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Abstract

In this paper, we combine trust region technique with line search technique to develop an iterative method
for solving semismooth equations. At each iteration, a trust region subproblem is solved. The solution of
the trust region subproblem provides a descent direction for the norm of a smoothing function. By using a
backtracking line search, a steplength is determined. The proposed method shares advantages of trust region
methods and line search methods. Under appropriate conditions, the proposed method is proved to be globally
and superlinearly convergent. In particular, we show that after 6nitely many iterations, the unit step is always
accepted and the method reduces to a smoothing Newton method. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The concept of semismoothness was introduced in [8] for real-valued functions and extended in
[11,13] to vector-valued functions. A locally Lipschitzian function H :Rn → Rm is said to be semi-
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smooth at a point z if the following limit:

lim
V∈@H (z+th′)

h′→h; t↓0

{Vh′}

exists for any h∈Rn, where @H (z) is the generalized Jacobian of H at z in the sense of Clarke [2].
If H is semismooth at z, then for any V ∈ @H (z + h), as h → 0, it holds that [13]

H (z + h) − H (z) − Vh = o(‖h‖):

When H :Rn → Rn is semismooth, the nonlinear equation

H (z) = 0 (1.1)

is called a semismooth equation.
Many practical problems such as nonlinear complementarity problems, the KKT systems of varia-

tional inequality problems and nonlinear programming problems can be reformulated as semismooth
equations. In recent years, nonsmooth Newton methods and smoothing Newton methods for solv-
ing semismooth equations have received much attention. Under certain conditions, these methods
possess global and superlinear convergence properties. We refer to [1,3,4,6] for recent progress on
nonsmooth Newton methods and smoothing Newton methods.

In this paper, we aim to develop a trust region-type method [9] for solving semismooth equation
(1.1). Trust region methods for solving nonsmooth equations have been studied in [5,12]. The
method proposed in [5] is devoted to solving a semismooth equation reformulation for generalized
complementarity problems. In their method, the subproblem is the following minimization problem:

min ∇�(zk)Td + 1
2d

TV T
k Vkd

s:t: ‖d‖6�k;

where �(z) = 1
2‖H (z)‖2 is continuously diLerentiable, Vk ∈ @BH (zk) and

@BH (z) =
{

V ∈Rn×n|V = lim
zk→x

∇H (zk)T; H is diLerentiable at zk for all k
}

:

The method proposed in [12] is based on a smooth plus nonsmooth decomposition of H , i.e.,
H = p + q, where p is smooth and q is locally Lipschitz and relatively small. The trust region
subproblem is the following minimization problem:

min{‖H (zk) + p′(zk)d‖2: ‖d‖6�k}:
Unlike the above two methods, in this paper, we develop a new trust region-type method for

solving general semismooth equation (1.1). The method is based on the recently developed smoothing
technique. A function H� :Rn → Rn is said to be a smoothing function of the nonsmooth function
H if it is continuously diLerentiable and satis6es for any �¿ 0

‖H�(z) − H (z)‖6 ��; ∀z; (1.2)

where � ¿ 0 is a constant. The parameter � is called smoothing parameter. Based on the smooth-
ing function H�, we propose a trust region-type method where the trust region subproblem is the
following minimization problem:

min{‖H�k (zk) + ∇H�k (zk)d‖2: ‖d‖6�k}: (1.3)
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Another diLerence between the proposed method and the existing trust region methods is the rule
for adjusting the trust region radius. In an ordinary trust region method, at each step, if the solution
d̂k of the subproblem does not make ‖H (zk + d̂k)‖ smaller than ‖H (zk)‖ suNciently, then the trust
region radius �k is decreased and the subproblem is solved again. This process is repeated until
‖H (zk + d̂k)‖ is less than ‖H (zk)‖ suNciently. Thus, at each step of an ordinary trust region method,
the subproblem needs to be solved many times. In our method, we adjust the trust region radius in
a diLerent way. Speci6cally, at each step, we only solve the subproblem once. If d̂k is not accepted,
then we use a line search strategy. The solution of subproblem (1.3) provides a descent direction of
the function ‖H�k‖ at zk . We then use a backtracking line search to determine a steplength �k . The
next iterate is obtained by letting zk+1 = zk + �kdk . In this sense, the proposed method is actually a
combination of a trust region method with a line search method. This combination of the trust region
technique and the line search technique was introduced in [10] for solving unconstrained optimization
problems. We extend this technique to develop an iterative method for solving semismooth equations.
The advantage of the proposed method is two fold. First, it shares the advantages of trust region
methods. The trust region subproblem always has a solution whether ∇H�k (zk) is nonsingular or
singular. Second, at each step, the subproblem is solved once only. Under appropriate conditions,
we prove the global convergence of the proposed method. Moreover, we show that the proposed
method actually reduces to a smoothing Newton method with unit steplength after 6nitely many
iterations. Consequently, it is superlinearly convergent.

In Section 2, we state the steps of the algorithm and show that the algorithm is well de6ned. In
Sections 3 and 4, we prove the global and superlinear convergence of the proposed method.

Throughout this paper, without speci6cation, the norm of a vector or a matrix is l2 norm. For a
real-valued function f, we use ∇f to denote its gradient, and for a vector-valued function F; ∇F(z)
stands for the Jacobian of F at z.

2. Algorithm

In this section, we give the steps of the algorithm and prove its well-de6niteness. Let H� :Rn → Rn

be a smoothing function of H that satis6es (1.2). For the sake of simplicity, we use Hk to stand
for the abbreviation of H�k . Let

W (z) = 1
2‖H (z)‖2;

W k(z) = 1
2‖Hk(z)‖2:

The basic idea of our method has been described in the last section. We give the steps of the
algorithm as follows.

Algorithm 2.1

Step 0: Given some constants �1 ¿ 1; 0 ¡ �1 ¡ �2 ¡ 1; �; �∈ (0; 1
2); �0 ¿ 0; �∈ (0; 1). Chosen

an initial point z0 ∈Rn and an initial �0 ∈ (0; (�=2�)‖H (z0)‖). Let k:=0.
Step 1: Solve the following trust region subproblem to obtain a trial step dk .{

min Qk(d) = 1
2‖Hk(zk) + ∇Hk(zk)d‖2;

s:t: ‖d‖6�k:
(2.1)



4 X. Tong et al. / Journal of Computational and Applied Mathematics 146 (2002) 1–10

Step 2: Compute

rk =
W k(zk) − W k(zk + dk)

W k(zk) − Qk(dk)
:

If rk ¿ �1, set zk+1 = zk + dk and go to Step 4.
Step 3: Let ik be the smallest nonnegative integer i such that

W k(zk) − W k(zk + �idk)¿− ��idT
k (∇Hk(zk)THk(zk)): (2.2)

Let zk+1:=zk + �ik dk and �k+1:=�k and go to Step 5.
Step 4: Choose

�k+1:=

{
�k if �16 rk ¡ �2;

a1�k if rk ¿ �2:
(2.3)

Step 5: If ‖H (zk+1)‖ = 0, stop and output zk+1.
Step 6: If ‖H (zk+1)‖¿ �‖H (zk)‖ + ��−1�k , set �k+1 = �k . Otherwise choose a �k+1 satisfying{

�k+16min{ 1
2�k ; �

2�‖H (zk+1)‖; W (zk+1)};
dist(∇Hk+1(zk+1); @CH (zk+1))6 P��k ;

(2.4)

where P� ¿ 0 is a constant and

@CH (z) = @H1(z) × @H2(z) × · · · × @Hn(z):

Let k:=k + 1 and go to Step 1.
It is clear from Algorithm 2.1 that at each step, trust region subproblem (2.1) is solved once only.

The sequence {�k} is nonincreasing. De6ne

K = {0} ∪ {k‖|H (zk)‖¡ �‖H (zk−1)‖ + ��−1�k−1}: (2.5)

Then it is easy to deduce the following inequalities:

��k 6 �‖H (zk)‖; ∀k; (2.6)

�k 6 1
2�k−1; ∀k ∈K; (2.7)

dist(∇Hk(zk); @CH (zk))6 P��k−1: (2.8)

The purpose of (2.8) is to make ∇Hk(zk) satisfy the so-called Jacobian consistence property [1].
The next lemma shows that any solution of (2.1) is a descent direction of W k at zk unless that

zk is a solution of (1.1).

Lemma 2.1. Let {zk} and {dk} be generated by Algorithm 2.1. Then we have

W k(zk) − Qk(dk)¿
1
2
‖∇Hk(zk)THk(zk) ‖min

{
�k;

‖∇Hk(zk)THk(zk)‖
‖∇Hk(zk)T∇Hk(zk)‖

}
(2.9)

and

dT
k (∇Hk(zk)THk(zk))6− 1

2
‖∇Hk(zk)THk(zk)‖min

{
�k;

‖∇Hk(zk)THk(zk)‖
2 ‖∇Hk(zk)T∇Hk(zk)‖

}
: (2.10)
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Proof. Inequality (2.9) can be obtained in a way similar to the proof of Lemma 1 in [12]; and
inequality (2.10) can be proved in a way similar to the proof of Lemma 2.4 in [10].

Inequality (2.10) particularly implies that any solution of the trust region subproblem provides a
descent direction of function W k at zk . Therefore for each k, we can 6nd a 6nite integer ik such that
(2.2) holds. On the other hand, if H satis6es the Jacobian consistency property [1], then inequalities
in (2.4) are satis6ed for all suNciently small �k+1. Consequently, Algorithm 2.1 is well-de6ned.

3. Global convergence

In this section, we prove the global convergence of Algorithm 2.1. We 6rst introduce the following
blanket assumptions:

Assumption 1. The level set

L0 =
{

z ∈Rn | ‖H (z)‖6 2 − �
1 − 2�

‖H (z0)‖
}

is bounded.

Assumption 2. For each � ¿ 0 and any z ∈L0; the matrix ∇H�(z) is nonsingular.

Lemma 3.1. Let {zk} be generated by Algorithm 2.1. Then we have {zk} ⊂ L0.

Proof. Let K ={k0 =0 ¡ k1 ¡ k2 ¡ · · ·}. From Algorithm 2.1; we have �k = �kj for each k satisfying
kj6 k ¡ kj+1. By Steps 2 and 3; we have for each kj6 k ¡ kj+1

‖Hk(zk)‖ = ‖Hkj(zk)‖6 ‖Hkj(zk−1)‖6 · · ·6 ‖Hkj(zkj)‖: (3.1)

Since kj+1 ∈K; we deduce

‖H (zkj+1)‖¡ �‖H (zkj+1−1)‖ + ��−1�kj+1−1

6 �‖Hkj(zkj+1−1)‖ + �‖Hkj(zkj+1−1) − H (zkj+1−1)‖ + ��−1�kj

6 �‖Hkj(zkj)‖ + �(� + �−1)�kj

6 �‖H (zkj)‖ + �‖H (zkj) − Hkj(zkj)‖ + �(� + �−1)�kj

6 �‖H (zkj)‖ + �(2� + �−1)�kj; (3.2)

where the third inequality follows form (1.2) and (3.1). Note that � ¡ 1
2 ; �kj 6

1
2�kj−16 · · ·6 ( 1

2)j�0.
By the use of Lemma 7 in [7]; we deduce from (3.2)

‖H (zkj)‖6
(
‖H (z0)‖ +

1
(1=2) − �

�(2� + �−1)�0

)(
1
2

)j

=
(

1 +
1 + 2�2

1 − 2�

)(
1
2

)j

‖H (z0)‖:
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This together with (1.2) and (3.1) implies

‖H (zk)‖6 ‖Hkj(zk)‖ + ��kj

6 ‖Hkj(zkj)‖ + ��kj

6 ‖H (zkj)‖ + 2��kj

6
(

1 +
1 + 2�2

1 − 2�

)(
1
2

)j

‖H (z0)‖ + 2�
(

1
2

)j

�0

6
(

1 +
1 + 2�2

1 − 2�
+ �

)(
1
2

)j

‖H (z0)‖

=
2 − �
1 − 2�

(
1
2

)j

‖H (z0)‖

6
2 − �
1 − 2�

‖H (z0)‖:

This implies {zk} ⊂ L0.

It is not diNcult to get the following lemma from the proof of Lemma 3.1.

Lemma 3.2. If the index set K is in7nite; then we have

lim
k→∞

�k = 0; (3.3)

lim
k→∞

dist(∇Hk(zk); @CH (zk)) = 0; (3.4)

and

lim
k→∞

‖H (zk)‖ = 0: (3.5)

The following theorem shows the global convergence of Algorithm 2.1.

Theorem 3.1. Let {zk} be generated by Algorithm 2.1. Then we have

lim
k→∞

‖H (zk)‖ = 0: (3.6)

In particular; every accumulation point of {zk} is a solution of (1.1).

Proof. From Lemma 3.2; we only need to prove that the index set K is in6nite. For the sake of
contradiction; we assume that K is 6nite. Then by Step 6 of Algorithm 2.1; there exists an integer
m1 ¿ 0 such that for all k ¿ m1

‖H (zk+1)‖¿ �‖H (zk)‖ + ��−1�k
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and �k = �m1 , P� ¿ 0 for all k¿m1. This implies Hk = Hm1 , PH for all k¿m1. Consequently; we
have for all k ¿ m1

‖H (zk)‖¿ �‖H (zk−1)‖ + ��−1�k−1 = �‖H (zk−1)‖ + ��−1 P�¿ ��−1 P�:

This implies

‖ PH (zk)‖¿ ‖H (zk)‖ − ‖H (zk) − PH (zk)‖¿ ��−1 P� − � P� = �(�−1 − 1)P� ¿ 0: (3.7)

If there is an index set K ′ such that {‖∇ PH (zk)T PH (zk)‖}K ′ tends to zero, then by Assumption
2, any accumulation point Pz of {zk}K ′ satis6es PH ( Pz) = 0. This contradicts (3.7). The contradiction
shows that there is a constant ) ¿ 0 such that

‖∇ PH (zk)T PH (zk)‖¿ ) (3.8)

holds for all k. Let M2 ¿ 0 be an upper bound of {‖∇ PH (zk)‖}. In the following, we deduce a
contradiction by discussing two cases.

Case 1. Step 3 is used for 6nitely many k only. By Step 2 of Algorithm 2.1, there exists an
integer m2 ¿ 0 such that the inequality rk ¿ �1 holds for all k ¿ m2. It then follows from Lemma
2.1 and the de6nition of rk that

PW (zk) − PW (zk+1)¿
1
2

�1‖∇ PH (zk)T PH (zk)‖min
{

�k;
‖∇ PH (zk)T PH (zk)‖
‖∇ PH (zk)T∇ PH (zk)‖

}

¿
1
2

�1) min{�k; M−2
2 )}:

This implies �k → 0 as k → ∞. However, by the steps of Algorithm 2.1, the sequence {�k} is
nondecreasing. So, we get a contradiction.

Case 2. The line search step is used for in6nitely many k. Let K1 be the set of indices k at which
Step 3 is used. From Algorithm 2.1 we have �k ¿�0 ¿ 0. Therefore, it follows from Lemma 2.1,
(3.8) and (2.2) that the following inequality holds for all k ∈K1.

PW (zk) − PW (zk+1)¿ 1
2��ik ) min{�0; 1

2M
−2
2 )}:

Since { PW (zk)} is nonincreasing, taking limits in both sides of the above inequality, we get �ik → 0
as k → ∞ with k ∈K1.

On the other hand, however, by the mean-value theorem, for any nonnegative integer i, there is
a constant P+k ∈ (0; 1) such that

PW (zk) − PW (zk + �idk) = −�i∇ PW (zk + P+k�idk)Tdk

= −�i∇ PW (zk)Tdk − �i(∇ PW (zk + P+k�idk) −∇ PW (zk))Tdk

= −�idT
k (∇ PH (zk)T PH (zk)) + o(�i)

= −��idT
k (∇ PH (zk)T PH (zk)) − (1 − �)�idT

k (∇ PH (zk)T PH (zk)) + o(�i)

¿−��idT
k (∇ PH (zk)T PH (zk)) + (1 − �)1

2�
ik ) min{�0; 1

2 M−2
2 )} + o(�i);

where the last inequality follows from (2.10) and (3.8). By the line search rule, the last inequality
shows that {�ik}K1 is bounded away from zero. This contradicts the fact that �ik → 0. The proof is
then complete.
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4. Superlinear convergence

In this section, we show the superlinear convergence of Algorithm 2.1. First, we note that Lemma
3.1 and Theorem 3.1 have shown that under the conditions of Assumptions 1 and 2 the sequence of
{zk} generated by Algorithm 2.1 has at least one accumulation point, and every accumulation point
of {zk} is a solution of (1.1). Moreover, we have

lim
k→∞

�k = lim
k→∞

‖H (zk)‖ = lim
k→∞

‖Hk(zk)‖ = 0: (4.1)

This together with (2.8) implies

lim
k→∞

dist(∇Hk(zk); @CH (zk)) = 0: (4.2)

It is also easy to see that the index set K de6ned by (2.5) is in6nite. Moreover, by Step 6 of
Algorithm 2.1, we have for each k ∈K , �k = O(‖W (zk)‖) = o(‖H (zk)‖). Let z∗ be an accumulation
point of {zk} and K0 be an in6nite subset of K such that

lim
k∈K0

zk = z∗:

To show the superlinear convergence of Algorithm 2.1, we need the following additional
assumption.

Assumption 3. Every matrix of @CH (z∗) is nonsingular.

Under assumptions Assumptions 1–3, we have the following lemma.

Lemma 4.1. Assume that Assumptions 1–3 hold; then dk=−∇Hk(zk)−1Hk(zk) is the unique solution
of trust region subproblem (2.1) for su9ciently large k ∈K0. Moreover; the trial step dk can be
accepted by Step 2 in Algorithm 2.1; i.e.; zk+1 = zk + dk with k ∈K0 large enough.

Proof. Denote sk = −∇Hk(zk)−1Hk(zk). It is clear from (4.2) that there is a constant M ¿ 0 such
that the inequality ‖∇Hk(zk)−1‖6M holds for all k ∈K0 suNciently large. On the other hand; from
Algorithm 2.1 we have �k ¿�0 ¿ 0. Then for large enough k ∈K0 it follows

‖sk‖ = ‖ − ∇Hk(zk)−1Hk(zk)‖6�k;

which shows that the Newton direction is a feasible point of (2.1). Therefore; the solution of (2.1)
is dk = sk .

Next, we prove that dk can be accepted by Step 2 in Algorithm 2.1. Let Vk ∈ @CH (zk) satisfy

dist(∇HkHk(zk); @CH (zk)) = ‖∇Hk(zk) − Vk‖:
It follows from semismoothness of H (z), the updating rule of �k in Algorithm 2.1 and (4.2) that

‖zk + dk − z∗‖ = ‖zk −∇Hk(zk)−1Hk(zk) − z∗‖
= ‖(−∇Hk(zk)[Hk(zk) −∇Hk(zk)(zk − z∗)]‖
6M [‖H (zk) − H (z∗) − Vk(zk − z∗)‖ + ‖Hk(zk) − H (zk)‖
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+ ‖(∇Hk(zk) − Vk)(zk − z∗)‖]

6M [o(‖zk − z∗‖) + ��k + ‖∇Hk(zk) − Vk‖‖zk − z∗‖]

6 o(‖zk − z∗‖) +
�M
2

‖H (zk)‖2

= o(‖zk − z∗‖); (4.3)

where the last equality follows from Lipschitz property of H (z). This together with Assumption 3
implies that when k ∈K0 is suNciently large, it holds that

‖H (zk + dk)‖ = o(‖H (zk)‖): (4.4)

Consequently, we get

‖Hk(zk + dk)‖6 ‖H (zk + dk)‖ + ��k = o(‖H (zk)‖): (4.5)

We also have

‖Hk(zk)‖¿ ‖H (zk)‖ − ‖Hk(zk) − H (zk)‖
¿ ‖H (zk)‖ − ��k ¿ (1 − �)‖H (zk)‖: (4.6)

Notice that Qk(dk) = 0, we deduce from (4.5) and (4.6) that

|1 − rk | =
∣∣∣∣W k(zk + dk) − Qk(dk)

W k(zk) − Qk(dk)

∣∣∣∣ =
‖Hk(zk + dk)‖2

‖Hk(zk)‖2

6
o(‖H (zk)‖2)

(1 − �)2‖H (zk)‖2 → 0; (k → ∞; k ∈K0):

This implies that, for k ∈K0 suNciently large, we have rk ¿ �1. Hence, dk can be accepted by Step
2 in Algorithm 2.1. This completes the proof of lemma.

It is easy to see from the proof of Lemma 4.1 that when k ∈K0 is suNciently large, (4.3) means

‖zk+1 − z∗‖ = o(‖zk − z∗‖) (4.7)

We now establish the following superlinear convergence theorem for Algorithm 2.1.

Theorem 4.1. Let the conditions of Assumptions 1–3 hold. Then the whole sequence {zk} generated
by Algorithm 2.1 converges to z∗ superlinearly.

Proof. It follows from the proof of Lemma 4.1 that

‖zk+1 − zk‖k∈K0 = ‖dk‖k∈K0 → 0; (k → ∞):

In a way similar to the proof of Theorem 3.2 in [1]; we can show that the whole sequence {zk}
converges to z∗. Moreover; (4.7) shows that the convergent rate is suplinear.

We conclude the paper with some remarks on Assumptions 1–3. For some semismooth equations
and related smoothing functions arising from the nonlinear complementarity problem and the box
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constrained variational inequality problem, Chen, Qi and Sun [1] presented suNcient conditions to
guarantee Assumptions 1–3. We also refer to a recent book edited by Fukushima and Qi [4] for a
comprehensive study on semismooth equations and smoothing methods.
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