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An iterative method for linear discrete ill-posed problems
with box constraints
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Abstract

Many questions in science and engineering give rise to linear discrete ill-posed problems. Often it is desirable that the computed
approximate solution satisfies certain constraints, e.g., that some or all elements of the computed solution be nonnegative. This paper
describes an iterative method of active set-type for the solution of large-scale problems of this kind. The method employs conjugate
gradient iteration with a stopping criterion based on the discrepancy principle and allows updates of the active set by more than one
index at a time.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The discretization of Fredholm integral equations of the first kind, and in particular deconvolution problems with a
smooth kernel, give rise to linear systems of equations

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (1)

with a matrix of ill-determined rank. The singular values of such matrices “cluster” at the origin and, therefore, matrices
of ill-determined rank are severely ill-conditioned and possibly singular. Linear systems of equations with a matrix of
this kind are commonly referred to as linear discrete ill-posed problems. The available right-hand side vector b in linear
discrete ill-posed problems of interest in science and engineering typically is contaminated by an error e ∈ Rm caused
by measurement inaccuracies or discretization; thus,

b = b̆ + e, (2)
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where b̆ ∈ Rm is the unknown error-free right-hand side vector associated with b. We allow m�n in (1), as well as
the system of equations to be inconsistent, in which cases we consider (1) a least-squares problem. An estimate of the
norm of the error

� = ‖e‖ (3)

is assumed to be available. Throughout this paper ‖ · ‖ denotes the Euclidean vector norm.
Let x̆ denote the least-squares solution of minimal Euclidean norm of the linear system of equations with the unknown

error-free right-hand side,

Ax = b̆. (4)

We would like to determine an approximation of x̆ from the available linear system (1) with contaminated right-hand
side. The system (4) is assumed to be consistent.

Let A† denote the Moore–Penrose pseudo-inverse of A. Then x̆ = A†b̆. However, due to the error e in b and the
ill-conditioning of A, the vector A†b = x̆ + A†e generally is not a useful approximation of x̆.

Meaningful approximations of x̆ can be determined by replacing (1) by a nearby problem with a less ill-conditioned
matrix, and then solving the modified problem so obtained. This replacement is commonly referred to as regularization.
A popular approach to regularization is to replace (1) by a linear system of equations of lower dimension. For instance,
the conjugate gradient method applied to the normal equations

ATAx = ATb, (5)

with initial approximate solution x(0) = 0 determines approximate solutions of (1) by projecting the normal equations
orthogonally onto the Krylov subspaces

Kj (A
TA, ATb) = span{ATb, ATAATb, . . . , (ATA)j−1ATb}, j �1, (6)

and solving the projected normal equations for increasing values of j. Here j is the dimension of Kj (A
TA, ATb) as

well as the iteration number. The jth iterate, x(j), determined in this manner satisfies

‖Ax(j) − b‖ = min
x∈Kj (ATA,ATb)

‖Ax − b‖, x(j) ∈ Kj (A
TA, ATb).

When j is sufficiently small, the solution x(j) of the projected normal equations generally is much less sensitive to the
error e in b than the solution of the normal equations (5).

Let � be given by (3) and let � > 1 be a constant independent of �. We iterate with the conjugate gradient method
until

‖Ax(j) − b‖���. (7)

This stopping criterion for the iterations is commonly referred to as the discrepancy principle. Let j� denote the smallest
value of j such that (7) holds, and let x(j�) be the associated iterate. Nemirovskii [16] and Hanke [7] show that when A
is an operator in Hilbert space,

lim
�↘0

x(j�) = x̆, (8)

where we note that j� increases as the norm of the error � decreases. The property (8) suggests that x(j�) may be used
as an approximation of x̆.

Many linear discrete ill-posed problems (1) that arise in applications are such that the minimal-norm least-squares
solution x̆ of the associated error-free linear system of Eq. (4) satisfies certain known constraints, such as nonnegativity.
For instance, in image restoration problems, where the elements of x̆ represent pixel values, we have x̆�0, where
the inequality is element-wise. In this application an upper bound for the entries is also available; when each pixel is
represented by 8 bits, the entries are at most 255. Moreover, in applications where some entries of x̆ represent chemical
concentrations or energy, explicit lower and upper bounds may be available for these entries.

It is often desirable to determine approximate solutions of (1) that satisfy the same constraints as x̆. However, the
approximate solution x(j�) determined by the conjugate gradient method applied to (5) with stopping criterion (7) is
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not guaranteed to satisfy these constraints. This paper describes a method for determining approximate solutions of (1)
that satisfy simple inequality constraints, commonly referred to as box constraints.

Let the desired constraints for the entries of the approximate solution x(j) = [x(j)

1 , x
(j)

2 , . . . , x
(j)
n ]T of (1) be given

by

�i �x
(j)
i , i ∈ I�,

ui �x
(j)
i , i ∈ Iu, (9)

where �i, ui ∈ R, and I� and Iu are subsets of the positive integers. We may assume that

�i < ui ∀i ∈ I� ∩ Iu. (10)

Introduce the set of feasible vectors

S = {x = [x1, x2, . . . , xn]T ∈ Rn : �i �xi ∀i ∈ I�, xi �ui ∀i ∈ Iu}. (11)

The special case when S is the nonnegative orthant

S+ = {x = [x1, x2, . . . , xn]T ∈ Rn : xi �0, 1� i�n} (12)

is of particular interest.
We present a method of active set-type for the approximate solution of the quadratic programming problem

min
x∈S

‖Ax − b‖. (13)

This minimization problem has received considerable attention in the case when the matrix A is of full rank and the
vector b is error-free; see, e.g., Nocedal and Wright [17, Chapter 16] for a recent treatment. Properties of the problem
(13) are discussed in Section 2. Our solution scheme for (13) is related to the two-level iterative active set methods
presented by Bierlaire et al. [2] and Lötstedt [13]. In the outer level, these methods seek to identify the components of
the solution of (13) that equal their bounds; the set of indices of the identified components is referred to as the active set.
In the inner level, the identified components are kept fixed, and the resulting reduced minimization problem is solved
by the conjugate gradient method. Generally, it is not known a priori which components of the solution of (13) achieve
their bounds. Bierlaire et al. [2] and Lötstedt [13] terminate the iterations by the conjugate gradient method applied to a
reduced problem, and update the active set, as soon as a component of a computed iterate violates a constraint. Instead,
our method carries out conjugate gradient iterations until a generated approximate solution satisfies the discrepancy
principle (7), and then updates the active set. The latter approach allows for more consecutive conjugate gradient
iterations and often requires much less computational work to determine a vector in (11) that satisfies (7). Active set
methods generally only add or delete one index from the active set at a time. Our method allows the addition or removal
of more than one index at a time; see Section 3 for details.

Bierlaire et al. [2] also discuss projected gradient methods, that use conjugate gradient iteration in the inner level,
for the solution of (13). Solution methods based on this approach require access to individual columns of the matrix
A in order to (approximately) solve minimization problems along gradients projected onto the set S. In the present
paper, we assume that the matrix can be accessed only through subroutines for the evaluation of matrix–vector products
with A and AT. This situation is common in image restoration problems; see, e.g., Lewis and Reichel [12] and Nagy
et al. [14], and can make it expensive to solve minimization problems along projected gradients. We therefore do
not consider projected gradient methods in the present paper. However, we remark that when subroutines that allow
inexpensive access to the columns of A are available, solution schemes for (13) based on projected gradient methods
may be attractive. An active set method for a minimization problem related to (13) with a symmetric positive definite
matrix A is discussed by O’Leary [18].

In our experience, the approximate solution of the minimization problem (13) when the vector b is contaminated by
an error is a much easier task than the exact solution of minimization problems of the form (13) with an error-free vector
b. This depends on that the computation of a vector x(j) that satisfies the discrepancy principle (7) for � > 0 sufficiently
large often requires significantly fewer conjugate gradient iterations than the computation of the exact solution of the
normal equations (5). We will comment on this further in Section 3.
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This paper is organized as follows. Section 2 reviews properties of quadratic programming problems that are relevant
for our solution method, which is described in Section 3. Numerical examples are presented in Section 4 and concluding
remarks can be found in Section 5.

Several different approaches to the solution of large linear discrete ill-posed problems with constraints have been
advocated; see, e.g., Bertero and Boccacci [1, Section 6.3], Calvetti et al. [4,6], Hanke et al. [8], Kim [11], Nagy and
Strakos [15], and Rojas and Steihaug [20]. Its fairly rapid convergence, simplicity, and low storage requirement make
the method of the present paper attractive; just a few m- and n-vectors, as well as representations of the matrices A and
AT that allow the evaluation of matrix–vector products, have to be stored.

2. The quadratic programming problem

Assume for the moment that the matrix A is of full rank. Then the minimization problem (13) is strictly convex and
therefore has a unique solution, which we denote by x∗ =[x∗

1 , x∗
2 , . . . , x∗

n]T. The vector x∗ and the associated Lagrange
multipliers, �∗

� = [�∗
�,i]i∈I�

and �∗
u = [�∗

u,i]i∈Iu
, satisfy the KKT-equations

ATAx∗ − ATb =
∑
i∈I�

�∗
�,iei +

∑
i∈Iu

�∗
u,iei (14)

and

x∗
i ��i, �∗

�,i �0, �∗
�,i(x

∗
i − �i) = 0 ∀i ∈ I�, (15)

x∗
i �ui, �∗

u,i �0, �∗
u,i(x

∗
i − ui) = 0 ∀i ∈ Iu, (16)

where ei denotes the ith axis vector; see, e.g., Nocedal and Wright [17, Chapters 12 and 16] for details. Conversely, let
the vector-triplet {x∗, �∗

�, �
∗
u} satisfy the KKT-equations (14)–(16). Then, due to the strict convexity of the minimization

problem (13), the vector x∗ is a solution of (13).
Introduce the active sets A�(x) and Au(x) for the lower and upper bounds, respectively, associated with the vector

x = [x1, x2, . . . , xn]T, i.e.,

A�(x) = {i ∈ I� : xi = �i}, Au(x) = {i ∈ Iu : xi = ui}. (17)

It follows from (10) that A�(x) ∩ Au(x) = ∅.
One can determine whether a vector x ∈ S solves the minimization problem (13) by using the KKT-equations

(14)–(16) as follows. Consider the residual vector

r = [r1, r2, . . . , rn]T = ATAx − ATb (18)

associated with the normal equations (5). It follows from (14) that the Lagrange multipliers associated with x are given
by

��,i = ri ∀i ∈ I�, �u,i = ri ∀i ∈ Iu. (19)

Thus, in order for x to solve (13) we must have

ri �0 ∀i ∈ I�, ri �0 ∀i ∈ Iu, (20)

as well as

ri = 0 ∀i /∈ I� ∪ Iu. (21)

In our application to linear discrete ill-posed problems (1) with a right-hand side b that is contaminated by an error e,
we are not interested in determining an exact solution of the minimization problem (13). Therefore our algorithm, to
be described in the next section, computes an approximate solution of (13) that satisfies (20) but not necessarily (21).

We conclude this section with a comment on the minimization problem

min
x∈S+ ‖Ax − b‖, (22)
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where S+ is defined by (12), since this problem is of significant practical interest. Here I� = {1, 2, . . . , n} and Iu = ∅,
and analogously to (20), we obtain

ri �0, 1� i�n.

We finally remark that the assumption that A be of full rank can be removed by seeking to determine the unique solution
of (13) of minimal Euclidean norm.

3. Approximate solution of the quadratic programming problem

Our solution method for (13) determines approximate solutions of a sequence of linear systems of equations of the
form (1) with different right-hand sides. Since the right-hand side b is contaminated by an error of norm �, none of the
systems should be solved exactly. We terminate the iterations with the conjugate gradient method for each of the linear
systems of equations solved according to the discrepancy principle.

The first step of our method consists of computing an approximate solution x̃ = [̃x1, x̃2, . . . , x̃n]T of (1) that satisfies
the discrepancy principle by applying the conjugate gradient method to the normal equations (5) with initial approximate
solution x(0) = 0. Let x̂ = [x̂1, x̂2, . . . , x̂n]T denote the orthogonal projection of x̃ onto the set (11) and define the sets
I� and Iu. Thus,

x̂k =

⎧⎪⎨⎪⎩
�k, k ∈ I� if x̃k ��k,

uk, k ∈ Iu if x̃k �uk,

x̃k otherwise.

(23)

If x̂ satisfies the discrepancy principle, then we are done; otherwise we determine a correction ỹ = [̃y1, ỹ2, . . . , ỹn]T of
x̂ as follows. Determine the active sets A�(x̂) and Au(x̂), compute the residual

r̂ = Ax̂ − b, (24)

as well as the residual vector r = AT r̂ associated with the normal equations; cf. (18). The latter yields the Lagrange
multipliers ��,i and �u,i according to (19). If i ∈ A�(x̂) and ��,i < 0, then we remove the index i from A�(x̂) and,
analogously, if i ∈ Au(x̂) and �u,i > 0, then the index i is deleted from Au(x̂).

We would like ỹk = 0 for k ∈ A�(x̂) ∪ Au(x̂). Therefore, introduce the matrix D = diag[d1, d2, . . . , dn] with entries

dk =
{

0, k ∈ A�(x̂) ∪ Au(x̂),

1 otherwise.
(25)

We compute an approximate solution of

ADz = −r̂, (26)

where r̂ is given by (24), by the conjugate gradient method applied to the associated normal equations with initial
approximate solution z(0) = 0. The iterations are terminated as soon as an approximate solution z(j) that satisfies the
discrepancy principle

‖ADz(j) + r̂‖��� (27)

has been determined. Note that ỹ = Dz(j) has vanishing components in the desired positions. The vector x̃ = x̂ + ỹ
satisfies the discrepancy principle, but does not necessarily live in S. Denote the orthogonal projection of x̃ onto S by
x̂; cf. (23). If x̂, which is our new approximate solution of (13), satisfies the discrepancy principle, then we are done;
otherwise we update x̂ in the manner just described. We proceed in this fashion until an approximate solution of (13)
has been found that is in (11) and satisfies the discrepancy principle. The existence of such a solution is tacitly assumed.
Algorithm 1 summarizes the computations for our method.
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Algorithm 1. Active set-type method
Input: A ∈ Rm×n, b ∈ Rm, �, ��1, �i for i ∈ I�, ui for i ∈ Iu;
Output: Approximate solution x̂ ∈ S, such that ‖Ax̂ − b‖���;
1. Compute an approximate solution of the unconstrained problem (1) by the conjugate gra-

dient method applied to (5). Terminate the iterations as soon as an iterate that satisfies the
discrepancy principle (7) has been computed.
Denote this iterate by x̃.

2. Project x̃ orthogonally onto the set S. Denote the projection by x̃+.
3. Let x̂ = x̃+ and compute r̂ = Ax̂ − b.
4. While ‖r̂‖��� do
4.1 Determine the active sets A�(x̂) and Au(x̂).
4.2 Evaluate r = AT r̂ and determine the Lagrange multipliers ��,i and �u,i from (19).
4.3 Updated the active sets:

if i ∈ A�(x̂) and ��,i < 0, then remove the index i from A�(x̂),
if i ∈ Au(x̂) and �u,i > 0, then remove the index i from Au(x̂).

4.4 Define D according to (25).
4.5 Solve the normal equations associated with (26) by the conjugate gradient method.

Terminate the iterations as soon as an iterate z(j) satisfies the discrepancy principle (27).
4.6 Let x̃ = x̂ + Dz(j).
4.7 Compute the projection x̂ of x̃ onto the set S.
4.8 Compute r̂ = Ax̂ − b.

Many unconstrained linear discrete ill-posed problems (1) can be solved quite rapidly by application of the conjugate
gradient method to the associated normal equations (5), i.e., the number of iterations required, say j, to compute
an (unconstrained) approximate solution x(j) that satisfies the discrepancy principle (7) is fairly small. When the
approximate solution of these linear discrete ill-posed problems also is required to satisfy box constraints (9), Algorithm
1 often is able to fairly quickly determine such an approximate solution. However, Algorithm 1 is not guaranteed to
terminate, because the norm of consecutively generated residual vectors r̂ might not be monotonically decreasing; in
particular, cycling cannot be ruled out.

Active set methods as described by Bierlaire et al. [2], Lötstedt [13], or Nocedal and Wright [17, Chapter 16] terminate
after finitely many steps under suitable conditions. These methods update the active set as soon as an approximate
solution that violates a constraint has been determined. This approach secures that the norm of consecutively generated
residual vectors r̂ is strictly decreasing. Therefore, it may be attractive to switch from Algorithm 1 to one of the conjugate
gradient-based active set methods by Bierlaire et al. [2] or Lötstedt [13] when the norm of consecutive residual vectors
r̂ generated by Algorithm 1 fails to decrease monotonically. This extension of Algorithm 1 is guaranteed to determine
an approximate solution that satisfies both the discrepancy principle and box constraints.

However, we remark that in our experience, the active set method described by Bierlaire et al. [2] yields much
slower convergence to an approximate solution of (1) that satisfies the constraints and the discrepancy principle than
Algorithm 1. One reason for this is that termination of the conjugate gradient iterations, as soon as a constraint is violated,
typically forces frequent restarts, which slows down convergence. In fact, often only one step of the conjugate gradient
method is carried out between updates of the active sets (17). Thus, the method deteriorates to a restarted steepest
descent method. It is well known that the steepest descent method may converge very slowly when the restriction of
the matrix A to the space of free components of the available approximate solution x of (13) is ill-conditioned.

Algorithm 1 has been applied to the solution of numerous constrained linear discrete ill-posed problems. Some of
our numerical results are reported in Section 4. In these and many other examples, the algorithm has been able to
determine an approximate solution x̂ that satisfies both the constraints and the discrepancy principle, without switching
to the active set methods by Bierlaire et al. [2] or Lötstedt [13].

The minimization problems (13) considered in this paper typically are easier to solve the larger the right-hand side
�� is in (7) and (27). When �� is large enough, it is sometimes possible to rapidly determine an approximate solution
that satisfies the discrepancy principle and the constraints (9) using very simple methods, that generally would not be
competitive when the vector b is error-free, i.e., when �=0. Such methods are presented by Calvetti et al. [4]. Numerical
examples reported in [4] show these methods to give fast convergence for several standard linear discrete ill-posed test
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Table 1
Example 1: Phillips test problem solved by Algorithm 1

� ‖x̃+ − x̆‖/‖x̆‖ ‖x̂ − x̆‖/‖x̆‖ Outer iterations Inner iterations Mat.–vec. products

1 · 10−1 1.82 · 10−2 1.36 · 10−2 2 7 18
1 · 10−2 7.54 · 10−3 5.83 · 10−3 4 19 46
1 · 10−3 2.54 · 10−3 1.68 · 10−3 6 33 78

problems in the literature. However, for problems with �� small, the methods in [4] are not always competitive. This is
illustrated in Section 4 below.

Algorithm 1 applies the conjugate gradient method to compute approximate solutions of the normal equations (5) as
well as of the normal equations associated with (26). CGLS and LSQR are popular implementations of the conjugate
gradient method applied to the normal equations; see Björck [3] for discussions. Both implementations require the
vector r evaluated in step 4.2 of Algorithm 1. In all our numerical experiments of Section 4, the CGLS and LSQR
implementations required the same number of iterations.

4. Numerical examples

This section illustrates the performance of Algorithm 1. All computations were carried out in Matlab with approxi-
mately 16 significant decimal digits.

Example 1. Consider the Fredholm integral equation of the first kind∫ 6

−6
�(�, �)x(�) d� = b(�), −6���6, (28)

discussed by Phillips [19]. Its kernel, right-hand side, and solution are given by

�(�, �) = x(� − �),

b(�) = (6 − |�|)
(

1 + 1

2
cos

(�

3
�
))

+ 9

2�
sin

(�

3
|�|

)
,

x(�) =
{

1 + cos
(�

3
�
)

if |�| < 3,

0 otherwise,
(29)

respectively. We discretize the integral equation with the Matlab code phillips from the program package Regularization
Tools by Hansen [9]. Discretization by a Galerkin method using 300 orthonormal box functions as test and trial functions
yields the symmetric indefinite matrix A ∈ R300×300 of ill-determined rank. The code phillips also determines a scaled
discretization of the solution (29), which we consider the desired solution x̆ ∈ R300 of the linear system (4) with the
error-free right-hand side. The latter is determined by b̆ = Ax̆. An error vector e with normally distributed entries with
zero mean is added to b̆; cf. (2). The vector e is scaled to yield specific noise levels

� = ‖e‖
‖b̆‖ . (30)

Since the solution (29) is nonnegative, we also would like the computed approximate solution of (1) to have this
property, i.e., we seek to determine an approximate solution of (22) that satisfies the discrepancy principle.

Table 1 shows the performance of Algorithm 1 for the noise levels � = 1 · 10−j , j = 1, 2, 3. The discrepancy factor
� in (7) and (27) is set to unity. Thus, the right-hand sides in (7) and (27) have the value � = �‖b̆‖. Column 2 of Table 1
displays the relative error in the projected unconstrained approximate solutions x̃+ determined in step 2 of Algorithm 1
for different noise levels. The vectors x̃+ satisfy the constraints, but not the discrepancy principle (7). Column 3 of the
table shows the relative error in the approximate solutions x̂ obtained as output from Algorithm 1. The vectors x̂ satisfy
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Fig. 1. Example 1: exact and computed approximate solutions for � = 0.1.
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Fig. 2. Example 1: magnification of part of Fig. 1.

both the constraints and the discrepancy principle. The number of times steps 4.1–4.8 of Algorithm 1 are carried out
to compute x̂ is tabulated under the heading “Outer iterations.” The column labeled “Inner iterations” shows the total
number of iterations with the conjugate gradient method applied to either (5) or the normal equations associated with
(26). The last column, “Mat.–vec. products,” displays the total number of matrix–vector product evaluations with either
A or AT, where we recall that each iteration with the conjugate gradient method requires two matrix–vector product
evaluations; one with A and one with AT. For large problems, the matrix–vector product evaluations constitutes the
dominant work of the algorithm.

Table 1 shows that, as expected, for each value of �, the vector x̂ provides a better approximation of x̆ than x̃+.
Moreover, the number of matrix–vector product evaluations required to determine an approximate solution x̂ that
satisfies both the constraints and the discrepancy principle can be seen to increase as the noise level � decreases.

Fig. 1 displays the solution x̆ of the error-free problem (4), referred to as the “exact solution” (dashed curve) and
several approximate solutions determined by Algorithm 1 when � = 0.1. The dotted curve shows the approximate
solution x̃ of the unconstrained problem determined in step 1 of Algorithm 1, and the dash-dotted curve depicts the
orthogonal projection x̃+ of x̃ onto the set S+ determined in step 2 of Algorithm 1 with S = S+. We refer to x̃+
as the projected unconstrained approximate solution. Finally, the continuous curve shows the approximate solution x̂
computed by Algorithm 1. We refer to x̂ as the constrained approximate solution. Fig. 2 shows a magnification of a
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Fig. 3. Example 1: exact and computed approximate solutions for � = 1 · 10−3.
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Fig. 4. Example 1: magnification of part of Fig. 3.

part of Figure 1. The computed constraint approximate solution x̂ can be seen to furnish a better approximation of x̆
than the other computed approximate solutions; in particular, x̂ oscillates less than the other computed solutions.

Figs. 3 and 4 are analogs of Figs. 1 and 2, respectively, for the noise level � = 1 · 10−3.
We conclude this example with a comparison of Algorithm 1 and two projection methods proposed by Calvetti

et al. [4]. The Projected Restarted Conjugate Gradient (PRCG) method in [4] carries out steps 1–3 of Algorithm 1. If
the vector x̂ so obtained does not satisfy the discrepancy principle, then the normal equations associated with the linear
system of equations

Ay = −r̂ (31)

are solved by the conjugate gradient method with initial approximate solution y(0) = 0. Here r̂ is the residual vector
determined in step 3 of Algorithm 1. The iterations are terminated as soon as an iterate y(j) has been found that satisfies
the discrepancy principle,

‖Ay(j) + r̂‖���.

The new approximate solution x̃+ = x̂ + y(j) satisfies the discrepancy principle, and we determine its orthogonal
projection x̂ onto the set S+. If x̂ satisfies the discrepancy principle, then we are done; otherwise a correction y(j) of x̂
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Table 2
Example 1: comparison of solution methods

Method � ‖x̂ − x̆‖/‖x̆‖ Mat.–vec. products

Algorithm 1 1 · 10−1 1.36 · 10−2 18
PRRRGMRES 1.14 · 10−2 10
PRCG 1.20 · 10−2 22

Algorithm 1 1 · 10−2 5.83 · 10−3 46
PRRRGMRES 5.55 · 10−3 26
PRCG 4.96 · 10−3 46

Algorithm 1 1 · 10−3 1.68 · 10−3 78
PRRRGMRES 2.56 · 10−3 244
PRCG 2.67 · 10−3 434

Algorithm 1 1 · 10−4 7.72 · 10−4 132
PRRRGMRES 1.13 · 10−3 644
PRCG 1.14 · 10−3 1696

is computed in the manner outlined. The computations proceed until an approximate solution x̂ of (1) has been found
that satisfies both the constraints and the discrepancy principle. While this scheme is not guaranteed to converge, it has
been found to work very well for many constrained linear discrete ill-posed problems when the error in the right-hand
side b is not very small; see [4] for further details on the PRCG method.

When the matrix A is square, then we may use the Range Restricted GMRES (RRGMRES) method to compute
approximate solutions of (1) and (31) instead of applying the conjugate gradient method to the associated normal
equations. We refer to this method as the Projected Restarted RRGMRES (PRRRGMRES) method; see [4] for details.

The RRGMRES method applied to the solution of (31) determines an approximate solution y(j) in the Krylov
subspace

Kj (A, Ar̂) = span{Ar̂, A2r̂, . . . , Aj r̂},
i.e., y(j) is in the range of A. RRGMRES often gives better approximations than standard GMRES when applied to the
solution of linear discrete ill-posed problems (1) with a right-hand side that has been contaminated by error; see, e.g.,
[5] for computed examples.

Table 2 shows the number of matrix–vector product evaluations required by Algorithm 1, as well as by the PRCG
and PRRRGMRES methods. The latter methods can be seen to require fewer matrix–vector product evaluations and
yield better approximations of x̆ than Algorithm 1 when � is not small. However, for small values of �, the PRCG and
PRRRGMRES methods are not competitive.

Example 2. This example is concerned with the restoration of an image that has been contaminated by blur and noise.
Fig. 5 shows a blur- and noise-free image, which is assumed to be unavailable. The image is represented by 128 × 128

pixels, whose values, ordered row wise, make up the entries of the vector x̆. The matrix A ∈ R1282×1282
represents a

blurring operator. Specifically, we let A be a symmetric block Toeplitz matrix with Toeplitz blocks of order 128, chosen
so that A models Gaussian blur with variance 1.2; see, e.g., Jain [10] for a discussion on the representation of images,
blurring operators, and image restoration. The vector x̆ and matrix A, which is of ill-determined rank, are generated by
the Matlab code blur from [9]. The vector b̆ = Ax̆ represents the blurred, noise-free, image associated with x̆. Let the

entries of e ∈ R1282
be normally distributed with zero mean and normalized to achieve certain specified noise levels

(30). The vector e represents noise and is added to b̆ to yield b; cf. (2). Thus, b represents the available blurred and
noisy image. The blurred and noisy image with noise level � = 1.0 · 10−2 is shown in Fig. 6.

The Matlab code blur scales the entries of x̆ to be between 0 and 4. We therefore apply Algorithm 1 with �i = 0 and
ui = 4 for 1� i�1282.

Table 3 displays results obtained by Algorithm 1 for several noise levels � and the discrepancy factor � = 1. Fig. 7
displays the image represented by the vector x̃+ determined in step 2 of Algorithm 1 when � = 1.0 · 10−2, and Fig. 8
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Fig. 5. Example 2: blur- and noise-free image.

Fig. 6. Example 2: blurred and noisy image, � = 1.0 · 10−2.
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Fig. 7. Example 2: restored image represented by x̃+, � = 1.0 · 10−2.

Fig. 8. Example 2: restored image represented by x̂, � = 1.0 · 10−2.
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Table 3
Example 2: blur test problem

� ‖x̃+ − x̆‖/‖x̆‖ ‖x̂ − x̆‖/‖x̆‖ Outer iterations Inner iterations Mat.–vec. products

1 · 10−1 2.50 · 10−1 2.32 · 10−1 3 5 16
1 · 10−2 1.90 · 10−1 9.32 · 10−2 4 37 82
1 · 10−3 1.25 · 10−1 4.80 · 10−2 6 227 466

Fig. 9. Example 3: blur- and noise-free surface.

shows the image represented by the output x̂ from the algorithm. The figures illustrate that imposing box constraints
can yield images of significantly higher quality. Table 3 shows the computational work to increase as � is decreased.

Example 3. We are concerned with the restoration of a single-valued surface discretized by a 256 × 256 grid with
values in the range [0, 2.2 ·10−2]. Fig. 9 shows the blur- and noise-free surface, which is assumed to be unavailable. The

surface values are stored row-wise in the vector x̆ ∈ R2562
. The blurring operator A ∈ R2562×2562

is a nonsymmetric
block Toeplitz matrix with nonsymmetric Toeplitz blocks of size 256×256. The structure of the matrix makes it possible
to evaluate matrix–vector products with A and AT by the fast Fourier transform. The matrix A is of ill-determined rank.

The blurred, but noise-free, surface associated with x̆ is given by b̆ = Ax̆. Let the vector e ∈ R2562
have normally

distributed entries with zero mean and be scaled so as to yield specified noise levels (30). The vector b defined by (2)
represents the available blurred and noisy surface; Fig. 10 shows the surface for noise level � = 1.0 · 10−2.

We apply Algorithm 1 to determine approximations of x̆ and require all entries of the computed vectors x̃+ and x̂ to
be bounded below by 0 and above by 2.2 · 10−2. This forces the values of the restored surface to be in the range of the
blur- and noise-free surface.

Table 4 summarizes results obtained by Algorithm 1 for several noise levels with different discrepancy factors �.
The differences x̃+ − x̆ and x̂+ − x̆ can be seen to increase with � for fixed � = 1 · 10−2, but the computational work
required by Algorithm 1 decreases.

Fig. 11 shows the surface represented by the vector x̃+ determined in step 2 of the algorithm when � = 1.0 · 10−2,
and Fig. 12 displays the surface represented by the output x̂ of the algorithm. The oscillations around the base of the
“towers” are much smaller in Fig. 12 than in Fig. 11.
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Fig. 10. Example 3: blurred and noisy surface, � = 1.0 · 10−2.

Table 4
Example 3: surface test problem of size 2562

�|�|�� ‖x̃+ − x̆‖/‖x̆‖ ‖x̂ − x̆‖/‖x̆‖ Outer|inner iterations Mat.–vec. products

1 · 100|1|3.3 · 10−1 5.4 · 10−1 1 · 10−1 5|23 60
1 · 10−1|1|3.3 · 10−2 3.5 · 10−1 2.4 · 10−1 7|86 192
1 · 10−2| 3

2 |4.9 · 10−3 3.3 · 10−1 3.0 · 10−1 4|49 109
1 · 10−2|2|6.5 · 10−3 3.6 · 10−1 3.5 · 10−1 4|38 87
1 · 10−3|2|6.5 · 10−4 2.7 · 10−1 1.9 · 10−1 8|188 399

Fig. 11. Example 3: restored surface represented by x̃+, � = 1.0 · 10−2

5. Conclusion and future work

This paper presents a new iterative method of active set-type for the solution of large linear discrete ill-posed problems
with box constraints. The method is a two-level iterative scheme, in which the inner iterations are terminated by the
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Fig. 12. Example 3: restored surface represented by x̂, � = 1.0 · 10−2.

discrepancy principle. The computed examples illustrate that the method can yield solutions of significantly higher
quality than solution methods that do not explicitly impose constraints on the computed approximate solution.

The method of the present paper is a modification of schemes proposed by Bierlaire et al. [2] and Lötstedt [13]. It
may be possible to develop other competitive methods for large-scale constrained linear discrete ill-posed problems by
adapting other methods for large-scale constrained optimization available in the literature, such as projected gradient
methods, in particular if the columns of the matrix A can be accessed inexpensively. We are currently investigating this
issue.
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