
Journal of Computational and Applied Mathematics 193 (2006) 51–64
www.elsevier.com/locate/cam

Approximation of discontinuous curves and surfaces with
tangent conditions

A. Kouibiaa,b,∗, A.J. López-Linaresc, M. Pasadasd

aDepartamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, Severo Ochoa s/n,
E-18071 Granada, Spain

bFaculté Polydisciplinaire de Taza, Morroco
cDepartamento de Matemática Aplicada, Escuela de Arquitectura Técnica, Universidad de Granada, Severo Ochoa s/n,

E-18071 Granada, Spain
dDepartamento de Matemática Aplicada, ETSI Caminos, C. y P., Universidad de Granada, Severo Ochoa s/n,

E-18071 Granada, Spain

Received 2 March 2004

Abstract

We deal with a smoothing method of constructing some discontinuous curve or surface from a Lagrangean data
and tangent conditions. Such method is based on the theory of smoothing variational splines conveniently adapted
to introduce the tangent condition and the discontinuity set. To show the efficiency of our method we finish this
work by a convergence result and some numerical and graphical examples.
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1. Introduction

The problem of construction of curves and surfaces which present some discontinuity from a set
of points (Lagrange data) and other of tangent spaces—known as tangent conditions—is frequently
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encountered in CAGD, Geology and other Earth Sciences. The work [9] can be considered as a prior
one on variational surface smoothing involving discontinuities. It proposes a general class of controlled-
continuity stabilizers that provides the necessary control over smoothness. In the context of computational
vision, these nonquadratic stabilizing functionals may be thought of as controlled-continuity constraints.

The smoothing variational spline is introduced in [3] by minimizing a quadratic functional in a Sobolev
space. Such functional contains several terms such that each one of them is controlled by a suitable
parameter, for example, in [6] we study an approximation problem of surfaces introducing some fairness
terms, which allows us to obtain a pleasing shape, meanwhile in [5] we add to such fairness terms some
tangent ones in order to observe numerically and graphically the influence of each constraint for the curve
case. Likewise, the authors in [8] present a smoothing method for fitting parametric surfaces from sets of
data points and tangent planes. In addition to papers [3–6,8] the corresponding original curves or surfaces
that are approximated do not present any discontinuity, in order to overcome this restriction, we allow in
this work to introduce such discontinuity and hence to extend the results of previous papers to cover a
wide set of data type.

We assume that a given differentiable function f in a subset �′ of an open set � ⊂ Rp with values in
Rn, 1�p < n�3, or its first partial derivatives presents discontinuity over a finite subset of points of �.
The problem is to construct a function � that approximates f in the given set of points and whose tangent
spaces associated to both � and f will be close to each other.

To achieve that, firstly using the work of Arcangéli, Manzanilla and Torrens [1], we assume a set of
conditions about �′ that allows to model the contingent discontinuities of f. Secondly, we present a method
of smoothness which results from adapting the theory of the smoothing variational splines over an open
bounded set [3].

Among the most relevant differences of this paper respect to [9] we can indicate the following ones:
we include the tangent data and we prove in Section 5 a convergence result of our approximation method.

This paper is organized as follows. In Section 2, we briefly recall some preliminary notations. Section 3
is devoted to the concept of discontinuity set. Next, we state the problem of smoothing variational splines
over �′ with tangent conditions in Section 4. The convergence of the method is established in Section 5.
Finally, Section 6 provides some numerical and graphical examples.

2. Notations

Let n, m and p belonging to N∗, we denote by 〈 · 〉Rn , and 〈 · , · 〉Rn , respectively, the Euclidean norm
and the inner product in Rn. For all E ⊂ Rp, we denote by E, �E and card E, respectively, the adherence,
the bounded and the cardinal of E.

Moreover, we denote by RN,n the space of real matrices with N rows and n columns, equipped with
the inner product

〈A, B〉N,n =
N∑

i=1

n∑
j=1

aij bij

and the corresponding norm

〈A〉N,n = 〈A, A〉1/2
N,n.
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For all � = (�1, . . . , �p) ∈ Np, we write |�| =∑p
i=1 �i and we indicate by �� the operator of partial

derivative

�� = �|�|

�x�1
1 · · · �x�p

p

.

Let � be a nonempty open bounded set of Rp and we denote by Hm(�; Rn) the usual Sobolev space
of (classes of) functions u belonging to L2(�; Rn), together with all their partial derivatives ��u—in the
distribution sense—of order |�|�m. This space is equipped with the inner product of order �

(u, v)�,�,Rn =
⎛⎝∑

|�|=�

∫
�
〈��u(x), ��v(x)〉Rn

⎞⎠1/2

, � = 0, . . . , m,

the corresponding semi-norms of order �

|u|�,�,Rn = (u, u)
1/2
�,�,Rn, � = 0, . . . , m,

the norm

‖u‖m,�,Rn =
(

m∑
�=0

|u|2�,�,Rn

)1/2

and the corresponding inner product

((u, v))m,�,Rn =
m∑

�=0

(u, v)�,�,Rn .

Finally, given a function f : � → Rn, we denote by Im Df (x) the image of the differential of f at the
point x ∈ �, when this exists, i.e., the linear subspace generated by {��f (x) : |�| = 1}. Furthermore, if
1�p < n�3, we can consider f as the parameterization of a curve (p = 1) or a surface (p = 2) and, if f is
differentiable at x ∈ �, the space Im Df (x) is called the tangent space of f at x, sometimes when p = 2
it is written by Tx(f ) = span〈D1f (x), D2f (x)〉, where D1f and D2f denote the first partial derivatives
of f.

3. The set of discontinuities

The first step in developing this work is to have an adequate characterization over a set of discontinuity.
Let us introduce the following definition due to Arcangéli, Manzanilla and Torrens [1].

Definition 3.1. Let � be a bounded open connected set of Rp with Lipschitz boundary and let F be a
nonempty subset of � such that, there exists a finite family {R1, . . . , RI } of open connected subsets of �
with Lipschitz boundary, verifying the following conditions:

(i) for all i, j = 1, . . . , I, i 	= j, Ri ∩ Rj = ∅;
(ii)

⋃I
i=1 Ri = �;



54 A. Kouibia et al. / Journal of Computational and Applied Mathematics 193 (2006) 51–64

(iii) F ⊂ �R, where
⋃I

i=1Ri = R;
(iv) F is contained in the interior of �� (equipped of the induced topology by Rp) of F ∩ ��;
(v) the interior in �R of F ∩ � is contained in F;

(vi) F ∩ �� is contained in F.

It is said that the family {R1, . . . , RI } represents F in � and we write �′ = �\F .

We denote by Ck
F (�′; Rn) the space of functions � ∈ Ck(�′; Rn) such that

∀i = 1, . . . , I, �|Ri
∈ Ck(Ri; Rn).

Such space is equipped by the norm

‖�‖Ck
F (�′;Rn) = max

1� i �I
‖�|Ri

‖Ck(Ri ;Rn) · (3.1)

Let us remember some useful properties for some spaces of functions defined over �′ and whose proofs
are proved in [1].

Theorem 3.1. The space Ck
F (�′; Rn) is a Banach space for the norm defined in (3.1). Moreover, such

space and the norm defined in (3.1) are independent on the choose of the family {R1, . . . , RI } that presents
F on �.

Theorem 3.2. For all m, k ∈ N such that m > p/2 + k:

Hm(�′; Rn)
c⊂ Ck

F (�′; Rn),

where
c⊂ designs the compact injection.

Theorem 3.3. For all l, l′ ∈ N, with l > l′:

Hl(�′; Rn)
c⊂ Hl′(�′; Rn).

Theorem 3.4. For all m, k ∈ N such that m > p/2 + k, the subspace Hm(�′; Rn) ∩ Ck(�; Rn) is closed
in Hm(�′; Rn).

4. Variational spline over �′ with tangent conditions

We conserve the notations about �, F, �′ and Ri for i = 1, . . . , I introduced in Section 3 and we
suppose that

m >
p

2
+ 1. (4.1)

Let Υ0 be a curve or surface parametrized by a function f ∈ Hm(�′; Rn).



A. Kouibia et al. / Journal of Computational and Applied Mathematics 193 (2006) 51–64 55

Let A1 and A2 be two ordered finite subsets of, respectively, N1 and N2 distinct points of � and, for
any a ∈ A1, let us consider the linear form defined on C0

F (�′; Rn) by

�av =
{

v(a) if a ∈ A1\F,

v|Ri
(a) if a ∈ A1 ∩ Ri ∩ F, 1�i�I.

(4.2)

Moreover, for any a ∈ A2 let �a be the operator defined on C1
F (�′; Rn) by

�av =
⎧⎨⎩
(
PS⊥

a

(
�v
�xj

(a)
))

1�j �p
if a ∈ A2\F, 1�i�I,(

PS⊥
a

(
�v|Ri

�xj
(a)
))

1�j �p
if a ∈ A2 ∩ Ri ∩ F, 1�i�I,

(4.3)

where for any a ∈ A2, PS⊥
a

is the operator projection over S⊥
a , being S⊥

a the orthogonal complement of
the linear space Sa = Im Df (a).

Remark 4.1. The sets A1 and A2 are constituted by the parameter values of the points that are wished
to be fitting and the points in those which are considered the tangent data. Likewise, the operators given,
respectively, in (4.2) and (4.3) could be considered as the corresponding Lagrangean data and the tangent
data, respectively.

Finally, let

Lv = (�av)a∈A1 and �v = (�av)a∈A2

and we suppose that

Ker L ∩ P̃m−1(�
′; Rn) = {0}, (4.4)

where P̃m−1(�
′; Rn) designs the space of functions over �′ into Rn that are polynomials of total degree

�m − 1 respect to the set of variables over each connected component of �′.
Now, given 	�0 and 
 > 0 let J
	 be the functional defined on Hm(�′; Rn) by

J
	(v) = 〈Lv − Lf 〉2
N1,n

+ 	〈�v〉2
N2,pn + 
|v|2

m,�′,Rn . (4.5)

Remark 4.2. We observe that the functional J
	(v) contains different terms which can be interpreted as
follows:

• The first term, 〈Lv − Lf 〉2
N1,n

, indicates how well v approaches f in a least squares sense.

• The second term, 〈�v〉2
N2,pn, indicates how well, for any point a ∈ A2, the tangent spaces Im Df (a)

and Im Dv(a) are really close.
• The last term, |v|2

m,(a,b),Rn , measures the degree of smoothness of v.

We note that the parameters 	 and 
 control the relative weights corresponding respectively, to the last
two terms.
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Now, we consider the following minimization problem: find an approximating curve or surface Υ of Υ0
parametrized by a function �
	 belonging to Hm(�′; Rn) from the data {f (a) | a ∈ A1} and {Sa | a ∈ A2},
such that �
	 minimizes the functional J
	 on Hm(�′; Rn), i.e., find �
	 such that

�
	 ∈ Hm(�′; Rn),
∀v ∈ Hm(�′; Rn), J
	(�
	)�J
	(v). (4.6)

Theorem 4.1. The problem (4.6) has a unique solution, called the smoothing variational spline with
tangent conditions in �′ relative to A1, A2, Lf , 	 and 
, which is also the unique solution of the following
variational problem: find �
	 such that

�
	 ∈ Hm(�′; Rn),
∀v ∈ Hm(�′; Rn), 〈L�
	, Lv〉N1,n

+ 	〈��
	, �v〉N2,pn + 
(�
	, v)m,�′,Rn = 〈Lf , Lv〉N1,n
.

Proof. Taking into account (4.1), (4.4) and that the following norm:

v �−→ [[v]] = (〈Lv〉2
N1,n

+ 	〈�v〉2
N2,pn + 
|v|2

m,�′,Rn)
1/2

is equivalent in Hm(�′; Rn) to the norm ‖ · ‖m,�′,Rn (cf. [1, Proposition 4.1]), one easily checks that the
symmetric bilinear form ã : Hm(�′; Rn) × Hm(�′; Rn) −→ R given by

ã(u, v) = 〈Lu, Lv〉N1,n
+ 	〈�u, �v〉N2,pn + 
(u, v)m,�′,Rn

is a continuous and Hm(�′; Rn)-elliptic. Likewise, the linear form

� : v ∈ Hm(�′; Rn) �−→ �(v) = 〈Lf , Lv〉N1,n

is continuous. The result is then a consequence of the Lax–Milgram Lemma (see [2]). �

5. Convergence

Under adequate hypotheses, we shall show that the smoothing variational spline with tangent conditions
converges to f. To do this, we suppose the following are given:

• a set of real positive numbers D of which 0 is an accumulation point;
• for all d ∈ D, two subsets Ad

1 and Ad
2 of, respectively, N1 = N1(d) and N2 = N2(d) distinct points of

�;
• for all d ∈ D and any a ∈ Ad

1 , let us consider the linear form defined on C0
F (�′; Rn) by

�d
av =

{
v(a) if a ∈ Ad

1\F,

v|Ri
(a) if a ∈ Ad

1 ∩ Ri ∩ F, 1�i�I ;
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• for all d ∈ D and any a ∈ Ad
2 , let �d

a be the operator defined in C1
F (�′; Rn) by

�d
av =

⎧⎨⎩
(
PS⊥

a

(
�v
�xj

(a)
))

1�j �p
if a ∈ Ad

2\F, 1�i�I,(
PS⊥

a

(
�v|Ri

�xj
(a)
))

1�j �p
if a ∈ Ad

2 ∩ Ri ∩ F, 1�i�I,

where for any a ∈ Ad
2 , PS⊥

a
is the operator projection over S⊥

a , being S⊥
a the orthogonal complement

of the linear space Sa = Im Df (a).

Finally, let

Ldv = (�d
av)a∈Ad

1
and �dv = (�d

av)a∈Ad
2
.

We suppose that

Ker Ld ∩ P̃m−1(�
′; Rn) = {0} (5.1)

and that

sup
x∈�′

min
a∈Ad

1

〈x − a〉Rp = d. (5.2)

Now, for each d ∈ D let 	= 	(d)�0, 
= 
(d) > 0 and let J d

	 be the functional defined in Hm(�′; Rn) as

J
	 in (4.5), with Ld and �d instead of L and �, respectively. Finally, let �d

	 be the smoothing variational

spline with tangent conditions in �′ relative to Ad
1 , Ad

2 , Ldf , 	 and 
 which is the minimum of J d

	 in

Hm(�′; Rn).
In order to prove the convergence of �d


	 to f, under suitable hypotheses, we need the following results.

Proposition 5.1. Let B0 = {b01, . . . , b0�} be a P̃m−1(�
′; Rn)-unisolvent subset of points of R. Then,

there exists � > 0 such that if B� designs the set of �-uplet B = {b1, . . . , b�} of points of �′ satisfying the
condition

∀j = 1, . . . , � 〈bj − b0j 〉Rp < �,

the application [[·]]B
m,�′ defined, for all B ∈ B�, by

[[v]]B
m,�′ =

⎛⎝ �∑
j=1

〈v(bj )〉2
Rn + |v|2

m,�′,Rn

⎞⎠1/2

,

is a norm on Hm(�′; Rn), uniformly equivalent over B� to the usual norm of Sobolev ‖ · ‖m,�′,Rn .

Proof. It is analogous to the proof [1, Proposition 6.2]. �
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Theorem 5.2. We suppose that the hypotheses (5.1) and (5.2) hold, and that


 = o(d−p), d → 0. (5.3)

Then, one has

lim
d→0

‖�d

	 − f ‖m,�′,Rn = 0. (5.4)

Proof. (1) For all d ∈ D, from Theorem 4.1 we have that

〈Ld�d

	, L

d(�d

	 − f )〉N1,n

+ 	〈�d�
	, �d(�d

	 − f )〉N2,pn

+ 
(�
	, �d

	 − f )m,�′,Rn = 〈Ldf, Ld(�d


	 − f )〉N1,n
,

which means, for all d ∈ D, that

〈Ld(�d

	 − f )〉2

N1,n
+ 	〈�d(�d


	 − f )〉2
N2,pn + 
|�
	|2m,�′,Rn = 
(�d


	, f )m,�′,Rn ,

because �df = 0. We deduce that

∀ d ∈ D, |�d

	|m,�′,Rn � |f |m,�′,Rn , (5.5)

and that

∀ d ∈ D, 〈Ld(�d

	 − f )〉N1,n

�
1/2|f |m,�′,Rn . (5.6)

Let B0 = {b01, . . . , b0�} be a P̃m−1(�
′)-unisolvent subset of points of R and let � be the constant of

Proposition 5.1. Obviously, there exists �′ ∈ (0, �] such that

∀ j = 1, . . . , �, B(b0j , �′) ⊂ R.

From (5.2),

∀d ∈ D, d < �′, ∀ j = 1, . . . , �, B(b0j , �′ − d) ⊂
⋃

a∈Ad
1∩B(b0j ,�′)

B(a, d).

If Nj = card(Ad
1 ∩ B(b0j , �′)), it follows:

∀d ∈ D, d < �′, ∀ j = 1, . . . , �, (�′ − d)p �Nj d
p,

and, for consequently, for any d0 ∈ (0, �′),

∀ d ∈ D, d �d0, ∀ j = 1, . . . , �, Nj �(�′ − d0)
pd−p. (5.7)

Now, from (5.3) and (5.6), it derives that

∀ j = 1, . . . , �,
∑

a∈Ad
1∩B(b0j ,�′)

〈(�d

	 − f )(a)〉2

Rn = o(d−p), d → 0. (5.8)

If ad
j is a point of Ad

1 ∩ B(b0j , �′) such that

〈(�d

	 − f )(ad

j )〉Rn = min
a∈Ad

1∩B(b0j ,�′)
〈(�d


	 − f )(a)〉Rn ,
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we deduce, from (5.7) and (5.8), that

∀ j = 1, . . . , �, 〈(�d

	 − f )(ad

j )〉Rn = o(1), d → 0. (5.9)

We denote by Bd the set {ad
1 , . . . , ad

�}. Applying Proposition 5.1 with B = Bd , for d sufficiently close
to 0, it results from (5.5) and (5.9) that

∃C > 0, ∃ � > 0, ∀ d ∈ D, d ��, ‖�d

	‖m,�′,Rn �C,

it means that the family (�d

	)d∈D,d �� is bounded in Hm(�′; Rn). Then, there exists a sequence (�dl


l	l
)l∈N,

extracted from such family, with liml→+∞ dl=0, 
l=
(dl) and 	l=	(dl), and an element f ∗ ∈ Hm(�′; Rn)

such that

f ∗ converges weakly to �dl

l	l

in Hm(�′; Rn) when l → +∞. (5.10)

(2) Let us see that f ∗ = f . We shall argue by contradiction. Suppose that f ∗ 	= f . For the continuous
injection of Hm(�′; Rn) in C0(�′; Rn) (cf. Theorem 3.2), there exist 
 > 0 and a nonempty open � ⊂ �′
such that

∀x ∈ �, 〈f ∗(x) − f (x)〉Rn > 
.

Moreover, such injection is compact. Thus, from (5.10) it follows that

∃ l0 ∈ N, ∀ l� l0, ∀ x ∈ �, 〈�dl

l	l

(x) − f ∗(x)〉Rn �



2
.

Hence,

∀ l� l0, ∀x ∈ �, 〈�dl

l	l

(x) − f (x)〉Rn �〈f ∗(x) − f (x)〉Rn − 〈�dl

l	l

(x) − f ∗(x)〉Rn >



2
. (5.11)

Now, by reasoning as the point (1) it would be proved, for l sufficiently large, that there exists a point
bdl ∈ A

dl

1 ∩ � such that

〈�dl

l	l

(bdl ) − f (bdl )〉Rn = o(1), l → +∞,

which contradicts to (5.11). Then, f ∗ = f .
(3) From (5.10) and taking into account that f ∗ = f and Hm(�′; Rn) is compactly injected in

Hm−1(�′; Rn) (cf. Theorem 3.3) we have

f = lim
l→+∞ �dl


l	l
in Hm−1(�′; Rn). (5.12)

Consequently,

lim
l→+∞ ((�dl


l	l
, f ))m−1,�′,Rn = ‖f ‖2

m−1,�′,Rn .

Using again (5.10) and that f = f ∗, we obtain

lim
l→+∞ (�dl


l	l
, f )m,�′,Rn = lim

l→+∞(((�dl

l	l

, f ))m,�′,Rn − ((�dl

l	l

, f ))m−1,�′,Rn) = |f |2
m,�′,Rn . (5.13)

Since,

∀ l ∈ N, |�dl

l	l

− f |2
m,�′,Rn = |�dl


l	l
|2
m,�′,Rn + |f |2

m,�′,Rn − 2(�dl

l	l

, f )m,�′,Rn ,
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we deduce, from (5.5) and (5.13), that

lim
l→+∞ |�dl


l	l
− f |m,�′,Rn = 0,

which, together with (5.12), implies that

lim
l→+∞ ‖�dl


l	l
− f ‖m,�′,Rn = 0.

(4) Finally, we shall argue by contradiction. Suppose that (5.4) does not hold. Then, there exist a real
number � > 0 and three sequences (dl′)l′∈N, (
l′)l′∈N and (	l′)l′∈N, with liml′→+∞ dl′ = 0, 
 = 
(dl′) and
	 = 	(dl′), such that

∀ l′ ∈ N, ‖�
dl′

l′	l′ − f ‖m,�′,Rn ��. (5.14)

Now well, the sequence (�
dl′

l′	l′ )l′∈N is bounded in Hm(�′; Rn). Then, the reasoning of points (1)–(3)

shows that there exists a subsequence convergent to f, which produces a contradiction with (5.14). In
short, (5.4) holds. �

6. Numerical and graphical examples

To test the smoothing method presented in Section 4, we discretize problem (4.6) in a suitable parametric
finite element space. Let us consider a set of real positive numbers H of which 0 is an accumulation
point and we suppose that (0, 0) is an accumulation point of D×H. Problem (4.6) has been numerically
solved using the finite element method. The approach is to replace the Sobolev space Hm(�′, Rn) by the
parametric finite dimensional space Vh constructed on a partition Th of �′ such that for all K ∈ Th,
K ⊂ Ri for certain i = 1, . . . , I .

For (d, h) ∈ D × H, let �dh

	 ∈ Vh be the unique solution of the discrete problem relative to Ad

1 , Ad
2 ,

Ldf , 
 and 	 which is obtained by minimizing the functional J d

	 in Vh. Let {v1, . . . , vZ} be a basis of Vh,

then �dh

	 = ∑Z

i=1 �ivi where � = (�i)1� i �Z ∈ RZ is the solution of a linear system of order Z whose
coefficient matrix is symmetric positive definite and of band type.

Meanwhile, we have computed two types of error estimates, an estimate of the relative error in norm
| · |0,�′,Rn and an estimate of the relative tangent error. The latest error estimate is the angle middle formed
by the tangent vector subspaces of the approximated surface and the original one. Both error estimate are
given through the expressions

Er =
(∑10 000

i=1 〈�dh

	 (xi) − f (xi)〉2

n∑10 000
i=1 〈f (xi)〉2

n

)1/2

, Et =
∑10 000

i=1 Ang(Txi
(�dh


	 ), Txi
(f ))

10 000
,



A. Kouibia et al. / Journal of Computational and Applied Mathematics 193 (2006) 51–64 61

Fig. 1. Section 6.1. From left to right: the graphs of the original curve and its approximation one parameterized by �dh

	 with

N1 = 61, N2 = 201, 
 = 10−4, 	 = 10−6, Er = 0.00127869, Et = 0.00388529.

where {xi}1� i �10 000 is a set of 10 000 arbitrary points of � and Ang(Txi
(�dh


	 ), Txi
(f )) is the angle that

form Txi
(�dh


	 ) , tangent space of �dh

	 at xi , and Txi

(f ), tangent space of f at xi .

6.1. The curve case

To test our smoothing method for the curve case, we consider the curve Υ0 parameterized by the
function

f = (f1, f2) : [−6, 6] → R2,

where

f1(u) = u cos

(
u2

5�

)
,

f2(u) = 2 sign(u)
(|u| − 1.5)2

10
,

The corresponding graphic is shown in Fig. 1 (left side). The following set of data have been taken:

• � = [−6, 6];
• F = {0};
• �′ = �\F .

In this case, for m = n = 2, problem (4.6) has been numerically solved using the parametric finite
element space Vh constructed on a partition Th made up by six equal intervals from the generic finite
element of Hermite of class C1.

Fig. 1 shows an approximation curve (right side) obtained for some given data.

6.2. The surface case

We consider the surface Υ0 parameterized by the function

f = (f1, f2, f3) : [−6, 6] × [−6, 6] → R3,
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Fig. 2. Section 6.2. SurfaceΥ0 and its approximation parameterized by �dh

	 withN1=250,N2=0, 
=10−5, 	=0,Er=0.00454581,

Et = 0.0284015, from left to right, respectively.

where

f1(u, v) = u cos

(
u2 + v2

35�

)
,

f2(u, v) = v cos

(
u2 + v2

35�

)
,

f3(u, v) =
{

f3.1 if |u| < 3, |v| < 3,

f3.2 if |u|�3 or|v|�3,

f3.1 = sign(u) sign(v) sin

(
�
(|u| − 3)2

20

)
sin

(
�
(|v| − 3)2

20

)
,

f3.2 = sign(u) sign(v) sin
( �

219 952
u2v2(|u| − 3)2(|v| − 3)2

)
.

The corresponding graphic is shown in Fig. 2 (left side). The following set of data have been taken:

• � = [−6, 6] × [−6, 6];
• F = {|x|�3, y = 0} ∪ {x = 0, |y|�3};
• �′ = �\F .

In this example, for m = 3 and n = 3, the partition Th is made up by 4 × 4 equal squares from the
generic finite element of Bogner–Fox–Schmidt of class C1.

The efficiency of our smoothing method presented in this paper is proved in this subsection as follows:
graphically, the graphs of the original surface given in Fig. 2 and the approximation one given in Fig. 3
(right side) are similar. Furthermore, numerically in Fig. 3 the orders of the obtained relative errors are
considerable.
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Fig. 3. Section 6.2. Two approximation surfaces of Υ0 parameterized by �dh

	 with, respectively, N1 = 250, N2 = 400, 
 = 10−5,

	 = 10−3, Er = 0.0044139, Et = 0.019088 and N1 = 900, N2 = 400, 
 = 10−7, 	 = 10−3, Er = 0.00357, Et = 0.0176559, from
left to right, respectively.
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Fig. 4. Section 6.3. From left to right: the graph of an approximation surface of Υ0 parameterized by �dh

	 with N1 =900, N2 =0,


=10−5, 	=0, Er =0.0202551, Et =0.0927968, and the graph of the corresponding Lagrangean data points. Here the variance
of �d is � = 0.15.

6.3. Using noisy data

We conserve the same notations of the previous subsection and we suppose now that the data are noisy,
that is “white noise” hypothesis is satisfied. For each h ∈ H and d ∈ D, let �d = (�d

a)a∈Ad be a vector
“error” of RN1 .

By proceeding as the paper [10] for the noisy data, we introduce the hypothesis: for each d ∈ D, �d

is a white noisy, i.e., �d is a Gaussian vector of independent arbitrary variables of mean 0 and variance
�2 > 0 that are distributed of identical form.

Let �dh

	 be the solution of the discrete problem in Vh for Ldf + �d instead of Ldf . For a convergence

result of �dh

	 to f, see [7] for an analogous way.

Figs. 4 and 5 show some approximation surfaces of the original surface Υ0 from some Lagrangean
noisy data.
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Fig. 5. Section 6.3. From left to right: the graph of an approximation surface of Υ0 parameterized by �dh

	 with N1 =900, N2 =0,


 = 10−5, 	 = 0, Er = 0.0127351, Et = 0.0732392 and the graph of the corresponding Lagrangean data points. In this case, the
variance of �d is � = 0.1.

7. Conclusion

We conclude that our methodology is a well general approximation method of curves and surfaces for
both exact and noisy data.

Acknowledgements

This work has been supported by the Junta de Andalucía (Research group FQM/191).

References

[1] R. Arcangéli, R. Manzanilla, J.J. Torrens, Approximation Spline de Surfaces de type explicite comportant des Failles,
Math. Modelling Numer. Anal. 31 (no. 5) (1997) 643–676.

[2] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[3] A. Kouibia, M. Pasadas, Smoothing variational splines, Appl. Math. Lett. 13 (2000) 71–75.
[4] A. Kouibia, M. Pasadas, Approximation by discrete variational splines, J. Comput. Appl. Math. 116 (2000) 145–156.
[5] A. Kouibia, M. Pasadas, Approximation of curves by fairness splines with tangent condition, J. Comput. Appl. Math. 142

(2002) 357–366.
[6] A. Kouibia, M. Pasadas, J.J. Torrens, Fairness approximation by modified discrete smoothing Dm-splines, in: M. Daehlen,

T. Lyche, L.L. Schumaker (Eds.), In Mathematical Methods for Curves and Surfaces II, Vanderbilt University Press,
Nashville, TN, 1998, pp. 295–302.

[7] M.C. López de Silanes, R. Arcnagéli, Sur la Convergence des Dm-splines d’Ajustement pour des données exactes ou
bruitées, Rev. Mat. Universidad Complutence Madrid 4 (2,3) (1991) 279–294.

[8] M. Pasadas, M.C. López de Silanes, J.J. Torrens, Approximation of parametric surfaces by discrete smoothing Dm-spline
with tangent conditions, in: M. Daehlen, T. Lyche, L.L. Schumaker (Eds.), Mathematical Methods in CAGD III, 1995, pp.
403–412.

[9] D. Terzopoulos, Regularization of inverse visual problems involving discontinuities, IEEE Trans. Pattern Anal. Mach.
Intell. Pami-8 (4) (1986) 413–424.

[10] F. Utreras, Convergence rates for multivariate smoothing spline functions, J. Approx. Theory 52 (1988) 1–27.


	Approximation of discontinuous curves and surfaces withtangent conditions
	Introduction
	Notations
	The set of discontinuities
	Variational spline over XXXX with tangent conditions
	Convergence
	Numerical and graphical examples
	The curve case
	The surface case
	Using noisy data

	Conclusion
	Acknowledgements
	References


