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Abstract

Let K denote a field and l&tdenote a vector space ouvigmwith finite positive dimension. We consider an ordered
pair of linear transformationg : V. — V andA* : V — V that satisfy both conditions below:

(i) There exists a basis farf with respect to which the matrix representiAds irreducible tridiagonal and the
matrix representing\* is diagonal.

(i) There exists a basis for with respect to which the matrix representiag is irreducible tridiagonal and the
matrix representing is diagonal.

We call such a pair Beonard paironV. Referring to the above Leonard pair, itis known there exists a decomposition
of Vinto a direct sum of one-dimensional subspaces, on whiabts in a lower bidiagonal fashion add acts in

an upper bidiagonal fashion. This is called #pit decompositionin this paper, we give two characterizations of

a Leonard pair that involve the split decomposition.
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1. Leonard pairs and Leonard systems

We begin by recalling the notion oflzeonard pair[6,12—18] We will use the following terms. Let
X denote a square matrix. Thehis calledtridiagonal whenever each nonzero entry lies on either the
diagonal, the subdiagonal, or the superdiagonal. Assxiisetridiagonal. TherX is calledirreducible
whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.We
now define a Leonard pair. For the rest of this pdjgevill denote a field.

Definition 1.1 (Terwilliger [13, Definition 1.1). LetV denote a vector space ovErwith finite positive
dimension. By d_eonard paironV, we mean an ordered pair of linear transformatiansyV — V and
A* 1V — V that satisfies both (i) and (ii) below.

(i) There exists a basis fof with respect to which the matrix representifgs irreducible tridiagonal
and the matrix representing* is diagonal.

(i) There exists a basis fof with respect to which the matrix representiag is irreducible tridiagonal
and the matrix representinygis diagonal.

Note 1.2. According to a common notational conventidri denotes the conjugate transposetofVe
are not using this convention. In a Leonard p&jrA* the linear transformation& and A* are arbitrary
subject to (i) and (ii) above.

Our use of the name “Leonard pair” is motivated by a connection to a theorem of L@npr@60}

[9], which involves they-Racah polynomialfl]; [3, p. 162]and some related polynomials of the Askey
schemd7]. This connection is discussed[it3, Appendix Aland[15, Section 16]Seg4,5,8,10,19For
related topics.

In this paper, we obtain two characterizations of a Leonard pair. These characterizations are based
on a concept which we call treplit decompositionWe will formally define the split decomposition in
Section 2, but roughly speaking, this is a decomposition of the underlying vector space into a direct sum
of one-dimensional subspaces, with respect to which one element of the pair acts in a lower bidiagonal
fashion and the other element of the pair acts in an upper bidiagonal fashjp8] we showed that every
Leonard pair has a split decomposition. In the present paper, we consider a pair of linear transformations
that is not necessarily a Leonard pair. We find a necessary and sufficient condition for this pair to have a
split decomposition. Our main result along this line is Theorem 4.1. Now assuming the pair has a split
decomposition, we give two necessary and sufficient conditions for this pair to be a Leonard pair. These
conditions are stated in Theorems 5.1 and 5.2. These conditions are restated for a more concrete setting
in Theorems 6.3 and 6.4.

When working with a Leonard pair, it is often convenient to consider a closely related and somewhat
more abstract concept called.aonard systenin order to define this we recall a few more terms. det
denote a nonnegative integer. Let WMat(IK) denote thé<-algebra consisting of adl+ 1 byd 41 matrices
which have entries ifi. We index the rows and columns by1)..., d. Let k?+1 denote thek-vector
space consisting of all + 1 by 1 matrices which have entrieslit We index the rows by @, ..., d.

We view k?*1 as a left module for Mat, 1(I) under matrix multiplication. We observe this module is
irreducible. For the rest of this paper we lgtdenote ak-algebra isomorphic to Mat 1 (). When we
refer to an«/-module we mean a lefZ7-module. LetV denote an irreducible7-module. We remark that
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Vis unique up to isomorphism a#-modules and that has dimensiod + 1. Letvg, v1, ..., vz denote
a basis folv. For X € .7 and forY € Mat,;11(IK), we sayY represents X with respect tg, v1, ..., vg
wheneverXv; = Y% v;;v; for 0<j<d. LetA denote an element of. We sayA is multiplicity-free
whenever it had + 1 distinct eigenvalues ik. AssumeA is multiplicity-free. Letfg, 61, . .., 6; denote
an ordering of the eigenvaluesAfand for 0<i <d put
£ A—0 ,1’
0<j<d 0;i —0;
J#i

wherel denotes the identity of/. We observe (INE; =0; E; (0<i<d), (i) E;E; =0;; E; (0<i, j<d),
(i) Y9 oE; =1, (iv) A= Y9 0, E;. LetZ denote the subalgebra of generated by. Using (i)—(iv)
we find Eg, E1, ..., E; is a basis for thé<-vector spacez. We call E; the primitive idempotenof A
associated withd; . It is helpful to think of these primitive idempotents as follows. Observe

V=EoV+E1V+---+ E;V (direct sun.

For 0<i<d, E;V is the (one dimensional) eigenspaceAdh V associated with the eigenvaldg and

E; acts orV as the projection onto this eigenspace. We remark that the sequ€n@e i <d} is a basis

for the [<-vector space and thatﬂf:O(A — 0;1)=0. By aLeonard pair in« we mean an ordered pair
of elements taken fromv which act orV as a Leonard pair in the sense of Definition 1.1. We now define
a Leonard system.

Definition 1.3 (Terwilliger [13, Definition 1.4). By aLeonard systerim .«/, we mean a sequenca; A*;
{Ei}_o: {EF}_) which satisfies (i)—(v) below.

(i) EachofA, A* is a multiplicity-free element af7.

(i) Eo, E1, ..., Egis an ordering of the primitive idempotentsAf
(i) E§, ET, ..., Ejis an ordering of the primitive idempotents 4f.
(iv)
s x| 0 if i —jl>1 ..
El-AEj_{ £0 fli—j|=1 0«1, j<d).
(v)
e )0 if i —jl>1 .
E;AE; = { 20 i li—jl=1 (0<i, j<d).

We comment on how Leonard pairs and Leonard systems are related. In the following dissussion
denotes an irreduciblez-module. Let(A; A*; {E; }f’zo; {E;“}f’zo) denote a Leonard system i#. For
0<i <d letv; denote a nonzero vector i V. Then the sequenag, vy, ..., vy is a basis fov which
satisfies Definition 1.1(ii). For i <d let v} denote a nonzero vector ii’ V. Then the sequence
v, vy, .., vy is a basis fol which satisfies Definition 1.1(i). By these comments the gain* is a
Leonard pair ineZ. Conversely lefl, A* denote a Leonard pair itr. By [13, Lemma 1.3ach ofd, A* is
multiplicity-free. Letvo, v1, . .., vy denote a basis f&f which satisfies Definition 1.1(ii). ForQi <d the
vector; is an eigenvector fok; let E; denote the corresponding primitive idempotent.dggt], ..., v}
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denote a basis faf which satisfies Definition 1.1(i). ForQi <d the vecton is an eigenvector fot*; let
E; denote the corresponding primitive idempotent. ThénA*; (E;}%_; (EF}9_,) is a Leonard system
in <. In summary we have the following.

Lemma 1.4. Let A andA* denote elements i¥. Then the paitA, A* is a Leonard pair in< if and only
if the following(i) and(ii) hold.

() Each ofA, A* is multiplicity-free

(i) There exists an orderinfo, E1, ..., E4 of the primitive idempotents of A and there exists an ordering
Eg, E7. ..., E; of the primitive idempotents @f* such that(A; A*; {Ej}_o; {EF}) is aLeonard
system in«/.

2. The split decomposition

In [13] we introduced the split decomposition for Leonard systems arj@iShwe discussed this
decomposition in detail. For our present purposes it is useful to define the split decomposition in a more
general context. We will refer to the following set-up.

Definition 2.1. Let A and A* denote multiplicity-free elements iw. Let Eg, E1, ..., E; denote an
ordering of the primitive idempotents éfand for 0<i <d let 0; denote the eigenvalue éffor E;. Let

Eg, E], ..., E} denote an ordering of the primitive idempotentsAif and for 0<i <d let 0} denote
the eigenvalue ofA* for E}. We letZ (respectivelyZz*) denote the subalgebra of generated byA

(respectivelyd™*). We letV denote an irreduciblez-module.

With reference to Definition 2.1, by @decompositiorof V we mean a sequené&, Uy, ..., U; con-
sisting of one-dimensional subspace¥auch that

V=Ug+Ui+ ---+U; (direct sum.

Definition 2.2. With reference to Definition 2.1, Iéfp, U1, . .., U; denote a decomposition @f We say

this decomposition isplit (with respect to the orderingsy, E1, ..., Eg andEj, E7, ..., E)) whenever
both
(A-0;DU; =U;jy1 0<i<d—-1), (A—-041)Us=0, 1)
(A*=0'DHU; =U;—1 (1<i<d), (A" —03)Up=0. 2)

Later in this paper we will obtain two characterizations of a Leonard system which involve the split
decomposition. For the time being we consider the existence and uniqueness of the split decomposition.
We start with uniqueness.

Lemma 2.3. With reference to Definitio.1,the following(i), (i) hold.

(i) Assume there exists a decompositin Uy, ..., Uy of V which is split with respect to the orderings
Eo, E1,..., Eq and E§, EX, ..., E5. ThenU; = [[,_6(A — O4ESV and U; = [[f_;.1(A* —
0;1)E,V for 0<i <d.



P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437—-452 441

(i) There exists at most one decomposition of V which is split with respect to the ordégings . . ., E4
andEg, EJ, ..., E}.

Proof. (i) From the equation on the right in (2) we findy = E3V. Using this and (1) we obtain
U = ]_[;;10(A — 0,1)EgV for 0<i <d. From the equation on the right in (1) we fibgy = E; V. Using
this and (2) we obtaity; = [1¢_, 4 (A* — 651)E,V for 0<i <d.

(i) Immediate from (i) above. O

We turn our attention to the existence of the split decomposition. In Section 4, we will give a necessary
and sufficient condition for this existence. We will use the following result.

Lemma 2.4. With reference to Definitio@.1, assume there exists a decompositigy) U1, ..., U; of
V which is split with respect to the ordering®, E1, ..., E; and Eg, E7, ..., E}. Then the following
()—(v) hold for0<i <d.

() YheoUn =)o A"ESV.
(i) > o Un=2 =0 E;V.
(i) Y0, Up =90 A" E,V.
(V) Yot Un =5 EnV.
(V) Ui = (EZV + EXV + -+ EFV) N (E;V + Ei1V + - + EqV).

Proof. (i) For 0<j<d we haveU; = [T/Z5(A — 0,1 EEV by Lemma 2.3() sd/; € 31 _ AME3V.
Apparently Y, _oUsr S Y j,_oA"EZV. In this inclusion the sum on the left has dimension- 1
sincelUy, Uy, ..., U is a decomposition. The sum on the right has dimension at mest. There-
foreY ) _oUn =Y o AMESV.

(ii) For 0< j <d we have[ ]/ _,(A*— 05 1)U;=0by (2)soU; € Y i _o E;V.Apparently}, _oU; <
Y h—o E; V. Inthis inclusion each side has dimension 1 so equality holds.

(i) Similar to the proof of (i) above.

(iv) Similar to the proof of (ii) above.

(v) Combine (ii) and (iv) above. O

3. Some products

Our next goal is to display a necessary and sufficient condition for the existence of the split decompo-
sition. With reference to Definition 2.1, consider the products

EfAE%, EA*E; (0<i, j<d).

Our condition has to do with which of these products is 0. In order to motivate our result we initially
consider just one of these products.

Lemma 3.1. With reference to DefinitioR.1, for 0<i <d let v} denote a nonzero vector ¥V and
observevg, vy, ..., v} is a basis for V. Let B denote the matrixNhat,, 1 () which represents A with



442 P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437—-452

respect to this basjso that
d
AVS =Z Bijvi (0<j<d). (3)

Then for0<i, j <d the following are equivalenti) EfAE" =0, (i) Bi; = 0.

Proof. Let the integers, j be given. Observe& vy = o,,v] for 0<r, s <d. By this and (3) we find
EAE’V is spanned bys;;v;". The result follows. O

In the next lemma we consider a certain pattern of vanishing products amoAgAte;. We will use
the following notation. Let. denote an indeterminate and I€f4] denote thek-algebra consisting of
all polynomials ini which have coefficients ifx. Let fp, f1, ..., f4 denote a sequence of polynomials
taken fromik[1]. We say this sequencegsadedwheneverf; has degree exactlyfor 0<i <d.

Lemma 3.2. With reference to DefinitioR.1,the following(i)—(iii) are equivalent

0 ifi—j>1

£0 ifi—j=1

(i) There exists a graded sequence of polynomfalsfi, ..., fu taken fromiK[/] such thatEV =
fi(A)EZV for 0<i<d.

(iii) For0<i<d,

0] EfAE] = (0<i, j<d).

i i
Z E,’jV:ZA”Egv. (4)
h=0 h=0

Proof. (i) = (ii) For 0<i<d letv} denote a nonzero vector ii’V and observey, vy, ..., v} is a
basis forV. Let B denote the matrix in Mat. 1(IK) which representé with respect to this basis. By
Lemma 3.1,

~_Jo ifi—j>1 -
B’J_{#O ifi—j=1 (0<i, j<d). (5)

Let fo, f1, ..., fq denote the polynomials iR[4] which satisfy fo = 1 and

Jj+1
Afi=_ Bijfi (0<j<d—1). )
i=0
We observef; has degree exacthyffor 0<i <d so the sequencs, fi, ..., fq is graded. Comparing (3)

and (6) in light of (5) we find}" = fi (A)vg for 0<i <d. It follows E¥V = f;(A)E§V for 0<i <d.

(i) = (iii) For 0< j <d we haveE;’.‘V = fj(A)E3V.The degree of; isj soE;‘V C Zi:o AhEg;V.
ApparentIyZ§l=0 E;V C Z}FO A”Egv. In this inclusion the sum on the left has dimensieh 1 and
the sum on the right has dimension at most1. Therefore)),_o E;V = Y, _o A"E§V.
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(iii) = (i) For 0<i <d let V; denote the subspace on the left or right in (4). From the right-hand side
of (4) we findV; + AV; = Vi1 for 0<i <d — 1. From the left-hand side of (4) we findV, = 0 for
0<s <r<d. Leti, j denote integers0<i, j<d) and first assume — j > 1. We showEAE"; = 0.
ObserveE;V € V;andAV; C V1 SOAETV C Vj1. However,EVj 1 = 0 sincei — j >1s0
E;"AEij = 0. It follows E;‘AEj = 0. Next we assume¢ — j =1 and showE;“AEj # 0. Suppose
EAE’;=0.Then by our previous remarkg A E}, =0 for 0</ < j. By this and since/; = Y _oErV
we findEFAV ;=0. Howevery;=V;+AV ;andE;V;=0soE}V;=0. This contradicts the construction
SOEFAE; #0. O

Corollary 3.3. With reference to Definitio.1, let vy denote a nonzero vector iijV and consider
the K-linear transformation fromz to V which sends X t&vg for all X € 2. Assume the equivalent
conditions(i)—(iii) hold in Lemm&3.2.Then this linear transformation is an isomorphism

Proof. Since thek-vector spaces andV have the same dimension it suffices to show the linear trans-
formation is surjective. Setting= d in (4) we findV = 2vg. Therefore, the linear transformation is
surjective. O

Replacing(A; A*; {Ei}_ o {EF o) by (A% As {EZ% 3 0; {Eqa—i}¢_,) in Lemma 3.2 and Corollary
3.3 we routinely obtain the following results.

Lemma 3.4. With reference to Definitio@.1,the following(i)—(iii) are equivalent

0 if j—i>1

#0 if j—i=1

(i) There exists a graded sequence of polynomjglsf;, ..., f; taken fromi<[4] such thatE; vV =
[ (A")EqV for 0<i<d.

(iii) For 0<i<d,

(i)EiA*E,:{ (0<i, j<d).

d d—
Z E,V = i A E,V.
h=i h=0

Corollary 3.5. With reference to DefinitioR.1, let v; denote a nonzero vector iBi; V and consider
the IK-linear transformation fron¥* to V which sends X t& v, for all X € 2*. Assume the equivalent
conditions(i)—(iii) hold in Lemma3.4.Then this linear transformation is an isomorphism

4. The existence of the split decomposition
We now display a necessary and sufficient condition for the existence of the split decomposition.

Theorem 4.1. With reference to DefinitioR.1, the following(i), (ii) are equivalent
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(i) There exists a decomposition of V which is split with respect to the ordefipggs, ..., E; and
E§, EY, ..., E}.
(i) Both
Y ifi—j>1 ..
T N if j—i>1 .

Proof. (i) = (ii) By assumption there exists a decompositiégfn Uy, ..., U; of V which is split
with respect to the orderingBo, E1, ..., Eq and E§, Ef, ..., E. For 0<i <d we haveY }_o Uy =
Sh_oAMESV by Lemma 2.4() andy ), _o Uy = Y h_o EfV by Lemma 2.4(ji) soY _o E}V =
Z,'l 0AhE*V This gives Lemma 3.2(iii). Applying that lemma we obtain (7). FetiG<d we have
Zh Uh S 9ZE A*E,v by Lemma2.4(iii)and " _, U,=Y"¢_. E,VbyLemma2.4(iv)sd }_; E,V
= h A*h E4V. This gives Lemma 3. 4(|||) Applying that lemma we obtain (8).

(i) :> (i) For 0<i <d we definer; = ]_[ o (A —0,1). We observeg, 11, ..., 74 is a basis for théx-
vector spacer. Let v denote a nonzero vectorEgV Observe Lemma 3.2(i) holds by (7) so Corollary
3.3 applies; by that corollary; vy (0<i<d) is a basis folV. We definelU; = Spariz;vy) for 0<i <d
and observé/p, Uy, ..., U, is a decomposition of. We show this decomposition is split with respect to
Eo, E1,..., EgandEg, ET, ..., E}. To do this we show the sequentg, Us, .. ., Uy satisfies (1) and
(2). Concerning (1), fromthe constructioh—6; I)t;=7; 41 for0<i <d—1and(A—0,1)t,=0. Applying
both sides of theseequationsipwe find (A — 0;1)U; = U;;1 for 0<i<d — L and(A — 0,1)Us; =0
We have now shown (1). Concernlng (2), this will follow if we can show

(@) (A* =07 HU; < Z o U for 0<i <d,

(b) (A* — 07 1HU; < Zh:,_th for 1<i<d,

(c) (A* — 07 HU; # 0 for 1<i <d.

We begin with (a). For & j <d the elements{rh|0<h <j} and the elementsA”|0<h < j} span
the same subspace of. Thereforezh oUn = Zh oA"E}V. We mentioned Lemma 3.2(i) holds
so Lemma 3.2(jii) holds; therefor® ] _o E;V = Y1 _ A"EEV s0 Y1 _ Uy = Y] _o E;V. Observe
(A* =0 DY) o E}V = S E;V for 0<i<d. Combining these comments we fiod* — 07 1) U; €

;f:%) Uj, for 0<i <d.We now have (a). Next we prove (b). From the construction, for & d we have
[Th—; (A = 0aD)t; =0 so[[j_; (A — 0,1)U; = O. From this we findJ; < Yfi_; E; V. Apparently
Y9 U, € Y¢_ E,V for 0<i<d. By this and sinceJo, Ui, ..., Uy is a decomposition we find
Yo Un=Yf_; ExV for 0<i<d.From (8) we findA*E;V € Yi_,_ E;V for 1< j <d. Therefore
(A* — 9’;1)22:]. E,V C zg:j_l E;V for 1< j<d. From these comments we fiid* — 0% 1)U, <
Zizj;l Uyfor 1< j <d.We now have (b). Next we show (c). Suppose there exists an intébei <d)
suchthatA*—071)U;=0. We assumis maximal subjectto this. We obtain a contradiction as follows. For
i<j<dwefind(A* — QjI)UJ C U;j_1 by (a), (b). Inthis inclusion the left-hand side is nonzero and the

right-hand side has dimension 1 so we have equality. We mentioned éarigy; 1)U, =0soU,;=E V.
ApparentlyU; = [Ti_;,1(A* — 051V E4V for i <j<d. In particularU; = [T7_; 1 (A* — 05 1) EqV.
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Combining this with(A* — 07 1)U; = 0 we obtain 0= ]_[Z:i (A* — 0;1)E;V. Letv, denote a nonzero
vector inE,V and observe & [¢_, (A* — 0% I)v,. This is inconsistent with Corollary 3.5 and the fact

that 0#£ ]_[;f:l. (A* — 07 1).We now have a contradiction and (c) is proved. Combining (a)—(c) we obtain
(2). We have shown the decompositibp, Uy, ..., U, satisfies (1), (2). Applying Definition 2.2 we find
Uo, U1, ..., Uy is split with respect to the ordering%, E1, ..., EgandEg, E, ..., E};. O

5. Two characterizations of a Leonard system

In this section, we obtain two characterizations of a Leonard system, both of which involve the split
decomposition. We will first state the characterizations, then prove a few lemmas, and then prove the
characterizations. Our first characterization is stated as follows.

Theorem 5.1. With reference to Definitio2.1, the sequenceéA; A*; {Ei}f’ZO; {E;“}j’zo) is a Leonard
system if and only if botf), (i) hold below

(i) There exists a decomposition of V which is split with respect to the ordefipgg, ..., E; and
 Eo By, By N o
(i) There exists a decomposition of V which is split with respect to the ordekings,_1, ..., Eo and
E5 EZ, ..., E%.
0 12> d

In order to state our second characterization we recall a definitiom..Let — .« denote any map. We
call ¢ anantiautomorphisnof .« whenevem is an isomorphism ok-vector spaces ankY)’ =Y’ X°
forall X, Y € 7. For example assum& = Mat,+1(K). Thene is an antiautomorphism a¥ if and only
if there exists an invertibl® € .«# such thatX? = R~1X'R for all X € ., wheret denotes transpose.
This follows from the Skolem—Noether Theoré¢bi, Corollary 9.122]

We now state our second characterization of a Leonard system.

Theorem 5.2. With reference to DefinitioR.1, the sequenceA; A*; {E;}4_q; {EF}Y_.) is a Leonard
system if and only if botfi), (i) hold below

() There exists a decomposition of V which is split with respect to the ordefpgE;, ..., E; and
E§, ET. ... E}.
(i) There exists an antiautomorphishof .7 such thatAT = A and A*T = A*

We now prove some lemmas which we will use to obtain Theorems 5.1 and 5.2. We have a preliminary
remark. With reference to Definition 2.1, we consider the following four conditions:

e O ifi—j>1 .
e O i1 o

gary={% 112171 o<ii<o, (10)
0 ifi—j>1 .
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0 ifj—i>1

EA*E; ={

We observe A; A*; {E,-}f’:o; {Ei*}?zo) is a Leonard system if and only if each of (9)—(12) holds.

Lemma 5.3. With reference to Definitio.1,assume condition®) and(10) hold. ThenA, Ej together
generate«/. MoreoverA, A* together generate/.

Proof. Examining the proof of15, Lemma 3.1}ve find that the element$” EJA* (0<r, s <d) form a
basis for theiK-vector space. It follows thatA, Ej together generate’. The elementst, A* together
generate# sinceE is a polynomial inA*. [

Lemma 5.4. With reference to Definitio2.1,assume condition®) and (10) hold. Then there exists a
unique antiautomorphisrhof .« such thatAT = A and A*" = A*. MoreoverX ™" = X forall X € ..

Proof. Concerning the existence of 1, fokG <d let v} denote a nonzero element Bf V and recall
v, vy, ..., vyisabasisfoW. ForX € .o/ let X" denote the matrix in Mat, 1 (i) which representX with
respecttothe basig, vy, ..., v;. We observe: ./ — Mat,1(K) is anisomorphism dk-algebras. We
abbreviateB = A” andB* = A*". We observe is irreducible tridiagonal an@#* = diag0g. 07, ..., 03).
Let D denote the diagonal matrix in Mat; (i) which hasdi entry

Dy = Bo1B12--- Bi—1,i

i= (0<i<d).
B1oB21--- Bii—1

It is routine to verify D~1B'D = B. Each of D, B* is diagonal soDB* = B*D; also B* = B* so
D~1B* D = B*. Leto: Maty,1(K) — Maty,1(K) denote the map which satisfi&§ = D~1x’ D for

all X € Mat;1(I<). We observe is an antiautomorphism of Mat 1 () such thatB® = B andB*? = B*.
We define the map 1./ — .« to be the composition T=bsb—1. We observe t is an antiautomorphism
of « such thatAT = A andA*T = A*. We have now shown there exists an antiautomorphisme# sfich
thatAT = A andA*T = A*. This antiautomorphism is unique sinde A* together generate’. The map

X — X' is an isomorphism of<-algebras frome to itself. This map is the identity sincé™ = A,
A*TT = A* and sinceA, A* together generate. [0

Lemma 5.5. With reference to DefinitioB.1,assume there exists an antiautomorphisafi .« such that
AT = A and A*T = A*. ThenE;r = E; andE?‘Jr = E¥ for 0<i <d.

Proof. RecallE; (respectivelyE) is a polynomial inA (respectivelyA™) for 0<i<d. 0O

Lemma 5.6. With reference to DefinitioR.1,assume there exists an antiautomorphisafi .« such that
AT=AandA*T=A*. Thenfor0<i, j <d, (i) EfAE% =0if and only ifE* AE} =0;and(ii) E;A*E; =0
if and only if E;A*E; = 0.

Proof. By Lemma 5.5 and since t is an antiautomorphism,

(E;*AEf;)Tz E*AE} (0<i,j<d).
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Assertion (i) follows since .7 — .o/ is a bijection. To obtain (ii) interchange the rolesfodndA* in
the proof of (i). O

Lemma5.7. With reference to DefinitioR.1,assume at least three (8)—(12)hold. Then each of9)—(12)
hold; in other words(A; A*; {E;}4_q; {Ef},) is a Leonard system

Proof. Interchangincd andA* if necessary, we may assume without loss of generality that (9) and (10)
hold. By Lemma 5.4 there exists an antiautomorphism #/0$uch thatAT = A and A*T = A*. By
assumption at least one of (11), (12) holds. Combining this with Lemma 5.6 we find (11), (12) both hold.
The result follows. O

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Theorem 4.1 we find (i) holds if and only if each of (9), (12) holds. Applying
Theorem 4.1 again, this time with; A*; (E;}¢_q; {EF}9_o) replaced by(A; A*; {Es—i}_o; {EF ),

we find (ii) holds if and only if each of (9), (11) holds. Suppdge A*; {Ei}fzo; {E;‘}f:o) is a Leonard
system. Then each of (9)—(12) holds. In particular each of (9), (11), (12) holds so (i), (ii) hold by our
above remarks. Conversely suppose (i), (ii) hold. Then each of (9), (11), (12) holds. At least three of
(9)-(12)hold sqA; A*; {Ei}flzo; {E;k}l?’zo) is a Leonard system by Lemma 5.70]

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. First assume&A; A*; {Ei}fzo; {E;“}?:O) is a Leonard system. Then (i) holds by
Theorem 5.1 and (ii) holds by Lemma 5.4. Conversely assume (i), (ii) hold. Combining (i) and Theorem
4.1 we obtain (9), (12). Combining this with (ii) and using Lemma 5.6 we obtain (10), (11). Now each of
(9)—(12) holds s@A; A*; {E;}!_o; {E¥}Y_) is a Leonard system.O]

We would like to emphasize the following fact.

Theorem 5.8. Let A, A* denote a Leonard pair in/. Then there exists a unique antiautomorphisof
< such thatAT = A and A*T = A*. Moreoverx ™ = X forall X € .z.

Proof. SinceA, A*isaleonard pairthere existsanorderitg E1, . . ., E4 of the primitive idempotents

of Aand an orderingt§, E7, ..., Ej of the primitive idempotents ofA* such that(A; A*; {E,~}f’=0;
{E?}Ej:o) is a Leonard system. These orderings satisfy (9)—(12). In particular (9), (10) are satisfied so the
result follows by Lemma 5.4. O

We finish this section with a comment.

Lemma 5.9. With reference to DefinitioB.1,assume there exists a decomposition of V which is split with
respect to the orderingBo, E1, ..., Eq andEg, ET, ..., E. Then the followindi), (i) are equivalent

(i) The pairA, A* is a Leonard pair
(i) The sequenced; A*; {E;}!_q; {EF}Y_) is a Leonard system



448 P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437—-452

Proof. (i) = (ii) We assume there exists a decompositioviwhich is split with respect to the orderings
Eo, E1,..., Eqg and Ej, ET, ..., E}. Therefore, each of (9), (12) holds by Theorem 4.1. Siacel*
is a Leonard pair there exists an antiautomorphism #afuch thatA™ = A and A*T = A*. Applying
Lemma 5.6 we find each of (10), (11) holds. Now each of (9)—(12) holdd sd*; {E;}%_; (EF}9_y) is
a Leonard system.

(i) = (i) Clear. O

6. The two characterizations in terms of matrices

In this section, we restate Theorems 5.1 and 5.2 in terms of matrices. We first set some notation. With
reference to Definition 2.1, suppose there exists a decomposiialis, . . . , U, of V which is split with
respect to the orderingBo, E1, ..., Eg and Ej, E7, ..., E. Pick an integei (1<i<d). By (2) we
find (A* — 07 1)U; = U;—1 and by (1) we findA — 0; _11)U;_1 = U;. ApparentlyU; is an eigenspace
for (A — 0;_11)(A* — 07 1) and the corresponding eigenvalue is a nonzero elemeiit bét us denote

this eigenvalue by,;. We call4, ¢, ..., @, thesplit sequencéor A, A* with respect to the orderings
Eo, E1, ..., Egand E(, ET, ..., E}. The split sequence has the following interpretation. FQi & d
let u; denote a nonzero vector iy and recallug, u1, ..., u  is a basis folV. We normalize the:; so
that (A — 0; Nu; = u;+1 for 0<i <d — 1. With respect to the basig), u1, ..., ug the matrices which
represenf andA* are as follows.
90 0 96 P11 0
1 91 9?{ (05
k
A 1 6 ., AT %2
. . . (pd
0 1 64 0 0

Motivated by this we consider the following set-up.

Definition 6.1. Let d denote a nonnegative integer. lleand A* denote matrices in Mat 1 (K) of the
form

90 0 68 P1 0
1 01 07 @2
A= . 0'2 . A= 02 ,
. . . (pd
0 1 0, 0 0
where

0; # 05, 0 #05 ifi#j, (0<i,j<d),
¢; #0, (1<i<d).
We observeA (respectively A*) is multiplicity-free, with eigenvaluedy, 61, ..., 0; (respectively

0p, 07, ..., 03). For 0<i<d we let E; (respectivelyE}) denote the primitive idempotent fok
(respectivelyA®) associated with; (respectively?).



P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437—-452 449

We have some comments. With reference to Definition 6.1, for 9d let u; denote the vector in
K4+ which hasith entry 1 and all other entries 0. We obsemgeus, . . ., ug is a basis foic?*1, From
the form of A we have(A — 0;u; = u;+1 for 0<i<d — 1 and(A — 041)uy = 0. From the form of
A* we have(A* — 07 u; = ¢;u; 1 for 1<i <d and(A* — 0gl)ug = 0. For 0<i <d let U; denote the
subspace dak“*+! spanned by;. ThenUop, Uy, . .., U, is a decomposition dk?*1. This decomposition
satisfieg A — 0;1)U; = U; 1 for 0<i <d — L and(A — 041)Uy = 0. Similarly (A* — 07 1)U; = U; 1 for
1<i<d and(A* — 051)Up =0. In other words the decompositidiy, U, . .., Uy is split with respect to
the orderingsto, E1, ..., EqandEg, E7, ..., E). We observep,, ¢,, ..., ¢, is the corresponding split
sequence foA, A*. We now consider when is the pair, A* a Leonard pair. We begin with a remark.

Lemma 6.2. With reference to DefinitioB.1,the following(i), (ii) are equivalent

(i) The pairA, A* is a Leonard pair
(i) The sequenced; A*; {E;}_y; {E¥}9_) is a Leonard system

Proof. We mentioned there exists a decompositiofikéf which is split with respect to the orderings
Eo, E1, ..., EgandE(, ET, ..., E}. Therefore, Lemma 5.9 applies and the result follows.

We now give a matrix version of Theorem 5.1.

Theorem 6.3. Referring to Definitior6.1,the following(i), (ii) are equivalent

(i) The pairA, A* is a Leonard pair
(i) There exists an invertiblé € Mat,1(K) and there exists nonzery € K (1<i <d) such that

0, 0 05 1 0

1 04-1 07 ¢z

G 1AG = 1 fa2 . GlA* G = 0
. . . ¢d
0 1 6o 0 0

Supposéi), (i) hold. Then the sequengg, ¢-, ..., ¢, is the split sequence for, A* associated with
the orderingsEy, Eq—1, ..., EpandEg, ET, ..., E}.

Proof. (i) = (ii) The sequenceéA; A*; {El-}f’:O; {E;“}f’zo) is a Leonard system by Lemma 6.2. By
Theorem 5.1 there exists a decompositiofk®f 1 which is split with respect to the orderingy, E;_1,
...,EpandEg, E], ..., E}. LetVp, V1,..., V, denote this decomposition. By the definition of a split
decomposition we haved — 0,—; 1) V; = V41 for 0<i<d — 1 and(A — 6pI)V,; = 0. Moreover(A* —

07 1)V; = Vi1 for 1<i <d and(A* — 051) Vo = 0. For 0<i <d let v; denote a nonzero vector inand
observay, v1, . . ., vgisabasis fokc?+1. We normalize the; so that A—04_; I vi=v;11for0<i <d—1.
Letoq, ¢y, ..., ¢, denote the split sequence oy A* with respectto the orderind;, E;—1, ..., Egand
Eg, E, ..., E}.Theng; # 0(1<i<d)andmoreovefA*—0:I)v;=¢;v;_1 (1<i<d), (A*—051)vo=0.
Let G denote the matrix in Mat 1(I<) which has column equal tov; for 0<i <d. We observes is
invertible. Moreover, the matrices8 1AG andG~1A*G have the form shown above.
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(i) = (i) We show(A; A% {E;}9_q; {EF}?_,) is a Leonard system. In order to do this we apply
Theorem 5.1. In the paragraph after Definition 6.1 we mentioned there exists a decompositfort of
which is split with respect to the orderind®, E1, ..., Eq and Ej, E7, ..., E}. Therefore, Theorem
5.1(i) holds. We show Theorem 5.1(ii) holds. Fox0<d let v; denote columr of G and observe
vo, V1, . .., vg IS abasis fot<¢*1, From the form ol "1 AG we find(A — 0,_; I )v; =v; 41 for0<i<d —1
and (A — 0gI)vg = 0. From the form ofG—1A*G we find (A* — 0¥ I)v; = ¢;v;_1 for 1<i<d and
(A* — 05T)vo=0. For 0<i <d let V; denote the subspacelsf 1 spanned by;. ThenVo, Vi, ..., V4is
a decomposition of?t1. Also (A — 04_;1)V; = Vi1 for 0<i <d — 1 and(A — 0pI)V,; = 0. Moreover
(A* =071 V; =V;_1for 1<i <d and(A* —031)Vo=0. ApparentlyVo, V1, ..., V4 is split with respect to
the orderings,, E41. ..., EoandEg, E7, ..., E). Now Theorem 5.1(ii) holds; applying that theorem
we find (A; A*; {E;}_o; {EF}9_) is a Leonard system. In particuldr, A* is a Leonard pair.

Assume (i), (ii) both hold. From the proof ¢f) = (i) we find that for ki <d, ¢; is the eigenvalue of
(A = 0g—i+1I)(A* — 071) associated witlV;. Thereforepy, ¢, . .., ¢, is the split sequence for, A*
associated with the orderinds;, E41, ..., EoandEg, E7, ..., E}. O

We now give a matrix version of Theorem 5.2.

Theorem 6.4. Referring to Definitior6.1,the following(i), (ii) are equivalent

(i) The pairA, A* is a Leonard pair
(i) There exists an invertibl& € Mat,1(K) such that

HIA'H=A, HAY"H=A"*

Proof. (i) = (ii) By Theorem 5.8 there exists an antiautomorphism 1 of;MgtK) such thatAT = A
and A*T = A*. Since t is an antiautomorphism there exists an invertitble Mat;1(K) such that
XT=H-1x"H forall X € Maty,1(K). SettingX = A we haveH 1A’ H = A. SettingX = A* we have
H1A¥H = A*,

(i) = (i) We show(A; A% {E;}9_q; {EF}?_,) is a Leonard system. In order to do this we apply
Theorem 5.2. In the paragraph after Definition 6.1 we mentioned there exists a decompositiar of
which is split with respect to the orderind®, E1, ..., Eq and Eg, E7, ..., E};. Therefore, Theorem
5.2(i) holds. Let T: Maty1(K) — Maty;1(K) denote the map which satisfi&d = H~1x* H for all
X € Maty,1(K). Then 1 is an antiautomorphism of Mat (i) such thatdT = A andA*T = A*. Now
Theorem 5.2(ii) holds; applying that theorem we find A*; {E;}{_; (E}}_,) is a Leonard system. In
particularA, A* is a Leonard pair. O

7. Remarks

Referring to Definition 6.1, presumably condition (ii) of Theorems 6.3 or 6.4 can be translated into a
condition on the entries & andA*. We obtained such a condition [h3]; we cite it here for the sake of
completeness.



P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437 —-452 451

Theorem 7.1 (Terwilliger [13, Corollary 14.2). With reference to Definitiol.1, the pair A, A* is a
Leonard pair if and only if there exists nonzefp € K (1<i <d) such that(i)—(iii) hold below

(i) i = d1 Y ji—o Bt 4+ (0F — 05)(0i-1 — 0a),  (1<i<d).

(i) ¢ = 01X ot 4+ (0F — 05)(Oa—iv1— 00).  (1<i<d).
(iii) The expressions

>k k
Oi—2—0iy1 07 5— 074
0_1—0; 0, —0

are equal and independent of i f@Ki <d — 1.
Supposéi)—(iii) hold. Thenpq, ¢», ..., ¢, is the split sequence for, A* with respect to the orderings
Eis.Eq_1,...,Ep andEg, I, e, E;

Acknowledgements

The author would like to thank Brian Curtin, Eric Egge, Mark MacLean, Arlene Pascasio, and Chih-wen
Weng for giving the manuscript a close reading and offering many valuable suggestions.

References

[1] R.Askey, J.A. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients osymbols, SIAM J.
Math. Anal. 10 (1979) 1008-1016.

[2] E.Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.

[3] G.Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge
University Press, Cambridge, 1990.

[4] Ya. Granovskii, I. Lutzenko, A. Zhedanov, Mutual integrability, quadratic algebras, and dynamical symmetry, Ann. Phys.
217 (1) (1992) 1-20.

[5] F.A.Grunbaum, L. Haine, &-version of a theorem of Bochner, J. Comput. Appl. Math. 68 (1-2) (1996) 103-114.

[6] T.Ito, K. Tanabe, P. Terwilliger, Some algebra relate#t@ndQ-polynomial association schemes, Codes and Association
Schemes (Piscataway NJ, 1999), DIMACS Ser Discrete Mathematics and Theoretical Computer Science, vol. 56, American
Mathematical Society, Providence RI, 2001, pp. 167-192.

[7] R. Koekoek, R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials gnanigdog, vol. 98-

17 of Reports of the faculty of Technical Mathematics and Informatics, Delft, The Netherlands, 1998. Available at
http://aw.twi.tudelft.nl/ ~koekoek/research.html

[8] T.H. Koornwinder, Askey—Wilson polynomials as zonal spherical functions om:t{®) quantum group, SIAM J. Math.

Anal. 24 (1993) 795-813.

[9] D. Leonard, Orthogonal polynomials, duality, and association schemes, SIAM J. Math. Anal. 13 (4) (1982) 656—663.

[10] H.Rosengren, Multivariable orthogonal polynomials as coupling coefficients for Lie and quantum algebra representations,
Centre for Mathematical Sciences, Lund University, Sweden, 1999.

[11] J.J. Rotman, Advanced Modern Algebra, Prentice Hall, Saddle River, NJ, 2002.

[12] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebra. Combin. 1 (4) (1992) 363—388.

[13] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl.
330 (2001) 149-203.

[14] P. Terwilliger, Two relations that generalize tigeSerre relations and the Dolan—Grady relations, in: Physics and
Combinatorics 1999 (Nagoya), World Scientific Publishing, River Edge, NJ, 2001, pp. 377-398.

[15] P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2) (2002) 827—-888.


http://aw.twi.tudelft.nl/~koekoek/research.html

452 P. Terwilliger / Journal of Computational and Applied Mathematics 178 (2005) 437 —-452

[16] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the otlfeR-theand the
L B-U B canonical form, preprint.
[17] P. Terwilliger, Introduction to Leonard pairs, J. Comput. Appl. Math. (OPSFA Rome, 2001), 153 (2) (2003) 463—-475.
[18] P. Terwilliger, An introduction to Leonard pairs and Leonard systernsk&isekikenkysho Kokyuroku, 1109 (1999)
67-79. Algebr. combin. (Kyoto, 1999).
[19] A.S. Zhedanov, “Hidden symmetry” of Askey—Wilson polynomials, Teoret. Mat. Fiz. 89 (2) (1991) 190-204.



	Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition
	Leonard pairs and Leonard systems
	The split decomposition
	Some products
	The existence of the split decomposition
	Two characterizations of a Leonard system
	The two characterizations in terms of matrices
	Remarks
	Acknowledgements
	References


