

Proof. The definition of  C-differentiable and g(x , )=  0 imply that if xk is sufficiently close to x , ,  
then 

II V~(xk - x , )  - gk II ~ ( t  - r/m~x)llxk --  x ,  11/(4M), 

and hence we have 

II Vk(xk+, --  x*) l l  = II Vk(xk -- x , )  + V~skll 

II V~(xk - - x , )  --  0kll + Ilrkt[ 
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< II V~(x~ - x , )  - gall + r/~llg~ll 

-% (1 + r/max)ll Vk(Xk -- X ,  ) -- gk II + ?]max II Vk(xk -- x,)ll  

~< (t - r/m~)llxk - x .  11/(2M) + r/m~x II Vk(xk -- X*)II 

~< (t ÷ r/max)[I Vk(xk --X.)11/2 (25) 

~< tll Vk(xk -- x,)[[.  (26) 

i.e., Lernrna 4.1 holds. [] 

Lenuna 4.3. Assume that f is second order C-differentiable at x .  with a C2 operator T and 
x~---* x . .  Let  {Vk} be a sequence o f  matrices satisfying Vk c T(xk) and let S be the set o f  accumu- 
lation points o f  the sequence {Vk}, Then, for  any given ~ > 0 ,  there exists a K such that for  any 
k > K, we can f ind a Vk, E S satisfying 

IlV~- V~,ll <~.  (27) 

Proof. If  this lemma is not true, then there exist an e>O and a sequence { V,(;)}, where V,(,)E T(xk(g)) 
such that 

l i v e , ) -  v ,  l l ~ e  for all V. cS.  (28) 

Let V. be an accumulation point of  the sequence {Vk{i)}, then for some large i, l i v e , ) -  v.II < c  
which contradicts (28). [] 

Theorem 4.4. Assume that f & second order C-differentiable at x ,  with a C2 operator T, g(x.  ) = 0 
and Algorithm 4.1 is implemented with r/k <-% r/max < t < 1 to produce {xk} and the associated matrices 
used are {Vk}. Let  M1 =max{l[V.1 - II.2111V.l, V.2 c S } ( S is given in last lemma ) and IlVk-'ll ~<M 
( M > I  is a cons tan t ) for  all k. I f  r/~-I t>(1 ÷ MlM)/r/max for  sufficiently large k and Xo is in a 
sufficiently small neighborhood B6(x. ), then the sequence {xk} converges to x . .  Moreover, the 
convergence is linear in the sense that for  sufficiently large k, 

II V~(xk÷, - x,)lD ~ t l l  Vk-~(xk - x , ) l l ,  (29) 

Remark. If  S consists of only one V., i.e. Vk ---+ V., then M1 = 0 and hence no extra condition on 
r/k is required. 

Proof. Because f is second order C-differentiable at x .  with a C2 operator T, there exist a 61 > 0  
and a constant M0> 1 such that for any xEB6, =B6, (x . )  and any Vx E T(x), II Vxxll <M0 and 

IIo(x) - g (x  - x.)l[  ~<(t - -  r / m a x ) l [ x  - -  X ,  II/(4MMo). (30) 

We choose 6~ small enough such that if xk E B6, then Lemma 4.1 holds, and hence 

Ilxk+~ - x ,  II ~< tll Vkll II V~ -~ II Ilxk - x ,  II ~< tMoM[lxk - x ,  II. (31 ) 
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The conditions of  this theorem and Lemma 4.2 ensure that there exists a K such that for all 
k>g, r/~-I/>(1 q- M1M)/r/max, and also there would be a V~. E S satisfying 

IlVk -- Vk,[I ~ (t -- r/max)/(4MMo). (32) 

Let 6 = 61/(MK+IMo K+I ) and choose Xo E B6(x,),  then starting with k = 0, we can use the induction 
method to prove from xk EB6, that for any k<.K,  

Ilxk+l - x ,  If ~< tMoMllxk - x ,  II ~< tkMkoMkllxo - x ,  II < tk6,/(MMo), (33) 

from which we know that 

Xk+IEB6, and [[Wk(Xk+ 1 - x . ) l l < . 6 , / M ,  for k<~g. (34) 

We now consider the case k > K .  If xk EB6,, then by (30), (32) and the definition of  M~, we can 
obtain 

II Z~(xk+~ - x , ) l [  = II Z~(xk - x ,  + s~)ll 

~< II Z~(x~ - x , )  - gkll + II Z~s~ + gkll 

~< I1Z~(x~ - x , )  - gkll + r/~llg~ll 

~< (1 + r/~)ll Z~(xk - x , )  - gkll + r/~[[ Zk(x~ - x , ) l l  

~< (t - t / m a x ) l l x k  - -  X ,  11/(2M) + r/~[(ll Z~ - Z~. II 

+ live. - V(~-~.II + II ~ - , ~ .  - V~-lll)llxk - x ,  II + II Z~-~(x~ - x , ) l l l  

~< (t - r/max)I[ Vk-1 (Xk - x , ) l l  + r/~M111xk - x ,  II + r/~ II ~_~(x~  - x , ) l l  

~< ( t  - r/max)[I Vk-~(Xk --X*)II + r/~M1MIIV~-,(x~ -x*)ll + r/~ll ~ - ~ ( x ~  - x , ) l l  

~< tll Vk-l(Xk - x,)ll. (35) 

Since 

IIVk(xk+, - x . ) l [  <.61/g ~ xk+, CS~,, 

starting with k = K  (see (34)), we can use induction method to obtain from (35) that, for all k > K ,  

[1 ~ _ , ( x k  - x , ) l l  ~ t(k-x+l)ll  VK(XK+~ -- x,)ll. (36) 

So, it is assured that if Xo EBr(x,), then all xk EBr, and x k - ~ x ,  by (33) and (36), and also (29) 
holds for k >K.  [] 

Recall that Proposition 3.4 shows that if f ( x )  is uniformly C2-convex at x ,  and 9(x , )  = 0, then x,  
is a locally strict minimum point of  f ( x ) .  Furthermore, for uniformly C2-convex function, the algo- 
rithm has the following convergence property. Note that the assumptions r/~-I ~>(1 +MlM)/r/max and 
II z~ -~ II ~ M  in Theorem 4.4 are removed when f is uniformly C2-convex. 

Theorem 4.5. Suppose f is uniformly second order C-differentiable and uniformly C-convex at 
x .  with a C2 operator T, 9 ( x . ) = 0 ,  and the parameter r/k in Algorithm 4.1 meets the condition 
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~k ~/']max < t <  1. I f  xo is sufficiently close to x. ,  then the sequence o f  inexact generalized Newton 
iterates {xk} converges to x. .  Moreover, for  sufficiently large k the convergence is linear in the 
sense that 

II v~+~(x~÷, - x , ) l l  ~ [(1 ÷ 2t ) / (2  + t)] II Vk(x~ - x , ) l l .  (37) 

P r o o f .  Since f is uniformly C2-convex and uniformly second order C-differential, by Proposition 3.2 
and Definition 2.3, there exist 6 > 0  and constant M1 > 0  such that for any y, y + d  E B6(x, ) and any 
Vy+d E T ( y  + d), we have that 

[[VyII~<M1 and II~-'II~<M~. 

and 

(38) 

IIg(y ÷ d) - g(y)  - vy+adll ~<min{(1 - t), t ( t -  nmax)}lldll/(3Mt). (39) 

Without loss of generality, we may assume that 6 is chosen sufficiently small such that if xk E B6(x. ), 
then (24) holds. Now if xk E B6(x . )  then (38) and (391 imply 

I I x ~ - x ,  II ~< M111 g k ( x k -  x*)ll 

</I//1 [[I Vk(xk -- x,  ) -- gk II + IIg* II] 

~< (1 --t)llxk --x*ll + M~llg~ll, 

or [[xk - x ,  II ~<MI Ilgk II/t. So, if xk, xk+l C B6(x.) ,  then 

Ilsk II = Ilxk+, - x ,  - (x~ - x ,  111 ~<M,(IIg~+111 + IIg~ll)/t. (40) 

If we replace y, y + d and Vy+a in (39) by Xk+l, Xk and Vk respectively, then 

IIg~+, II = IIg~ + ~s~  - ( g k  - g k + ,  - z~(-sk)) l l  

II V~s~ + gkll + t(t - rlmax)llSkll/(3M,) 

Ilrkll + ( t -  'Tmax)(llgkll + Ilgk÷111)/3 

~< r/max IIg~ II + (t -- 'Tmax)(llgk II + Ilgk+' 11)/3 

= (t + 2r/max)llgk[I/3 + (t - r/max)llgk+~ 11/3- 

So, 

Ilgk+l II ~ Ilgkll [(t ÷ 2r/max)/3]/[1 -- (t -- r/max)/3] ~< tllgkl[, (41) 
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where the last inequality is obtained due to the fact 

3t - t 2 + tqmax = t  + 2g/max q- (2 -- t )( t  - t]max) > t q- 2qmax. 

Let y = x ,  and y + d = x k  or xk+l in (39). Then 

(2 + t)[[ Vk+~(xk+, - -x , ) l l / 3  

= 1 1 V k + l ( X k + l  - -  x , ) l l  - (1  - t ) l  [ Vk+l(Xk+ 1 - -  x * ) l l / 3  

~< II Vk+~(Xk+l -- x ,  )1[ -- (1 -- 0112,+1 - x ,  11/(3M~ ) 

~<tl] Vk(Xk -- x , ) l l  + (1 - t)llxk - x ,  11/(3M~ ) 

~<(1 + 2t)11Vk(xk -- x , ) l l / 3 .  

To summarize, we have proved that if  Xk,Xk+~ E B~, then 

11 v~+,(x~+, - x , ) l l  ~< ~1[ V~(x~ - x , ) l l ,  (42) 

where i ' = ( 1  + 2t) / (2  + t). Clearly, 0 < ? < 1 .  N o w  if  I l x o - x ,  ll<<.f/M4, we know from (24) that 
IlXl - x ,  II ~< 6 /M?  and IIx2 - x ,  II ~< 6, which ensures that [[ V211 ~<M1 and 1[ 112 -1 II .<M, .  Then we can 
obtain IIx2 - x ,  II-< 6/M? by using (42). In this way  we can use induction method to obtain that all 
IIx~ - x ,  II <<.6/M~ by (24) and (42). Moreover,  the following inequality holds 

II V~(xk - x , ) l l  ~<~11 Vo(xo - x , ) l l  (43) 

It is clear that xk--+x,  and (37) holds. [] 

Theorem 4.6. Suppose that f is second order C-differentiable and uniformly C2-convex at x ,  
with de#ree p and a C2 operator T, and the parameter ilk in Algorithm 4.1 meets the condition 
/']k ~/']max < t < 1. I f  9(X* ) = O, XO is sufficiently close to x , ,  and choose rlk <<. M21] 9k II p-  ~, p > 1, M2 a 
constant, then the sequence o f  inexact 9eneralized Newton iterates {xk} converges to x , .  Moreover, 
the order o f  convergence is p in the sense that 

IlXk+l -- x ,  II = O(llx~ - x ,  lie). (44) 

Proof .  Because f ( x )  is uniformly C2-convex at x ,  with degree p and 9 ( x , ) =  0, Proposition 3.2 
implies that there exist 6 > 0 and constant M1 > 0 such that for any x E B~(x, ) and any Vx E T(x), 

IlVxll~<M1 and I I v / ' I I ~ M ~ .  (45) 

By the definition o f  C2-differentiable with degree p and Proposition 2.2, we may reduce 6 if  necessary 
so that if  xk E Ba(x,) then (46) and (47) below hold. 

Ilgk - Vk(xk --  x , ) l l  ~<M3 Ilxk - x ,  II e ~< t l l x k  - x ,  11/(3M,) ,  (46) 
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where M3 > 0 is a constant, and 

,Tk <M2110kll ° - '  < . z p - l M 2 l l x k  - x ,  II ~-z <<.t/(3M~). (47) 

Now for such xk EBb(x,) and any Vk E T(xk), by using (23), (47) and (46), 

Ilrkll < nkllgkll 

< ~k(ll Vk(xk - -x* ) l l  + Ilgk -- Vk(Xk -- x* ) l l )  

~< tl[ Vk II Ilxk - x ,  1I/(3M~) + t l l x ~  - x ,  11/(3M1 ) 

~< 2tllxk - x ,  1I/(3M~ ). (48) 

By (22), (46) and (48) we obtain 

II ~ ( x ~ + ,  - x , ) l l  - -  II Z~(xk - x , )  + V~s~ll 

< II V~(x~ - x , )  - gkll + Ilrkll <~tllxk - x ,  ll/M1, (49) 

and hence 

IIx~+, - x ,  ll < live-ill  II V~(Xk+l -- x , ) l l  

~< tllvk-lll  Ilxk - x ,  ll/gl <<.tllxk - x ,  ll. ( 50 )  

(50) implies that if  Ilxk - x ,  II ~<~ then Ilxk+~ - x ,  II <t~. If x0 is chosen in B~(x,) then for all k, 
xk E B~(x,) and Ilxk - x ,  II < t~ IIx0 - x ,  II. So x~ - x ,  ~ 0. Moreover, we have 

II Z~(xk+l - x , ) l l  < II V~(x~ - x , )  - gkll + IIr~ll 

< II Z~(x, - x , )  - 0kll + ~kll0~ll 

~< (1 + r/k)[I Vk(xk -- x , )  -- gkll + '~11 Z~(x~ - x,)ll 

-- o( l lxk - x ,  I1~), 

where the last step is obtained from (46) and (47). This completes the proof of  the theorem. [] 

Notice that the requirement for r/k in Theorem 4.6 is implementable when we use the algorithm. 
In fact we can take r/k = min{r/max,M2llgkllP-l}. 

Corollary 4.7. I f  the assumptions in Theorem 4.6 hold and p = 2 ,  then Algorithm 4.1 is quadrati- 
cally convergent. 

Notice that if  in Theorems 4.5 and 4.6 we assume {Vk -~ } is bounded, then the assumption of  
uniform C2-convexity can be removed. 
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5. A globally convergent method 

In Section 4, we have given an inexact generalized Newton method and discussed its convergence. 
How can we find a point xl which is sufficiently close to x ,  with g ,  = 0? We may use some 
stabilization techniques, such as the methods with decreasing gradient norms or decreasing function 
values, to obtain globally convergent methods. In this section we propose such a method briefly. 
For a more detailed discussion, see [8]. 

Algorithm 5.1. Give x0, 0 < 01 < 1, 0 < 02 < 1, 0 < 03 ~< 04 < 1 and let k = 0. 

Step 1. Solve 

Vksk = --Ok + rk, (51) 

where Vk E T(xk) and 

Ilrkll 
Ilgkll ~<~" (52) 

Step 2. I f  f ( xk )  - f (x~ + sk)>>.O~ min{1, Ilgkll}llgklllls~ll, then let xk+l =xk  + sk, goto Step 5, 
otherwise goto Step 3. 

Step 3. I f  --g~skT >>.02min{1,11gkll}llskllllgkll, then let i l k = 0 ,  otherwise let 

~ k  = - gTksdl[gk112 -- 02 min{1, llgk ll } llsk ll/ llgk [[. (53) 

Let dk = sk + ~kgk. 
Step 4. Choose ~k so that 

f ( xk )  f ( xk  + ~kdk)> T -- --03ctkgkdk, (54) 

T Id~g(x~ + ~kdk)l <--04gkdk. (55) 

Let xk+t =xk  + ~kdk. 
Step 5. I f  g~+l = 0 then stop, otherwise let k = k-4- 1, goto Step 1. 

Theorem 5.2. Assume that f & second order C-differentiable at x ,  with a C2 operator T and & 
bounded below. I f  Algorithm 5.1 is implemented with tlk ~<qmax < t <  1, X, is an accumulation point 
o f  the sequence {xk} obtained by the algorithm, then g ( x , ) = 0 .  

Proof .  Because f is second order C-differentiable at x ,  with a C2 operator T, there exist a ~1 > 0 
and a constant M >  1 such that IIZ~ll < M  for all x C B r , ( x , )  and Vx E T(x). 

As f ( xk )  is bounded below and monotonically decreasing as k increases, we have f ( x k ) -  
f(xk+l)>>.O for all k and f ( xk )  -- f(xk+l)---~O. 

If  Algorithm 5.1 is implemented with t/k ~< qmax < t < 1, then we have 

II Zkskl)/> Ilgkll -- Ilrkll --> (1 - qmax)llgkl[. (56) 

(56) implies that i f  xk c Br, (x , ) ,  then 

Ilskll ~>M- ' ( I  - r/max)llgkll. (57) 
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If g ( x , ) # O  then there exist a 6<<.61 and an e > 0  such that xkCB~(x , )  and Ilgkll~>0 for 
infinitely many k because x ,  is an accumulation point of the sequence {xk}. Now for these k, 
consider the following two possible cases: 

Case 1. If  Step 3 and Step 4 are not implemented, then 

f ( xk )  - f (xk  + sk) >~ Ol min{1, Ilgkll}ilgkll Ilskll 

>~ 01M-l(1 -- r/max)min{1,e}e 2. (58) 

Case 2. If Steps 3 and 4 are implemented, then it is clear that, whether flk = 0 or not, T --gk4 >1 
02 min{ 1, Ilgkll}llgkllllskll. Eq.  ( 5 5 )  implies 

- - ( 1  - -  04 )d~ gk ~ -- d~ (gk -- Ok+, ) <~ ~ k L I l &  II 2. (59) 

On the other hand, (53) implies that /~kllgkll---<211skll and 11411--<3llskll. So, we obtain 

~k[[4ll > / - ( 1  - 04)d~gd(Lll4ll) 

/> ( 1  - 04)02 min{1, Ilgkll}llgkllllskll/(Zll411) 

/> ( 1  - 04)02 min{1, Ilgkll}llgkll/(3Z). (60) 

Eqs. (54) and (60) imply 

T 
f ( xk )  - f (xk  + ~k4)  > --03~kgk4 

1> ~k0302 min{ 1, Ilgkll}llgklllls~ll 

>/ ~k0302 min{ 1, IlgkH}llgkllll411/3 

~> ( 1  - 04)03(02 min{ 1, IIg~ I[ } IIg~ 11)2/(9L) 

>>. ( 1 - 04)03(02 min{ 1, e} )2~2/(9L). (61) 

In both cases f ( x k ) -  f(xk+l) is bigger than a constant, which contradicts f ( x k ) -  f ( xk+~)~  O, as 
k ~ oc. This theorem is true. [] 

Combining Theorem 4.6 and Theorem 5.2, the following theorem holds clearly. 

Theorem 5.3. Suppose that f & second order C-different&ble and uniformly C2-convex at x ,  
with degree p and a C2 operator T, and the parameter qk in Algorithm 5.1 meets the condition 
~k ~< ~max < t < 1 I f  we choose nk <. M2 I1 gkll ~ - ' ,  where p > 1 and M2 is a constant, then the sequence 
{xk}, generated by Algorithm 5.1, converges to x, .  Moreover, the order of  convergence is p in the 
sense that 

IIx~+~ - x ,  II = O(llx~ - x ,  I1% (62) 

Similar to the short remark at the end of Section 4, if we assume that {Vk -1 } is bounded in 
Theorem 5.3, then the assumption of uniformly C2-convexity can be removed. 
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