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Two linear transformations each tridiagonal with respect to an
eigenbasis of the other: comments on the split decomposition
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Abstract

LetK denote a field and letVdenote a vector space overKwith finite positive dimension.We consider an ordered
pair of linear transformationsA : V → V andA∗ : V → V that satisfy both conditions below:

(i) There exists a basis forV with respect to which the matrix representingA is irreducible tridiagonal and the
matrix representingA∗ is diagonal.

(ii) There exists a basis forV with respect to which the matrix representingA∗ is irreducible tridiagonal and the
matrix representingA is diagonal.

We call such a pair aLeonard paironV. Referring to the above Leonard pair, it is known there exists a decomposition
of V into a direct sum of one-dimensional subspaces, on whichA acts in a lower bidiagonal fashion andA∗ acts in
an upper bidiagonal fashion. This is called thesplit decomposition. In this paper, we give two characterizations of
a Leonard pair that involve the split decomposition.
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1. Leonard pairs and Leonard systems

We begin by recalling the notion of aLeonard pair[6,12–18]. We will use the following terms. Let
X denote a square matrix. ThenX is calledtridiagonalwhenever each nonzero entry lies on either the
diagonal, the subdiagonal, or the superdiagonal. AssumeX is tridiagonal. ThenX is calledirreducible
whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.We
now define a Leonard pair. For the rest of this paperK will denote a field.

Definition 1.1 (Terwilliger [13, Definition 1.1]). LetV denote a vector space overK with finite positive
dimension. By aLeonard paironV, we mean an ordered pair of linear transformationsA : V → V and
A∗ : V → V that satisfies both (i) and (ii) below.

(i) There exists a basis forV with respect to which the matrix representingA is irreducible tridiagonal
and the matrix representingA∗ is diagonal.

(ii) There exists a basis forVwith respect to which the matrix representingA∗ is irreducible tridiagonal
and the matrix representingA is diagonal.

Note 1.2.According to a common notational conventionA∗ denotes the conjugate transpose ofA. We
are not using this convention. In a Leonard pairA,A∗ the linear transformationsA andA∗ are arbitrary
subject to (i) and (ii) above.

Our use of the name “Leonard pair” is motivated by a connection to a theorem of Leonard[2, p. 260];
[9], which involves theq-Racah polynomials[1]; [3, p. 162]and some related polynomials of the Askey
scheme[7]. This connection is discussed in[13, Appendix A]and[15, Section 16]. See[4,5,8,10,19]for
related topics.
In this paper, we obtain two characterizations of a Leonard pair. These characterizations are based

on a concept which we call thesplit decomposition. We will formally define the split decomposition in
Section 2, but roughly speaking, this is a decomposition of the underlying vector space into a direct sum
of one-dimensional subspaces, with respect to which one element of the pair acts in a lower bidiagonal
fashion and the other element of the pair acts in an upper bidiagonal fashion. In[13] we showed that every
Leonard pair has a split decomposition. In the present paper, we consider a pair of linear transformations
that is not necessarily a Leonard pair. We find a necessary and sufficient condition for this pair to have a
split decomposition. Our main result along this line is Theorem 4.1. Now assuming the pair has a split
decomposition, we give two necessary and sufficient conditions for this pair to be a Leonard pair. These
conditions are stated in Theorems 5.1 and 5.2. These conditions are restated for a more concrete setting
in Theorems 6.3 and 6.4.
When working with a Leonard pair, it is often convenient to consider a closely related and somewhat

more abstract concept called aLeonard system. In order to define this we recall a few more terms. Letd
denote a nonnegative integer. LetMatd+1(K)denote theK-algebra consisting of alld+1byd+1matrices
which have entries inK. We index the rows and columns by 0,1, . . . , d. LetKd+1 denote theK-vector
space consisting of alld + 1 by 1 matrices which have entries inK. We index the rows by 0,1, . . . , d.
We viewKd+1 as a left module for Matd+1(K) under matrix multiplication. We observe this module is
irreducible. For the rest of this paper we letA denote aK-algebra isomorphic to Matd+1(K). When we
refer to anA-module we mean a leftA-module. LetV denote an irreducibleA-module. We remark that
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V is unique up to isomorphism ofA-modules and thatV has dimensiond + 1. Letv0, v1, . . . , vd denote
a basis forV. ForX ∈ A and forY ∈ Matd+1(K), we sayY represents X with respect tov0, v1, . . . , vd
wheneverXvj = ∑d

i=0 Yij vi for 0�j�d. LetA denote an element ofA. We sayA ismultiplicity-free
whenever it hasd + 1 distinct eigenvalues inK. AssumeA is multiplicity-free. Let�0, �1, . . . , �d denote
an ordering of the eigenvalues ofA, and for 0�i�d put

Ei =
∏

0� j � d
j �=i

A− �j I

�i − �j
,

whereI denotes the identity ofA. We observe (i)AEi = �iEi (0�i�d), (ii) EiEj = �ijEi (0�i, j�d),
(iii)

∑d
i=0Ei = I , (iv) A= ∑d

i=0 �iEi . LetD denote the subalgebra ofA generated byA. Using (i)–(iv)
we findE0, E1, . . . , Ed is a basis for theK-vector spaceD. We callEi theprimitive idempotentof A
associated with�i . It is helpful to think of these primitive idempotents as follows. Observe

V = E0V + E1V + · · · + EdV (direct sum).

For 0�i�d, EiV is the (one dimensional) eigenspace ofA in V associated with the eigenvalue�i , and
Ei acts onV as the projection onto this eigenspace. We remark that the sequence{Ai |0�i�d} is a basis
for theK-vector spaceD and that

∏d
i=0(A− �iI )= 0. By aLeonard pair inA we mean an ordered pair

of elements taken fromA which act onV as a Leonard pair in the sense of Definition 1.1.We now define
a Leonard system.

Definition 1.3(Terwilliger [13, Definition 1.4]). By aLeonard systeminA, wemean a sequence(A;A∗;
{Ei}di=0; {E∗

i }di=0) which satisfies (i)–(v) below.
(i) Each ofA,A∗ is a multiplicity-free element ofA.
(ii) E0, E1, . . . , Ed is an ordering of the primitive idempotents ofA.
(iii) E∗

0, E
∗
1, . . . , E

∗
d is an ordering of the primitive idempotents ofA

∗.
(iv)

E∗
i AE

∗
j =

{
0 if |i − j |>1
�= 0 if |i − j | = 1

(0�i, j�d).

(v)

EiA
∗Ej =

{
0 if |i − j |>1
�= 0 if |i − j | = 1

(0�i, j�d).

We comment on how Leonard pairs and Leonard systems are related. In the following discussionV
denotes an irreducibleA-module. Let(A;A∗; {Ei}di=0; {E∗

i }di=0) denote a Leonard system inA. For
0�i�d let vi denote a nonzero vector inEiV . Then the sequencev0, v1, . . . , vd is a basis forVwhich
satisfies Definition 1.1(ii). For 0�i�d let v∗i denote a nonzero vector inE∗

i V . Then the sequence
v∗0, v∗1, . . . , v∗d is a basis forV which satisfies Definition 1.1(i). By these comments the pairA,A∗ is a
Leonard pair inA. Conversely letA,A∗ denote a Leonard pair inA. By [13, Lemma1.3]each ofA,A∗ is
multiplicity-free. Letv0, v1, . . . , vd denote a basis forVwhich satisfies Definition 1.1(ii). For 0�i�d the
vectorvi is an eigenvector forA; letEi denote the corresponding primitive idempotent. Letv∗0, v∗1, . . . , v∗d
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denote a basis forVwhich satisfies Definition 1.1(i). For 0�i�d the vectorv∗i is an eigenvector forA∗; let
E∗
i denote the corresponding primitive idempotent. Then(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system
inA. In summary we have the following.

Lemma 1.4. Let A andA∗ denote elements inA.Then the pairA,A∗ is a Leonard pair inA if and only
if the following(i) and(ii) hold.

(i) Each ofA,A∗ is multiplicity-free.
(ii) There exists an orderingE0, E1, . . . , Ed of the primitive idempotents ofA and there exists an ordering

E∗
0, E

∗
1, . . . , E

∗
d of the primitive idempotents ofA

∗ such that(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard

system inA.

2. The split decomposition

In [13] we introduced the split decomposition for Leonard systems and in[15] we discussed this
decomposition in detail. For our present purposes it is useful to define the split decomposition in a more
general context. We will refer to the following set-up.

Definition 2.1. Let A andA∗ denote multiplicity-free elements inA. Let E0, E1, . . . , Ed denote an
ordering of the primitive idempotents ofA and for 0�i�d let �i denote the eigenvalue ofA for Ei . Let
E∗
0, E

∗
1, . . . , E

∗
d denote an ordering of the primitive idempotents ofA

∗ and for 0�i�d let �∗
i denote

the eigenvalue ofA∗ for E∗
i . We letD (respectivelyD∗) denote the subalgebra ofA generated byA

(respectivelyA∗). We letV denote an irreducibleA-module.

With reference to Definition 2.1, by adecompositionof V we mean a sequenceU0, U1, . . . , Ud con-
sisting of one-dimensional subspaces ofV such that

V = U0 + U1 + · · · + Ud (direct sum).

Definition 2.2. With reference to Definition 2.1, letU0, U1, . . . , Ud denote a decomposition ofV.We say
this decomposition issplit (with respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d ) whenever

both

(A− �iI )Ui = Ui+1 (0�i�d − 1), (A− �dI )Ud = 0, (1)
(A∗ − �∗

i I )Ui = Ui−1 (1�i�d), (A∗ − �∗
0I )U0 = 0. (2)

Later in this paper we will obtain two characterizations of a Leonard system which involve the split
decomposition. For the time being we consider the existence and uniqueness of the split decomposition.
We start with uniqueness.

Lemma 2.3.With reference to Definition2.1,the following(i), (ii) hold.

(i) Assume there exists a decompositionU0, U1, . . . , Ud of V which is split with respect to the orderings
E0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . ThenUi = ∏i−1

h=0(A − �hI )E∗
0V andUi = ∏d

h=i+1(A∗ −
�∗
hI )EdV for 0�i�d.
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(ii) There exists atmost onedecomposition ofVwhich is split with respect to the orderingsE0, E1, . . . , Ed
andE∗

0, E
∗
1, . . . , E

∗
d .

Proof. (i) From the equation on the right in (2) we findU0 = E∗
0V . Using this and (1) we obtain

Ui = ∏i−1
h=0(A− �hI )E∗

0V for 0�i�d. From the equation on the right in (1) we findUd =EdV . Using
this and (2) we obtainUi = ∏d

h=i+1 (A∗ − �∗
hI )EdV for 0�i�d.

(ii) Immediate from (i) above. �

We turn our attention to the existence of the split decomposition. In Section 4, we will give a necessary
and sufficient condition for this existence. We will use the following result.

Lemma 2.4.With reference to Definition2.1,assume there exists a decompositionU0, U1, . . . , Ud of
V which is split with respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . Then the following

(i)–(v) hold for0�i�d.

(i)
∑i
h=0Uh = ∑i

h=0AhE∗
0V.

(ii)
∑i
h=0Uh = ∑i

h=0E∗
hV .

(iii)
∑d
h=i Uh = ∑d−i

h=0A∗hEdV .
(iv)

∑d
h=i Uh = ∑d

h=i EhV .
(v) Ui = (E∗

0V + E∗
1V + · · · + E∗

i V ) ∩ (EiV + Ei+1V + · · · + EdV ).

Proof. (i) For 0�j�d we haveUj = ∏j−1
h=0(A − �hI )E∗

0V by Lemma 2.3(i) soUj ⊆ ∑j
h=0AhE∗

0V .
Apparently

∑i
h=0Uh ⊆ ∑i

h=0AhE∗
0V . In this inclusion the sum on the left has dimensioni + 1

sinceU0, U1, . . . , Ud is a decomposition. The sum on the right has dimension at mosti + 1. There-
fore

∑i
h=0Uh = ∑i

h=0AhE∗
0V .

(ii) For 0�j�d we have
∏j
h=0(A∗ −�∗

hI )Uj =0 by (2) soUj ⊆ ∑j
h=0E∗

hV .Apparently
∑i
h=0Uh ⊆∑i

h=0E∗
hV . In this inclusion each side has dimensioni + 1 so equality holds.

(iii) Similar to the proof of (i) above.
(iv) Similar to the proof of (ii) above.
(v) Combine (ii) and (iv) above. �

3. Some products

Our next goal is to display a necessary and sufficient condition for the existence of the split decompo-
sition. With reference to Definition 2.1, consider the products

E∗
i AE

∗
j , EiA

∗Ej (0�i, j�d).

Our condition has to do with which of these products is 0. In order to motivate our result we initially
consider just one of these products.

Lemma 3.1.With reference to Definition2.1, for 0�i�d let v∗i denote a nonzero vector inE∗
i V and

observev∗0, v∗1, . . . , v∗d is a basis for V. Let B denote the matrix inMatd+1(K) which represents A with
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respect to this basis, so that

Av∗j =
d∑
i=0
Bijv

∗
i (0�j�d). (3)

Then for0�i, j�d the following are equivalent: (i) E∗
i AE

∗
j = 0, (ii) Bij = 0.

Proof. Let the integersi, j be given. ObserveE∗
r v

∗
s = �rsv∗s for 0�r, s�d. By this and (3) we find

E∗
i AE

∗
jV is spanned byBijv

∗
i . The result follows. �

In the next lemma we consider a certain pattern of vanishing products among theE∗
i AE

∗
j . We will use

the following notation. Let� denote an indeterminate and letK[�] denote theK-algebra consisting of
all polynomials in� which have coefficients inK. Let f0, f1, . . . , fd denote a sequence of polynomials
taken fromK[�]. We say this sequence isgradedwheneverfi has degree exactlyi for 0�i�d.

Lemma 3.2.With reference to Definition2.1,the following(i)–(iii) are equivalent.

(i) E∗
i AE

∗
j =

{
0 if i − j >1
�= 0 if i − j = 1

(0�i, j�d).

(ii) There exists a graded sequence of polynomialsf0, f1, . . . , fd taken fromK[�] such thatE∗
i V =

fi(A)E
∗
0V for 0�i�d.

(iii) For 0�i�d,

i∑
h=0

E∗
hV =

i∑
h=0

AhE∗
0V. (4)

Proof. (i) ⇒ (ii ) For 0�i�d let v∗i denote a nonzero vector inE∗
i V and observev

∗
0, v

∗
1, . . . , v

∗
d is a

basis forV. Let B denote the matrix in Matd+1(K) which representsA with respect to this basis. By
Lemma 3.1,

Bij =
{
0 if i − j >1
�= 0 if i − j = 1

(0�i, j�d). (5)

Let f0, f1, . . . , fd denote the polynomials inK[�] which satisfyf0 = 1 and

�fj =
j+1∑
i=0
Bijfi (0�j�d − 1). (6)

We observefi has degree exactlyi for 0�i�d so the sequencef0, f1, . . . , fd is graded. Comparing (3)
and (6) in light of (5) we findv∗i = fi(A)v∗0 for 0�i�d. It follows E∗

i V = fi(A)E∗
0V for 0�i�d.

(ii )⇒ (iii ) For 0�j�d we haveE∗
j V = fj (A)E∗

0V . The degree offj is j soE
∗
j V ⊆ ∑j

h=0AhE∗
0V .

Apparently
∑i
h=0E∗

hV ⊆ ∑i
h=0AhE∗

0V . In this inclusion the sum on the left has dimensioni + 1 and
the sum on the right has dimension at mosti + 1. Therefore

∑i
h=0E∗

hV = ∑i
h=0AhE∗

0V .
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(iii )⇒ (i) For 0�i�d let Vi denote the subspace on the left or right in (4). From the right-hand side
of (4) we findVi + AV i = Vi+1 for 0�i�d − 1. From the left-hand side of (4) we findE∗

r Vs = 0 for
0�s < r�d. Let i, j denote integers(0�i, j�d) and first assumei − j >1. We showE∗

i AE
∗
j = 0.

ObserveE∗
j V ⊆ Vj andAV j ⊆ Vj+1 soAE∗

jV ⊆ Vj+1. However,E∗
i Vj+1 = 0 sincei − j >1 so

E∗
i AE

∗
jV = 0. It follows E∗

i AE
∗
j = 0. Next we assumei − j = 1 and showE∗

i AE
∗
j �= 0. Suppose

E∗
i AE

∗
j =0. Then by our previous remarksE∗

i AE
∗
h=0 for 0�h�j . By this and sinceVj =∑j

h=0E∗
hV

we findE∗
i AV j=0. However,Vi=Vj+AV j andE∗

i Vj=0 soE∗
i Vi=0. This contradicts the construction

soE∗
i AE

∗
j �= 0. �

Corollary 3.3. With reference to Definition2.1, let v∗0 denote a nonzero vector inE∗
0V and consider

theK-linear transformation fromD to V which sends X toXv∗0 for all X ∈ D. Assume the equivalent
conditions(i)–(iii) hold in Lemma3.2.Then this linear transformation is an isomorphism.

Proof. Since theK-vector spacesD andV have the same dimension it suffices to show the linear trans-
formation is surjective. Settingi = d in (4) we findV = Dv∗0. Therefore, the linear transformation is
surjective. �

Replacing(A;A∗; {Ei}di=0; {E∗
i }di=0) by (A∗;A; {E∗

d−i}di=0; {Ed−i}di=0) in Lemma 3.2 and Corollary
3.3 we routinely obtain the following results.

Lemma 3.4.With reference to Definition2.1,the following(i)–(iii) are equivalent.

(i) EiA
∗Ej =

{
0 if j − i >1
�= 0 if j − i = 1

(0�i, j�d).

(ii) There exists a graded sequence of polynomialsf ∗
0 , f

∗
1 , . . . , f

∗
d taken fromK[�] such thatEiV =

f ∗
d−i(A∗)EdV for 0�i�d.

(iii) For 0�i�d,

d∑
h=i
EhV =

d−i∑
h=0

A∗hEdV .

Corollary 3.5. With reference to Definition2.1, let vd denote a nonzero vector inEdV and consider
theK-linear transformation fromD∗ to V which sends X toXvd for all X ∈ D∗. Assume the equivalent
conditions(i)–(iii) hold in Lemma3.4.Then this linear transformation is an isomorphism.

4. The existence of the split decomposition

We now display a necessary and sufficient condition for the existence of the split decomposition.

Theorem 4.1.With reference to Definition2.1,the following(i), (ii) are equivalent.
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(i) There exists a decomposition of V which is split with respect to the orderingsE0, E1, . . . , Ed and
E∗
0, E

∗
1, . . . , E

∗
d .

(ii) Both

E∗
i AE

∗
j =

{
0 if i − j >1
�= 0 if i − j = 1

(0�i, j�d), (7)

EiA
∗Ej =

{
0 if j − i >1
�= 0 if j − i = 1

(0�i, j�d). (8)

Proof. (i) ⇒ (ii ) By assumption there exists a decompositionU0, U1, . . . , Ud of V which is split
with respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . For 0�i�d we have

∑i
h=0Uh =∑i

h=0AhE∗
0V by Lemma 2.4(i) and

∑i
h=0Uh = ∑i

h=0E∗
hV by Lemma 2.4(ii) so

∑i
h=0E∗

hV =∑i
h=0AhE∗

0V . This gives Lemma 3.2(iii). Applying that lemma we obtain (7). For 0�i�d we have∑d
h=i Uh=

∑d−i
h=0A∗hEdV byLemma2.4(iii) and

∑d
h=i Uh=

∑d
h=i EhV byLemma2.4(iv) so

∑d
h=i EhV

= ∑d−i
h=0A∗hEdV . This gives Lemma 3.4(iii). Applying that lemma we obtain (8).

(ii )⇒ (i) For 0�i�d we define�i = ∏i−1
h=0 (A− �hI ). We observe�0, �1, . . . , �d is a basis for theK-

vector spaceD. Letv∗0 denote a nonzero vector inE∗
0V . Observe Lemma 3.2(i) holds by (7) so Corollary

3.3 applies; by that corollary�iv∗0 (0�i�d) is a basis forV. We defineUi = Span(�iv∗0) for 0�i�d
and observeU0, U1, . . . , Ud is a decomposition ofV. We show this decomposition is split with respect to
E0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . To do this we show the sequenceU0, U1, . . . , Ud satisfies (1) and

(2).Concerning (1), from theconstruction(A−�iI )�i=�i+1 for 0�i�d−1and(A−�dI )�d=0.Applying
both sides of theseequations tov∗0 we find(A− �iI )Ui = Ui+1 for 0�i�d − 1 and(A− �dI )Ud = 0.
We have now shown (1). Concerning (2), this will follow if we can show
(a) (A∗ − �∗

i I )Ui ⊆ ∑i−1
h=0Uh for 0�i�d,

(b) (A∗ − �∗
i I )Ui ⊆ ∑d

h=i−1Uh for 1�i�d,
(c) (A∗ − �∗

i I )Ui �= 0 for 1�i�d.
We begin with (a). For 0�j�d the elements{�h|0�h�j} and the elements{Ah|0�h�j} span

the same subspace ofD. Therefore
∑j
h=0Uh = ∑j

h=0AhE∗
0V . We mentioned Lemma 3.2(i) holds

so Lemma 3.2(iii) holds; therefore
∑j
h=0E∗

hV = ∑j
h=0AhE∗

0V so
∑j
h=0Uh = ∑j

h=0E∗
hV . Observe

(A∗ − �∗
i I )

∑i
h=0E∗

hV = ∑i−1
h=0E∗

hV for 0�i�d. Combining these comments we find(A∗ − �∗
i I )Ui ⊆∑i−1

h=0Uh for 0�i�d.We now have (a). Next we prove (b). From the construction, for 0�j�d we have∏d
h=j (A − �hI )�j = 0 so

∏d
h=j (A − �hI )Uj = 0. From this we findUj ⊆ ∑d

h=j EhV . Apparently∑d
h=i Uh ⊆ ∑d

h=i EhV for 0�i�d. By this and sinceU0, U1, . . . , Ud is a decomposition we find∑d
h=i Uh = ∑d

h=i EhV for 0�i�d. From (8) we findA∗EjV ⊆ ∑d
h=j−1EhV for 1�j�d. Therefore

(A∗ − �∗
j I )

∑d
h=j EhV ⊆ ∑d

h=j−1EhV for 1�j�d. From these comments we find(A∗ − �∗
j I )Uj ⊆∑d

h=j−1Uhfor 1�j�d.We now have (b). Next we show (c). Suppose there exists an integeri (1�i�d)
such that(A∗−�∗

i I )Ui=0.Weassumei ismaximal subject to this.Weobtainacontradictionas follows.For
i < j�d we find(A∗ − �∗

j I )Uj ⊆ Uj−1 by (a), (b). In this inclusion the left-hand side is nonzero and the
right-hand side has dimension 1 sowe have equality.Wementioned earlier(A−�dI )Ud=0 soUd=EdV .
ApparentlyUj = ∏d

h=j+1(A∗ − �∗
hI )EdV for i�j�d. In particularUi = ∏d

h=i+1 (A∗ − �∗
hI )EdV .
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Combining this with(A∗ − �∗
i I )Ui = 0 we obtain 0= ∏d

h=i (A∗ − �∗
hI )EdV . Let vd denote a nonzero

vector inEdV and observe 0= ∏d
h=i (A∗ − �∗

hI )vd . This is inconsistent with Corollary 3.5 and the fact
that 0 �= ∏d

h=i (A∗ − �∗
hI ).We now have a contradiction and (c) is proved. Combining (a)–(c) we obtain

(2). We have shown the decompositionU0, U1, . . . , Ud satisfies (1), (2). Applying Definition 2.2 we find
U0, U1, . . . , Ud is split with respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . �

5. Two characterizations of a Leonard system

In this section, we obtain two characterizations of a Leonard system, both of which involve the split
decomposition. We will first state the characterizations, then prove a few lemmas, and then prove the
characterizations. Our first characterization is stated as follows.

Theorem 5.1.With reference to Definition2.1, the sequence(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard

system if and only if both(i), (ii) hold below.

(i) There exists a decomposition of V which is split with respect to the orderingsE0, E1, . . . , Ed and
E∗
0, E

∗
1, . . . , E

∗
d .

(ii) There exists a decomposition of V which is split with respect to the orderingsEd,Ed−1, . . . , E0 and
E∗
0, E

∗
1, . . . , E

∗
d .

In order to state our second characterization we recall a definition. Let� : A → A denote anymap.We
call � anantiautomorphismofA whenever� is an isomorphism ofK-vector spaces and(XY)� = Y �X�

for allX, Y ∈ A. For example assumeA=Matd+1(K). Then� is an antiautomorphism ofA if and only
if there exists an invertibleR ∈ A such thatX� = R−1XtR for all X ∈ A, wheret denotes transpose.
This follows from the Skolem–Noether Theorem[11, Corollary 9.122].
We now state our second characterization of a Leonard system.

Theorem 5.2.With reference to Definition2.1, the sequence(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard

system if and only if both(i), (ii) hold below.

(i) There exists a decomposition of V which is split with respect to the orderingsE0, E1, . . . , Ed and
E∗
0, E

∗
1, . . . , E

∗
d .

(ii) There exists an antiautomorphism† ofA such thatA† = A andA∗† = A∗.

We now prove some lemmas which we will use to obtain Theorems 5.1 and 5.2.We have a preliminary
remark. With reference to Definition 2.1, we consider the following four conditions:

E∗
i AE

∗
j =

{
0 if i − j >1
�= 0 if i − j = 1

(0�i, j�d), (9)

E∗
i AE

∗
j =

{
0 if j − i >1
�= 0 if j − i = 1

(0�i, j�d), (10)

EiA
∗Ej =

{
0 if i − j >1
�= 0 if i − j = 1

(0�i, j�d), (11)



446 P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437–452

EiA
∗Ej =

{
0 if j − i >1
�= 0 if j − i = 1

(0�i, j�d). (12)

We observe(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard system if and only if each of (9)–(12) holds.

Lemma 5.3.With reference to Definition2.1,assume conditions(9) and(10)hold.ThenA,E∗
0 together

generateA.MoreoverA,A∗ together generateA.

Proof. Examining the proof of[15, Lemma 3.1]we find that the elementsArE∗
0A
s (0�r, s�d) form a

basis for theK-vector spaceA. It follows thatA,E∗
0 together generateA. The elementsA,A

∗ together
generateA sinceE∗

0 is a polynomial inA
∗. �

Lemma 5.4.With reference to Definition2.1,assume conditions(9) and (10) hold. Then there exists a
unique antiautomorphism† ofA such thatA† = A andA∗† = A∗.MoreoverX††=X for all X ∈ A.

Proof. Concerning the existence of †, for 0�i�d let v∗i denote a nonzero element ofE∗
i V and recall

v∗0, v∗1, . . . , v∗d is a basis forV. ForX ∈ A letX� denote thematrix inMatd+1(K)which representsXwith
respect to the basisv∗0, v∗1, . . . , v∗d .We observe� : A → Matd+1(K) is an isomorphismofK-algebras.We
abbreviateB =A� andB∗ =A∗�. We observeB is irreducible tridiagonal andB∗ = diag(�∗

0, �
∗
1, . . . , �

∗
d).

LetD denote the diagonal matrix in Matd+1(K) which hasii entry

Dii = B01B12 · · ·Bi−1,i
B10B21 · · ·Bi,i−1 (0�i�d).

It is routine to verifyD−1BtD = B. Each ofD,B∗ is diagonal soDB∗ = B∗D; alsoB∗t = B∗ so
D−1B∗tD = B∗. Let � : Matd+1(K) → Matd+1(K) denote the map which satisfiesX� =D−1XtD for
allX ∈ Matd+1(K).We observe� is an antiautomorphism of Matd+1(K) such thatB� =B andB∗� =B∗.
We define the map † :A → A to be the composition †: =���−1. We observe † is an antiautomorphism
ofA such thatA†=A andA∗†=A∗. We have now shown there exists an antiautomorphism † ofA such
thatA†=A andA∗†=A∗. This antiautomorphism is unique sinceA,A∗ together generateA. The map
X → X†† is an isomorphism ofK-algebras fromA to itself. This map is the identity sinceA†† = A,
A∗††= A∗, and sinceA,A∗ together generateA. �

Lemma 5.5.With reference to Definition2.1,assume there exists an antiautomorphism†ofA such that
A† = A andA∗† = A∗. ThenE†i = Ei andE∗†

i = E∗
i for 0�i�d.

Proof. RecallEi (respectivelyE∗
i ) is a polynomial inA (respectivelyA

∗) for 0�i�d. �

Lemma 5.6.With reference to Definition2.1,assume there exists an antiautomorphism†ofA such that
A†=A andA∗†=A∗.Then for0�i, j�d, (i) E∗

i AE
∗
j =0 if and only ifE∗

j AE
∗
i =0;and(ii) EiA∗Ej =0

if and only ifEjA∗Ei = 0.

Proof. By Lemma 5.5 and since † is an antiautomorphism,

(E∗
i AE

∗
j )
† = E∗

j AE
∗
i (0�i, j�d).
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Assertion (i) follows since † :A → A is a bijection. To obtain (ii) interchange the roles ofA andA∗ in
the proof of (i). �

Lemma5.7.With reference toDefinition2.1,assumeat least three of(9)–(12)hold.Theneach of(9)–(12)
hold; in other words(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system.

Proof. InterchangingA andA∗ if necessary, we may assume without loss of generality that (9) and (10)
hold. By Lemma 5.4 there exists an antiautomorphism † ofA such thatA† = A andA∗† = A∗. By
assumption at least one of (11), (12) holds. Combining this with Lemma 5.6 we find (11), (12) both hold.
The result follows. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Theorem 4.1 we find (i) holds if and only if each of (9), (12) holds. Applying
Theorem 4.1 again, this time with(A;A∗; {Ei}di=0; {E∗

i }di=0) replaced by(A;A∗; {Ed−i}di=0; {E∗
i }di=0),

we find (ii) holds if and only if each of (9), (11) holds. Suppose(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard

system. Then each of (9)–(12) holds. In particular each of (9), (11), (12) holds so (i), (ii) hold by our
above remarks. Conversely suppose (i), (ii) hold. Then each of (9), (11), (12) holds. At least three of
(9)–(12)hold so(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system by Lemma 5.7.�

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. First assume(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard system. Then (i) holds by

Theorem 5.1 and (ii) holds by Lemma 5.4. Conversely assume (i), (ii) hold. Combining (i) and Theorem
4.1 we obtain (9), (12). Combining this with (ii) and using Lemma 5.6 we obtain (10), (11). Now each of
(9)–(12) holds so(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system.�

We would like to emphasize the following fact.

Theorem 5.8. LetA,A∗ denote a Leonard pair inA. Then there exists a unique antiautomorphism† of
A such thatA† = A andA∗† = A∗.MoreoverX††=X for all X ∈ A.

Proof. SinceA,A∗ is a Leonard pair there exists anorderingE0, E1, . . . , Ed of theprimitive idempotents
of A and an orderingE∗

0, E
∗
1, . . . , E

∗
d of the primitive idempotents ofA

∗ such that(A;A∗; {Ei}di=0;
{E∗
i }di=0) is a Leonard system. These orderings satisfy (9)–(12). In particular (9), (10) are satisfied so the

result follows by Lemma 5.4.�

We finish this section with a comment.

Lemma 5.9.With reference to Definition2.1,assume there exists a decomposition ofV which is split with
respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d .Then the following(i), (ii) are equivalent.

(i) The pairA,A∗ is a Leonard pair.
(ii) The sequence(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system.
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Proof. (i)⇒ (ii )Weassume there exists a decomposition ofVwhich is split with respect to the orderings
E0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . Therefore, each of (9), (12) holds by Theorem 4.1. SinceA,A∗

is a Leonard pair there exists an antiautomorphism † ofA such thatA† = A andA∗† = A∗. Applying
Lemma 5.6 we find each of (10), (11) holds. Now each of (9)–(12) holds so(A;A∗; {Ei}di=0; {E∗

i }di=0) is
a Leonard system.
(ii )⇒ (i) Clear. �

6. The two characterizations in terms of matrices

In this section, we restate Theorems 5.1 and 5.2 in terms of matrices. We first set some notation. With
reference to Definition 2.1, suppose there exists a decompositionU0, U1, . . . , Ud ofVwhich is split with
respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . Pick an integeri (1�i�d). By (2) we

find (A∗ − �∗
i I )Ui = Ui−1 and by (1) we find(A − �i−1I )Ui−1 = Ui . ApparentlyUi is an eigenspace

for (A − �i−1I )(A∗ − �∗
i I ) and the corresponding eigenvalue is a nonzero element ofK. Let us denote

this eigenvalue by�i . We call�1,�2, . . . ,�d thesplit sequencefor A,A
∗ with respect to the orderings

E0, E1, . . . , Ed andE∗
0, E

∗
1, . . . , E

∗
d . The split sequence has the following interpretation. For 0�i�d

let ui denote a nonzero vector inUi and recallu0, u1, . . . , ud is a basis forV. We normalize theui so
that (A − �iI )ui = ui+1 for 0�i�d − 1. With respect to the basisu0, u1, . . . , ud the matrices which
representA andA∗ are as follows.

A :




�0 0
1 �1

1 �2
· ·

· ·
0 1 �d



, A∗ :




�∗
0 �1 0

�∗
1 �2

�∗
2 ·

· ·
· �d

0 �∗
d



.

Motivated by this we consider the following set-up.

Definition 6.1. Let d denote a nonnegative integer. LetA andA∗ denote matrices in Matd+1(K) of the
form

A=




�0 0
1 �1

1 �2
· ·

· ·
0 1 �d



, A∗ =




�∗
0 �1 0

�∗
1 �2

�∗
2 ·

· ·
· �d

0 �∗
d



,

where

�i �= �j , �∗
i �= �∗

j if i �= j, (0�i, j�d),
�i �= 0, (1�i�d).

We observeA (respectivelyA∗) is multiplicity-free, with eigenvalues�0, �1, . . . , �d (respectively
�∗
0, �

∗
1, . . . , �∗

d ). For 0�i�d we let Ei (respectivelyE∗
i ) denote the primitive idempotent forA

(respectivelyA∗) associated with�i (respectively�∗
i ).
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We have some comments. With reference to Definition 6.1, for 0�i�d let ui denote the vector in
Kd+1 which hasith entry 1 and all other entries 0. We observeu0, u1, . . . , ud is a basis forKd+1. From
the form ofA we have(A − �iI )ui = ui+1 for 0�i�d − 1 and(A − �dI )ud = 0. From the form of
A∗ we have(A∗ − �∗

i I )ui = �iui−1 for 1�i�d and(A∗ − �∗
0I )u0 = 0. For 0�i�d let Ui denote the

subspace ofKd+1 spanned byui . ThenU0, U1, . . . , Ud is a decomposition ofKd+1. This decomposition
satisfies(A− �iI )Ui =Ui+1 for 0�i�d − 1 and(A− �dI )Ud = 0. Similarly(A∗ − �∗

i I )Ui =Ui−1 for
1�i�d and(A∗ − �∗

0I )U0=0. In other words the decompositionU0, U1, . . . , Ud is split with respect to
the orderingsE0, E1, . . . , EdandE∗

0, E
∗
1, . . . , E

∗
d . We observe�1,�2, . . . ,�d is the corresponding split

sequence forA,A∗. We now consider when is the pairA,A∗ a Leonard pair. We begin with a remark.

Lemma 6.2.With reference to Definition6.1,the following(i), (ii) are equivalent.

(i) The pairA,A∗ is a Leonard pair.
(ii) The sequence(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system.

Proof. We mentioned there exists a decomposition ofKd+1 which is split with respect to the orderings
E0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . Therefore, Lemma 5.9 applies and the result follows.�

We now give a matrix version of Theorem 5.1.

Theorem 6.3. Referring to Definition6.1,the following(i), (ii) are equivalent.

(i) The pairA,A∗ is a Leonard pair.
(ii) There exists an invertibleG ∈ Matd+1(K) and there exists nonzero�i ∈ K (1�i�d) such that

G−1AG=




�d 0
1 �d−1

1 �d−2
· ·

· ·
0 1 �0



, G−1A∗G=




�∗
0 �1 0

�∗
1 �2

�∗
2 ·

· ·
· �d

0 �∗
d



.

Suppose(i), (ii) hold. Then the sequence�1,�2, . . . ,�d is the split sequence forA,A
∗ associated with

the orderingsEd,Ed−1, . . . , E0 andE∗
0, E

∗
1, . . . , E

∗
d .

Proof. (i) ⇒ (ii ) The sequence(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard system by Lemma 6.2. By

Theorem 5.1 there exists a decomposition ofKd+1 which is split with respect to the orderingsEd,Ed−1,
. . . , E0 andE∗

0, E
∗
1, . . . , E

∗
d . Let V0, V1, . . . , Vd denote this decomposition. By the definition of a split

decomposition we have(A− �d−iI )Vi = Vi+1 for 0�i�d − 1 and(A− �0I )Vd = 0. Moreover(A∗ −
�∗
i I )Vi = Vi−1 for 1�i�d and(A∗ − �∗

0I )V0 = 0. For 0�i�d let vi denote a nonzero vector inViand
observev0, v1, . . . , vd is abasis forKd+1.Wenormalize thevi so that(A−�d−iI )vi=vi+1 for 0�i�d−1.
Let�1,�2, . . . ,�d denote thesplit sequence forA,A

∗with respect to theorderingsEd,Ed−1, . . . , E0 and
E∗
0, E

∗
1, . . . , E

∗
d .Then�i �= 0(1�i�d)andmoreover(A∗−�∗

i I )vi=�ivi−1 (1�i�d), (A∗−�∗
0I )v0=0.

Let G denote the matrix in Matd+1(K) which has columni equal tovi for 0�i�d. We observeG is
invertible. Moreover, the matricesG−1AG andG−1A∗G have the form shown above.
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(ii ) ⇒ (i) We show(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard system. In order to do this we apply

Theorem 5.1. In the paragraph after Definition 6.1 we mentioned there exists a decomposition ofKd+1
which is split with respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . Therefore, Theorem

5.1(i) holds. We show Theorem 5.1(ii) holds. For 0�i�d let vi denote columni of G and observe
v0, v1, . . . , vd is a basis forKd+1. From the form ofG−1AGwe find(A−�d−iI )vi=vi+1 for 0�i�d−1
and (A − �0I )vd = 0. From the form ofG−1A∗G we find (A∗ − �∗

i I )vi = �ivi−1 for 1�i�d and
(A∗ − �∗

0I )v0=0. For 0�i�d letVi denote the subspace ofKd+1 spanned byvi . ThenV0, V1, . . . , Vd is
a decomposition ofKd+1. Also (A− �d−iI )Vi = Vi+1 for 0�i�d − 1 and(A− �0I )Vd = 0. Moreover
(A∗−�∗

i I )Vi=Vi−1 for 1�i�d and(A∗−�∗
0I )V0=0.ApparentlyV0, V1, . . . , Vd is split with respect to

the orderingsEd,Ed−1, . . . , E0 andE∗
0, E

∗
1, . . . , E

∗
d . Now Theorem 5.1(ii) holds; applying that theorem

we find(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard system. In particularA,A∗ is a Leonard pair.

Assume (i), (ii) both hold. From the proof of(ii )⇒ (i)we find that for 1�i�d,�i is the eigenvalue of
(A− �d−i+1I )(A∗ − �∗

i I ) associated withVi . Therefore�1,�2, . . . ,�d is the split sequence forA,A
∗

associated with the orderingsEd,Ed−1, . . . , E0 andE∗
0, E

∗
1, . . . , E

∗
d . �

We now give a matrix version of Theorem 5.2.

Theorem 6.4. Referring to Definition6.1,the following(i), (ii) are equivalent.

(i) The pairA,A∗ is a Leonard pair.
(ii) There exists an invertibleH ∈ Matd+1(K) such that

H−1AtH = A, H−1A∗tH = A∗.

Proof. (i) ⇒ (ii ) By Theorem 5.8 there exists an antiautomorphism † of Matd+1(K) such thatA† = A
andA∗† = A∗. Since † is an antiautomorphism there exists an invertibleH ∈ Matd+1(K) such that
X†=H−1XtH for allX ∈ Matd+1(K). SettingX=A we haveH−1AtH =A. SettingX=A∗ we have
H−1A∗tH = A∗.
(ii ) ⇒ (i) We show(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system. In order to do this we apply
Theorem 5.2. In the paragraph after Definition 6.1 we mentioned there exists a decomposition ofKd+1
which is split with respect to the orderingsE0, E1, . . . , Ed andE∗

0, E
∗
1, . . . , E

∗
d . Therefore, Theorem

5.2(i) holds. Let †: Matd+1(K) → Matd+1(K) denote the map which satisfiesX† = H−1XtH for all
X ∈ Matd+1(K). Then † is an antiautomorphism of Matd+1(K) such thatA† = A andA∗† = A∗. Now
Theorem 5.2(ii) holds; applying that theorem we find(A;A∗; {Ei}di=0; {E∗

i }di=0) is a Leonard system. In
particularA,A∗ is a Leonard pair. �

7. Remarks

Referring to Definition 6.1, presumably condition (ii) of Theorems 6.3 or 6.4 can be translated into a
condition on the entries ofA andA∗. We obtained such a condition in[13]; we cite it here for the sake of
completeness.



P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437–452 451

Theorem 7.1(Terwilliger [13, Corollary 14.2]). With reference to Definition6.1, the pairA,A∗ is a
Leonard pair if and only if there exists nonzero�i ∈ K (1�i�d) such that(i)–(iii) hold below.

(i) �i = �1
∑i−1
h=0

�h−�d−h
�0−�d

+ (�∗
i − �∗

0)(�i−1 − �d), (1�i�d).
(ii) �i = �1

∑i−1
h=0

�h−�d−h
�0−�d

+ (�∗
i − �∗

0)(�d−i+1 − �0), (1�i�d).
(iii) The expressions

�i−2 − �i+1
�i−1 − �i

,
�∗
i−2 − �∗

i+1
�∗
i−1 − �∗

i

are equal and independent of i for2�i�d − 1.
Suppose(i)–(iii) hold. Then�1,�2, . . . ,�d is the split sequence forA,A

∗ with respect to the orderings
Ed,Ed−1, . . . , E0 andE∗

0, E
∗
1, . . . , E

∗
d .
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