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Abstract

In this paper we define second order C-differentiable functions and second order C-differential operators, describe their
some properties and propose an inexact generalized Newton method to solve unconstrained optimization problems in which
the objective function is not twice differentiable, but second order C-differentiable. We prove that the algorithm is linearly
convergent or superlinearly convergent including the case of quadratic convergence depending on various conditions on
the objective function and different values for the control parameter in the algorithm. © 1998 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Consider the nonlinear programming problem
min f(x), xeR" (D

If f(x) is twice differentiable, a classical algorithm for finding a solution to problem (1) is the
Newton method (see [4]). Given an initial guess xo, we compute a sequence of steps {s;} and
iterates {x;} as follows:

Step 0. Give xo and let £ =0.
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Step 1. Solve

Vf (x6)sk = — G (2)

where V2f(x;) is the Hessian of f(x) at x; and g; = g(x;) = Vf(x;), the gradient of f(x) at x;.

Step 2. If g(x;) =0 then stop, otherwise let x,,; =x; + s, and k=% + 1, goto Step 1.

The Newton method is attractive because it converges rapidly from any sufficiently close initial
guess. Indeed, it is often taken as a standard convergent method because one way of characterizing
superlinear convergence is that the step should approach the Newton step asymptotically in both
magnitude and direction [5].

However, if the number of variables is large, solving the Newton equation may be prohibitively
expensive. For this reason, special methods have been developed to solve large-scale problems. One
of them is inexact Newton method (see [2, 3]) in which we solve Eq. (2) only approximately. A
natural stopping rule would be based on the size of the relative residual ||ry||/||gi|| (throughout this
paper the vector norms are Euclidean), where the residual 7, is given by

by = sz(xk )Sk + G (3)

and s; is the step actually computed (i.e., the approximate solution to Eq. (2)). Such inexact Newton
methods may offer a trade-off between the accuracy with which the Newton equations are solved
and the amount of work per iteration. An important question is what level of accuracy is required
to preserve the rapid local convergence of Newton’s method.

Specifically, we consider the class of inexact Newton methods which compute an approximate
solution to the Newton equations in some unspecified manner such that

el <k, (4)
llgx

where the nonnegative forcing sequence {#;} is used to control the level of accuracy. To be precise,
an inexact Newton method is any variation of Newton method in which (3) replaces (2) and for a
given initial guess xy, a sequence {x;} of approximations to xx is generated.

If £ is not twice differentiable, Newton method cannot be used. Some generalized Newton methods
for solving nonsmooth equations

F(x)=0 (5)

have been developed in recent years (see [7, 9, 11]), which are based upon Clarke’s generalized
Jacobian 0F(x) or B-differential 0pF(x) as well as semismoothness. [6] proposed a class of inexact
generalized Newton methods for nonsmooth equations and proved their convergence.

However, exact calculus rules do not hold for Clarke’s generalized Jacobians and B-differentials.
For example, 0 f+0g # 0(f +¢g) in general. This causes some trouble in implementing these methods.
Qi [10] introduced new tools, C-differential operator and C-differentiability, to ease this difficulty and
to extend further the applicable area of generalized Newton methods. Qi gives in [10] the following
definition:
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Definition 1.1. Suppose that 7: R” — R™*" is a set-valued operator, i.e., for any x € R", any V € T'(x)
is an m x n matrix. We say that the function F:R" — R™ is C-differentiable at x € R" if

(1) T(y) is nonempty and compact for any y in a neighborhood of x;

(2) T is upper semicontinuous at x;

(3) for any V € T(x+d),

F(x +d)=F(x) + Vd + o(||d|]).

And call T a C-differential operator of F. If furthermore,
(4) for any V e T(x + d),

F(x+d)=F(x)+ ¥d + O(|d|*),
we say that F is strongly C-differentiable at x.

In this paper we will extend the above definition to the second order case and propose an inexact
generalized Newton method to solve some unconstrained optimization problems (1) in which the
objective functions are not twice differentiable, but second order C-differentiable. We will prove
that the algorithm is linearly convergent or quadratically convergent under some mild conditions.
Comparing with the methods in [6], we discuss the method in this paper for different type of objective
functions and its convergence under some different conditions. For example, we do not assume that
all #n, are small enough in the method of this paper.

Finally, we propose a globally convergent inexact generalized Newton method for second order
C-differentiable optimization problems in which we do not need additional conditions in proving its
convergence.

The paper is organized as follows: in Section 2, we first define second order C-differentiable func-
tions and second order C-differential operators, then describe some of their properties. In Section 3,
we discuss uniformly C-convex functions. Then, we will propose a generalized Newton method and
prove its convergence in Section 4. Finally, in Section 5 we introduce a globally converegent inexact
generalized Newton method.

2. Second order C-differentiable functions

In this section we first extend the definition of C-differentiability in [10] for nonsmooth equations
to the second order C-differentiable functions and second order C-differential operators for non-twice
continuously differentiable functions, and then discuss their properties.

Definition 2.1. A first order differentiable function f:R"” — R is said second order C-differentiable
at x with a second order C-differential operator (or called C2 operator for short) 7 if the gradient g
of f is C-differentiable at x with T. Furthermore, we say that f is second order C-differentiable at
x with a C2 operator T and degree p, p>1, if f is second order C-differentiable at x with T and
for any Ve T(x +d),

g(x + d)=g(x) + Vd + O(||d||*).
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We say that f is second order C-differentiable in D with a C2 operator T (and degree p) if f is
second order C-differentiable at each point x € D with T (and degree p).

Remark 1. The second order C-differential operator is defined as a set-valued operator in a neigh-
borhood of x, not only at a single point, even when we discuss the second order C-differentiability
at x.

Remark 2. We define the C-differentiability of f without using local Lipschitz and directional
differentiability assumptions.

Remark 3. If f is second order C-differentiable then it may have various C2-differential operators,
e.g., if T is a second order C-differential operator of f then we can define other second order
C-differential operators T by one of the following ways:

1. let D be any finite set in R” and define T(x) D I'(x), T(x) can be any bounded set for x € D
and T(x)=T(x) for x & D;

2. T(x)=co{T(x)} for all x;

3. T(x)={lim,, ., T(x)}.

Remark 4. If T, and T, are two second order C-differential operators of f and T=T,UT, then T
is also a C2-operator of f.

The concept of second order C-differentiability has some relations with the requirement for the
gradient g to be semismooth or Lipschitz continuous. Semismoothness was originally introduced
by Mifflin in 1977. Convex functions, smooth functions and subsmooth functions are examples of
semismooth functions. For a locally Lipschitz function F: R” — R" we say that F is semismooth at
x if

: !
Véﬁlfl'(rgf—th'){Vh }
W —h,110

exists for any h € R", where 0F(x + th’) is the generalized Jacobian of F at x + th’ in the sense of
[1]. When F is differentiable at x; and x; — x, we know that

OF(x)=co {xl‘linx VF(xk)} .

If F is semismooth at x then for any V € 0F(x+ k), when h— 0, F(x + h) — F(x)=Vh + o(||4]]).
Define F as strongly semismooth at x if for any V € 0F(x+h), when h — 0, F(x+h)—-F(x)=Vh+
O([[A][?) (see [91):

If the gradient function g is Lipschitzian then we know that Vg, = V2f(x;) exists almost every-
where, and we can define

% 7)={ lim V27 } ®
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where the limit is taken for the x; at which f is twice differentiable. Similar to Clarke’s generalized
Jacobian we define

& f(x) =co{d3 f(x)}. (7)
Using the above results we obtain the following proposition immediately.
Proposition 2.2. Suppose the gradient function g of f is locally Lipschitzian.
If g is a semismooth function, then f is second order C-differentiable with a second order
C-differential operator &*f (or 35f).

If g is strongly semismooth, then f is second order C-differentiable with degree 2 and the
associated second order C-differential operator is &*f (or 05f).

However, it remains unknown that if f is second order C-differentiable and g is directionally
differentiable, whether g must be semismooth,
We now show other properties about the second order C-differentiable functions.

Proposition 2.3. If g is C-differentiable at x with a C2 operator T, then g is Holder-continuous
with exponent 1 at x, i.e., there exists a 6>0, a neighborhood Bs(x)={z|||x — z|| <6} of x and a
constant L>0 such that for any y € Bs(x),

lg(») — g <Ly — x||. (8)
Proof. If this proposition is not true, then there exists a sequence of points {x;}, x; —x and

llxe — x|l = o(llge — g(x)I))- 9)
On the other hand Definition 2.1 implies

gk — g(x) = Vi(xp — x) + o(llxe — x]|), (10)

where ¥V} € T(x). Condition (1) of Definition 2.1 implies that ||V,|| is bounded and therefore, there
exists a C such that for sufficiently large %,

g — 90O < Coljxx — x|]. (11)
The contradiction between (9) and (11) proves this proposition. [

Proposition 2.4. If g is C-differentiable in domain D with a C2 operator T, then g is locally
Lipschitzian at any x €int D.

Proof. For any x € int D, the local boundedness of 7 implies that there exists a closed neighborhood
Bs(x) of x, x €int Bs(x) C D, and a constant L>0 such that for any y € int B;(x) and any V, € T(y),
L>2||V,||. As f is second order C-differentiable in D, for any y € Bs(x) and any V,., € T(y +d),

g(y +d) — 9(y)=Vy4ad + o(||d|])- (12)
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For each y € int Bs(x) there exists an open neighborhood Bj(,y(y) of y such that when y+d € Bj,y(y)
C Bs(x) the following inequality holds.

llg(y +d) — g <Ll|4|l. (13)

Now for any z and z + d in int Bs(x), [z,z + d] is a closed set and

[zz+dlC ] Bsn(») (14)

y€lz,z+d]
By real analysis, there exist finitely many Bs,,(y:), ¥i € [z,z + d] such that
2,z + d]1 C | Bsy(3)- (15)
In fact we can find out p points z;, zz=z+td, 0=1,<t, <t < --- <t, =1, each pair of successive
points z; and z;,, are in the same By,)(»;) and y; € [z;,z;4,]. Hence by (13),
p-1

lg(z +d) — 9@l <D [llgzi1) — gyl + l9(y:) — g(z)||]

i=0
p—1

< ZL(tiH —t)||d|| =Ll||d|,
i=0

i.e., the proposition is true. O

The semicontinuity of T(x) implies the following proposition (see [10])

Proposition 2.5. Assume that g is C-differentiable at xs« with a C2 operator T. If ||V '|, where
Vi € T(xx), is bounded, then there exists a §>0 such that for all x € B;(x«) and any V, €T, || V7|
is bounded.

We can further define the concept of uniformly second order C-differentiable.

Definition 2.6. Assume that f is second order C-differentiable at x with a C2 operator 7. f is
called uniformly second order C-differentiable at x with a C2 operator T if for any given £>0,
there exists a neighborhood Bs(x) of x such that for any y satisfying y+d € Bs(x), (y+d #x) and
any V,.4 € T(y + d) the following result holds.

l9(y +d) — g(y) — Visadl| <e|d]|. (16)

3. C2-differentiable convex functions

In this section, we discuss second order C-differentiable convex function.
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Definition 3.1. We say that f is a second order C-differentiable convex function, or called a
C2-convex function for short, at x with a C2 operator T (and degree p) if f is second order
C-differentiable at x with a C2 operator T (and degree p) and any V €T is positive semidefi-
nite; f is said to be a second order uniformly C-differentiable convex function, or called uniformly
C2-convex for short, at x (or in D) with a C2 operator T (and degree p), if f is second order
C-differentiable at x (or in D) with a C2 operator 7 (and degree p) and all }; € T(x) (and any
x € D) are uniformly positive definite.

Proposition 3.2. If f is uniformly C2-convex at xx with a C2 operator T, then there exist ¢>0
and a neighborhood Bs(xx) of xx such that for any x € Bs(xx) and any V €T, V is uniformly
positive definite and

yWyzelyl?, VyeR" (17)

Proof. Suppose the proposition is not true, then there exists a sequence of points {x;} satisfying

1. all x; are in a neighborhood Bj;(xx) of xx which meets the assumption (1) of Definition 2.1
and x; — xx;

2. each T(x;) includes a V; whose smallest eigenvalue A,(¥;) is less than ¢, where ¢, >0 and
Ep — 0.

Because {¥;} is bounded it has a convergent subsequence. For simplicity assume that {F;} con-
verges to a matrix V. V is not positive definite because for each k, A;(V,)<e;. But the upper

semicontinuity of 7 implies that ¥ € T(xx) and hence V is positive definite. This contradiction
implies that the proposition is true. O

Proposition 3.3. If f is uniformly C2-convex at xx, then f is strictly convex at xx.

Proof. Proposition 3.2 implies that if f is uniformly C2-convex at xx with a C2 operator T, then
there are an £ >0 and a 6>0 such that for any x € Bs(x«), any ¥, € T(x) and any z € R"

2 Vzzelz| (18)

Because f is second order C-differentiable at xx, we know that there exists a §,, 0 <d; <J such
that for any x € B; (xx) and any ¥, € T(x),

(= x)T(g(x) — glxx) — Bl — x4)) > —gelx — x| (19)
So, we obtain that for any x € B; (x«) and any ¥, € T(x),
) = f(xx) = (x — xx)Tglxx)
= [ Tl 165 = x) — g

1 1
> [ 0 = 5 Voyiomeanx = x:))dt — ellx = xul2 [ e
0 0
>e|lx — xx||*/4>0. (20)
This completes the proof of the proposition. O
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Propositions 3.2 and 3.3 immediately imply the following results.

Proposition 3.4. If f is uniformly C2-convex at xsx with a C2 operator T and g(xx)=0, then xx
is a locally strict minimum point of f.

Proposition 3.5. Assume that f(x) is uniformly C2-convex in D with a C2 operator T, xy+ €D
and g(xx)=0. If xo is sufficiently close to xx, then there exists a neighborhood Bs(xx) of xx such
that the level set

S(x)={x| f(x)< f(x), and x€ D} 21
belongs to Bs(xx).

4. An algorithm and its convergence properties
In this section we assume that function f is second order C-differentiable at x with a C2 operator 7.

Algorithm 4.1 (Inexact generalized Newton algorithm). Given a nonnegative sequence {7, } and an
initial guess xo, we compute a sequence of steps {s;} and iterates {x,} as follows:

Step 0. Give x and let £=0.

Step 1. Solve

Visi =—gi + 11, (22)
where V, € T(x;) and

7l
< (23)
lgell =™

Step 2. If g(x;) =0 then stop, otherwise let x;,; =x; + s, and k=k + 1, goto Step 1.

Lemma 4.2. Assume that f is second order C-differentiable at xx with a C2 operator T and
g(xx)=0. Let Algorithm 4.1 be implemented with W <Nuwax <t <1. If x; is sufficiently close to xx,
then the following inequality holds:

[ VaCer — x| S| Viloe — xx)||- (24)

Proof. The definition of C-differentiable and g(x«)=0 imply that if x; is sufficiently close to xx,
then

I VeCee — x%) — Giell St — Man) |1 %6 — x|/ (4M),
and hence we have

1V Gisr — x5l = 1V — x5 ) + Viesi|
< || Vel — xx) — gee|| + |7 ]]
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< Vil — xx) = gel| + mellgec

< (1 + rlmax)”Vk(xk *X*) - gk” + 71max||Vlc(xk - x*)“

< (t - nmax)ka - X*”/(zM) + '1max||I/lc(xk - X*)“
< (f 4 Nma) |Vl — x4)|/2 (25)
< Vil — xx)), (26)

i.e., Lemma 4.1 holds. I

Lemma 4.3. Assume that f is second order C-differentiable at xx with a C2 operator T and
xy — xx. Let {V} be a sequence of matrices satisfying V, € T(x;) and let S be the set of accumu-
lation points of the sequence {V,}, Then, for any given >0, there exists a K such that for any
k>K, we can find a V,, €S satisfying

Ve = Visll <e. (27)

Proof. If this lemma is not true, then there exist an € >0 and a sequence { ¥}, where Vi) € T (X))
such that

Wiy — V|| =e for all Py €S. (28)

Let Vx be an accumulation point of the sequence {V,;}, then for some large i, ||Visy — Vil <e
which contradicts (28). O

Theorem 4.4. Assume that f is second order C-differentiable at xx with a C2 operator T, g(xx)=0
and Algorithm 4.1 is implemented with N <fmax <t <1 to produce {x;} and the associated matrices
used are {V;}. Let My =max{||V.1 — Via|| | Va1, Vo2 €S} (S is given in last lemma) and ||V;"'|| <M
(M >1 is a constant) for all k. If ;' >(1 + M\M)/qna for sufficiently large k and x, is in a
sufficiently small neighborhood Bjs(xx), then the sequence {x;} converges to xx. Moreover, the
convergence is linear in the sense that for sufficiently large k,

Vi Ceen — x5 )| S8 Vimr (e — x5)|- (29)

Remark. If S consists of only one Vi, i.e. ¥, — Vy, then M; =0 and hence no extra condition on
Nk 1s required.

Proof. Because f is second order C-differentiable at xx with a C2 operator 7, there exist a 6, >0
and a constant M,>1 such that for any x € B;, = B;,(xx) and any ¥, € T(x), ||| <M, and

llg(x) — ViCx — xs )|| S (2 — Hmax)||X — x5 ]| /(4MM). (30)
We choose 9, small enough such that if x; € B;, then Lemma 4.1 holds, and hence

[Peier = x| <NVl IV ek — e || < eMoM i — ] (31)
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The conditions of this theorem and Lemma 4.2 ensure that there exists a K such that for all
k>K, n;' =1 + MyM)/fma, and also there would be a ¥, €S satisfying

1V = Viall < (2 = max)/(4MMp). (32)

Let 6 =20;/(MX**'M&*") and choose x; € B5(xx), then starting with k£ =0, we can use the induction
method to prove from x; € B;, that for any k<K,

[IXk11 — x| SEMoM ||xx — xx|| st"Mé‘M"llxo — x| <tk8, /(MM,), (33)
from which we know that
Xee1 €Bs, and || V(g — xx)|| <6/M,  for k<K. (34)

We now consider the case £ >K. If x; € Bs,, then by (30), (32) and the definition of A, we can
obtain

| VeCrisr = x| = [[FaCox — x5 + 50)|

1V Cex — xx) — gaell + 1| Vesk + gl

[V Cex — x%) — gaell + 7|l gl

(1 + 7)) VaCor = xx) — gell + miell Vil — x5)|

(¢ = fmax)|Pex — x4 [|/2M) + e[| V2 — Vi ||

F Wex = Viemnyell + W=ty = Ve lDllxe — x| + ([ Ve Goe — x5)1]

(t = Mma M| Vi1 G — x3)|| + meMi ||xie — x| + el Vi1 Gex — x5)]|

(t— ﬂmax)HVk—x(xk —x*)ll + nleMHV;c—l(xk _x*)H + ﬂk”Vk—l(xk —x*)||
Vi1 G — x4 )] (35)

N

NCOINA

N OINN

Since
V(s — x| <61/M = xi41 € By,

starting with k =K (see (34)), we can use induction method to obtain from (35) that, for all £>K,
Vo1 Gae — 25| SE* 50| Wi (g — x4 ) (36)

So, it is assured that if xy € Bs(x«), then all x; € B;, and x, — xx by (33) and (36), and also (29)
holds for k>K. O

Recall that Proposition 3.4 shows that if f(x) is uniformly C2-convex at x« and g(xx) =10, then x«
is a locally strict minimum point of f(x). Furthermore, for uniformly C2-convex function, the algo-
rithm has the following convergence property. Note that the assumptions 77 ' > (1 + MM )/fm.x and
1% '||<M in Theorem 4.4 are removed when f is uniformly C2-convex.

Theorem 4.5. Suppose f is uniformly second order C-differentiable and uniformly C-convex at
xx with a C2 operator T, g(xx)=0, and the parameter n; in Algorithm 4.1 meets the condition
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e SNmax <t <1. If xy is sufficiently close to xx, then the sequence of inexact generalized Newton
iterates {x;} converges to xx. Moreover, for sufficiently large k the convergence is linear in the
sense that

Vit Goeas — )| STCL+20)/2 + O] [V — x)|. (37)
Proof. Since f is uniformly C2-convex and uniformly second order C-differential, by Proposition 3.2
and Definition 2.3, there exist 6 >0 and constant M; >0 such that for any y, y+d € Bs(x+) and any
Vi+a € T(y +d), we have that

IVI<M, and ||| <M. (38)

and

l9(y + d) = g(¥) = Vyrad|| <min{(1 — 2), #(t — Amax) }|2]|/(3M1). (39)

Without loss of generality, we may assume that J is chosen sufficiently small such that if x; € Bs(xx),
then (24) holds. Now if x; € Bs(xx) then (38) and (39) imply

e — e || < My || ViCxe — x4) |
< M| ViGek — x%) — giel| + |lgel]
< (1~ 8| — xxl| + M| gel,

or ||xy — xx|| <Mil|gkll/t. So, if xi, x411 € Bs(xx), then

llsicll = llxicer = % = (o = x| SMi(llgiess || + llgiell /2. (40)

If we replace y,y +d and V,.; in (39) by x;41, X, and ¥, respectively, then

lgxsill = NGk + Vese — (gx — Grsr — Va(=s))|
< Wesi + gill + 12 — Haa)lIsi[/(3M1)
< |17l + (¢ = Ama ) lgielF + 1l ga4111)/3
< Nmax [|Ge )] + (& = Nma ) Gill + 1 g1 [1)/3
= (¢ + 20ma | gel1/3 + (¢ = Hma) | Gr [1/3-

So,

“gk+1“ < ”ng [(t + 2’7max)/3]/[1 - (t - ”max)/3] St“gk“’ (41)
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where the last inequality is obtained due to the fact
3t — 1+ Mo =t + 2+ (2 = 1) = Newan) > £ + 2.
Let y=xx and y +d =x; or x4 in (39). Then
(2 + OWsa1 G — x2)1/3
= Va1 Gersr — x5l — (1 = O Ve (i — x)|1/3
W1 Goer — x| = (1 = )|leesr — x|/ (3M1)
<grrll <tllgell
SVl — x) || + (1 = £)|lxe — x4]|/(3M))
<1+ 20)|[Floxee — xx)|1/3.
To summarize, we have proved that if x;,x;,, € B;, then
Va1 Grr — x5)|| ST (Wi — x|, (42)

where 7=(1+ 2t)/(2 + t). Clearly, 0<i<1. Now if ||xo — x«|| </M}, we know from (24) that
ey — x«|| <86/M? and ||x, — x«|| <6, which ensures that |[}3||<M; and ||F;"'||<M,. Then we can
obtain ||x; — xx|| <8/M} by using (42). In this way we can use induction method to obtain that all
e — xx|| <d/M? by (24) and (42). Moreover, the following inequality holds

1Vxe — )| P Volxo — x4)]. 43)
It is clear that x; — xx and (37) holds. O
Theorem 4.6. Suppose that f is second order C-differentiable and uniformly C2-convex at xx
with degree p and a C2 operator T, and the parameter n; in Algorithm 4.1 meets the condition
Me Smax <t <1. If g(xx) =0, xo is sufficiently close to xx, and choose i <Ms||gi[|”", p>1, M3 a

constant, then the sequence of inexact generalized Newton iterates {x;} converges to xx. Moreover,
the order of convergence is p in the sense that

1 — x|l = O(l[xe — x| (44)

Proof. Because f(x) is uniformly C2-convex at xx with degree p and g(x«)=0, Proposition 3.2
implies that there exist >0 and constant M; >0 such that for any x € Bs(xx) and any ¥, € T(x),

IZI<M: and ||V,7H|<M. (45)

By the definition of C2-differentiable with degree p and Proposition 2.2, we may reduce ¢ if necessary
so that if x; € Bs(xx) then (46) and (47) below hold.

Hge — Vil — x| SMs||xe — x[|” <t — xx]|/(3M)), (46)
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where M; >0 is a constant, and
M SMo||gell*~" KL Ml — x|~ <H/(BMY). (47)
Now for such x; € B;(xx) and any V, € T(x;), by using (23), (47) and (46),
7l < rell gl
< MV — x| + lge — Vel — x)|)
< U Wallllxe — xxll/BMT) + tllxe — xx]|/(3M1)
< 2t|jx; — xx||/(3M}). (48)
By (22), (46) and (48) we obtain

VeCeesr — x| = [Vl — xx) + Vise|

< Wl — xx) — giell + [I7e || <l — xx||/M), (49)
and hence
e~ x| < VI 1aCxian = x|
SV e — x|l /My <t|lxe — xx]. (50)

(50) implies that if ||x; — xx|| <0 then ||xx; — xx||<25. If xo is chosen in Bs(xx) then for all £,
x; € Bs(x%) and ||x; — x«|| <t*||xo — x%||. So x; — xx — 0. Moreover, we have

[VaCresr — x|l < Wl — %) — gl + |7l
< [[WaCee = xx) — gell + mil g
< (L4 0l VaCex — x4) — gell + el FaGre — x|
= O(llxi — x«[1”),
where the last step is obtained from (46) and (47). This completes the proof of the theorem. [

Notice that the requirement for #; in Theorem 4.6 is implementable when we use the algorithm.
In fact we can take #; = min{#ma., Ma||ge|”~'}-

Corollary 4.7. If the assumptions in Theorem 4.6 hold and p =2, then Algorithm 4.1 is quadrati-
cally convergent.

Notice that if in Theorems 4.5 and 4.6 we assume {¥,"'} is bounded, then the assumption of
uniform C2-convexity can be removed.
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5. A globally convergent method

In Section 4, we have given an inexact generalized Newton method and discussed its convergence.
How can we find a point x; which is sufficiently close to xx with gx =07 We may use some
stabilization techniques, such as the methods with decreasing gradient norms or decreasing function
values, to obtain globally convergent methods. In this section we propose such a method briefly.
For a more detailed discussion, see [8].

Algorithm 5.1. Give X0, 0<01 <1, 0<02<1, 0<93 <04<1 and let £ =0.

Step 1. Solve
VeSk = =gk + 1, (51)
where V; € T(x;) and

7l
T Mk
19l

Step 2. If f(xi) — f(xx + si)= 0 min{1, ||gi|[}|gellllsell, then let xis1 =xc + s, goto Step 5,
otherwise goto Step 3.
Step 3. If —gisi>6, min{1,||gx|/}Is«lll|ge]l, then let B =0, otherwise let

Bi=— gis/llgell” — 0 min{1, llgell}sill/ll gl (53)

Let di =3 + Begs-
Step 4. Choose o so that

FO) = fOx + oyd) > —0s04g, dy, (54)
| g(xi + awdy )| < —0Oagidi. (55)

(52)

Let Xpr1] =X + ockdk.
Step 5. If gr,1 =0 then stop, otherwise let k =% + 1, goto Step 1.

Theorem 5.2. Assume that f is second order C-differentiable at xx with a C2 operator T and is
bounded below. If Algorithm 5.1 is implemented with 0, <fmax <t <1, xx is an accumulation point
of the sequence {x,} obtained by the algorithm, then g(xx)=0.

Proof. Because f is second order C-differentiable at x« with a C2 operator 7, there exist a §, >0
and a constant M >1 such that ||V;|| <M for all x € Bs,(x«) and ¥, € T(x).
As f(x;) is bounded below and monotonically decreasing as k increases, we have f(x;) —

f(xx41) 20 for all k and f(x;) — f(xps1) — 0.
If Algorithm 5.1 is implemented with 7, <. <f <1, then we have

| Wesill Z llgell — [l7ell = (1 = Ama)l il (56)
(56) implies that if x; € B; (xx), then
llsell =M (1 = Hmw )l gl (57)
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If g(x«)#0 then there exist a §<J, and an ¢>0 such that x; € Bs(xx) and ||gi||=e>0 for
infinitely many k because xx is an accumulation point of the sequence {x;}. Now for these &,
consider the following two possible cases:

Case 1. If Step 3 and Step 4 are not implemented, then

SO) = fOa + si) = 6 min{1, {|gel[}HIge | l|sll
= 0, M7 (1 — fax ) min{1, e} &% (58)

Case 2. If Steps 3 and 4 are implemented, then it is clear that, whether f; =0 or not, —gjd; >
0, min{1, {{gx| }|gkllllsell. Eq. (55) implies

—(1 = 0.)d} gx < — d (g — Gewr) <Ll . (59)
On the other hand, (53) implies that B;||g:|| <2||sk|| and ||di]| <3||sk||- So, we obtain
o lldell = —(1 — 04)dy gi/(LI|di]|)
= (1 — 040, min{1, [|ge[| }|g |l llse /(LI )y
> (1 = 04)0; min{1, ||gkl[ }||gell/(3L). (60)
Egs. (54) and (60) imply
FO) — x4 wd) > —O3009,dy
> 2030, min{1, [|gi || }l|gelll|s« |
> 0030, min{1, [|g |}l gelll|dill/3
> (1 — 05)05(0, min{1, [l }lgxl)*/(9L)
> (1 — 0,)05(8; min{1, ¢} )*e?/(9L). (61)

In both cases f(x;) — f(x;y1) is bigger than a constant, which contradicts f(x;) — f(x¢y1)— 0, as
k — oo, This theorem is true. [

Combining Theorem 4.6 and Theorem 5.2, the following theorem holds clearly.

Theorem 5.3. Suppose that f is second order C-differentiable and uniformly C2-convex at xx
with degree p and a C2 operator T, and the parameter n, in Algorithm 5.1 meets the condition
N Smax <t < 1. If we choose n, <M,||gi||”~", where p>1 and M, is a constant, then the sequence
{xt}, generated by Algorithm 5.1, converges to xx. Moreover, the order of convergence is p in the
sense that

%1 = x| = O(llxe — 2 1°)- (62)

Similar to the short remark at the end of Section 4, if we assume that {V,"'} is bounded in
Theorem 5.3, then the assumption of uniformly C2-convexity can be removed.
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