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Abstract

We develop and analyze a new affine scaling Levenberg–Marquardt method with nonmonotonic interior backtracking line
search technique for solving bound-constrained semismooth equations under local error bound conditions. The affine scaling
Levenberg–Marquardt equation is based on a minimization of the squared Euclidean norm of linear model adding a quadratic
affine scaling matrix to find a solution that belongs to the bounded constraints on variable. The global convergence results are devel-
oped in a very general setting of computing trial directions by a semismooth Levenberg–Marquardt method where a backtracking
line search technique projects trial steps onto the feasible interior set. We establish that close to the solution set the affine scaling
interior Levenberg–Marquardt algorithm is shown to converge locally Q-superlinearly depending on the quality of the semismooth
and Levenberg–Marquardt parameter under an error bound assumption that is much weaker than the standard nonsingularity condi-
tion, that is, BD-regular condition under nonsmooth case. A nonmonotonic criterion should bring about speed up the convergence
progress in the contours of objective function with large curvature.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider and analyze the problem of finding a solution of nonsmooth equation systems subjective
to the bound constraints on variable:

H(x)= 0, x ∈ �
def={x|l�x�u}. (1.1)

Hereby, the function H : X ⊆ Rn → Rm is defined on the open set X containing the n-dimensional feasible box

constraint set �
def=[l, u] def={x ∈ Rn|li �xi �ui, i=1, . . . , n}. The vectors l ∈ (R∪{−∞})n and u ∈ (R∪{+∞})n are

specified lower and upper bounds on the variables such that int(�)
def={x|l < x < u} is nonempty. Note that the dimensions

n and m do not necessarily coincide, that is, we consider systems of nonlinear equations (whose generalized Jacobian
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not necessarily square) and want to find a solution that belongs to a certain feasible set. We denote by X∗ the set of
solutions to the constrained systems (1.1).

Nonsmooth systems (1.1) arise naturally in systems of equations modelling real-life problems when not all the
solutions of the model have physical meaning. Various sources of nonlinear nonsmooth equations with the box con-
straint � drawn from mixed nonlinear complementarity problems, nonlinear optimization and variational inequality
problems have been described. In the classic methods for solving an unconstrained square system of nonlinear equa-
tions, when the function H(x) is a continuously differentiable function, quasi-Newton methods, Levenberg–Marquardt
methods, etc. can be used that have local fast convergence properties under a nonsingularity (BD-regular condition
under nonsmooth case where “BD” stands for Bouligand differential) assumption at the solution. The nonsingularity
(or BD-regular condition) assumption implies that the solution is locally unique. Much analysis of many well-known
algorithms have been done on smooth nonlinear equations but on nonsmooth nonlinear equations based on conver-
gent analysis. Generally, a basis Gauss–Newton- or Levenberg–Marquardt-type approach has been used in order to
ensure global convergence toward local minima of nonlinear least squares reformulation of unconstrained nonsmooth
equations (see [8]). Recently, An and Bai also proposed the globally convergent Newton–GMRES methods for solving
large unconstrained (sparse) systems of nonlinear equations (see [1–3]). The possibility of dealing with constrained
nonsmooth equations is very important (see [4]). However, globally convergent methods for the unconstrained semis-
mooth systems may be unsuited for the purpose of solving (1.1), since a vector x∗ satisfies H(x) = 0, but does not
belong to �. Ulbrich in [15] presented a class of double trust-region approaches with a projection onto the feasible
set for bound-constrained semismooth square systems of equations (1.1). Ulbrich further proved that close to a regular
solution the algorithm turns into this projected Newton method, which is shown to converge locally Q-superlinearly
or quadratically, respectively, depending on the quality of the approximate subdifferentials used under the BD-regular
condition and by allowing for inexactness in the computation of B-subdifferentials (where “B” stands for Bouligand).
Recently, Kanzow et al. in [8] presented Levenberg–Marquardt-type algorithms for solving a strictly convex minimiza-
tion problem in which the smooth function H is not required nonsingularity assumption, but satisfies an error bound
condition. The main disadvantage of this method is that it has to solve relatively complicated quadratic programming
subproblems at each iteration in the special case where the set � is polyhedral, and convex minimization problems in the
general case. The search direction generated in the subproblem must satisfy strict interior feasibility, which results in
computational difficulties and hence the total computational effort for completing one iteration might be expensive and
difficult. Stimulated by the progress in these aspects, we present a variant of affine scaling Levenberg–Marquardt-type
method that solves only a system of linear equations per iteration in order to avoid the drawback of the compli-
cated quadratic programming subproblems. The new proposed algorithm is locally Q-superlinearly convergent under
a weaker assumption that, in particular, allows the solution set to be (locally) nonunique. To this end, we replace the
nonsingularity (BD-regular condition) assumption by an error bound condition. This is motivated by the recent paper
[8] that deals with convex constrained equations. Another nonmonotone idea also motivates the study of affine scaling
Levenberg–Marquardt method in association with nonmonotone interior backtracking line search technique for approx-
imating zeros of the semismooth equations (1.1) which should bring about speeding up the convergence progress in some
ill-conditioned cases.

The organization of the article is as follows: In Section 2, we introduce the squared Euclidean norm to quadratic
model of the semismooth systems (1.1) and design the nonmonotone affine scaling Levenberg–Marquardt algorithm
with backtracking interior point technique for solving (1.1). In Section 3, we prove the global convergence of the
proposed algorithm. We discuss further the convergence property and characterize the order of local convergence of
the Newton methods in terms of the rates of the relative residuals without the nonsingularity (BD-regular condition
under nonsmooth case) assumption in Section 4. We write the following notations.

Notations: (x)i denotes the ith component of the vector x. The Euclidean norm is denoted by ‖ · ‖, B�(x)
def={y ∈

Rn|‖y − x‖��} is the closed ball centered at x with radius � > 0, dist(y, X∗) def= inf{‖y − x‖|x ∈ X∗} denotes the
distance from a point y to the solution set X∗, and P�(x) is the projection of a point x ∈ Rn onto the feasible set �.

2. Algorithm

This section describes and investigates the affine scaling Levenberg–Marquardt method in association with nonmono-
tonic interior point backtracking technique for solving a bound-constrained semismooth minimization reformulated by
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the bound-constrained semismooth systems (1.1) under a weaker assumption that, in particular, allows the solution set
to be (locally) nonunique.

For convenience, we collect first concepts about nonsmooth analysis and we first assume that the function H to be
considered is locally Lipschizian. We say that H : X ⊂ Rn → Rm is directionally differentiable at x ∈ X ⊆ Rn if
the direction derivative

H ′(x; d)
def= lim

�→0+
H(x + �d)−H(x)

�

exists for all d ∈ Rn and hence is said to be B-differentiable at a point x if it is directional differentiable at x and

lim
d→0

H(x + d)−H(x)−H ′(x; d)

‖d‖ = 0. (2.1)

In a finite-dimensional Euclidean spaceRn, Shapiro [14] showed that a locally Lipschizian function H is B-differentiable
at x if and only if it is directional differentiable at x. For such function H is locally Lipschizian, Rademacher’s theorem
implies that H is almost everywhere F-differentiable. Then for any x ∈ Rn the generalized subdifferential of H at x in
the sense of Clarke [5] is

�H(x)= conv {lim ∇H(xj ) : xj → x, H is F-differentiable at xj } (2.2)

which is a nonempty convex compact set. We call �BH(x) the B-subdifferential of H at x whose concept and explanation
were introduced in [10,11]. We say that H is semismooth at x if H is locally Lipschizian there and if any d ∈ Rn with
d �= 0,

lim
y→dx
{V d | V ∈ �H(d)} (2.3)

exists where y→dx is said that y tends to x in the direction d. If H is semismooth at x, then H must be directionally
differentiable (B-differentiable) at x and H ′(x; d) is equal to the above limit for any d �= 0. If H is semismooth at all
points in a given set, we say that H is semismooth in this set. Furthermore, If H : X ⊆ Rn → Rm is directionally
differentiable at a neighborhood of x, then H ′(x; ·) is Lipschizian and there exists a V ∈ �H(x) such that H ′(x; d)=V d

for any d. In [12], Qi and Sun gave the following lemma.

Lemma 2.1. Suppose that H : Rn → Rm is directionally differentiable at a neighborhood of x. The following
statements are equivalent:

(1) H is semismooth at x;
(2) H ′(·; ·) is semicontinuous at x, that is, for every � > 0 there exists a neighborhood N of x such that for all

x + d ∈N, ‖H ′(x + d; d)−H ′(x; d)‖��‖d‖;
(3) for any V ∈ �H(x + d), d → 0, V d −H ′(x; d)= o(‖d‖);
(4) H is F-differentiable at any x + d , limd→0H

′(x + d; d)−H ′(x; d)/‖d‖ = 0.

In [5], Clarke gave that for any x, y ∈ Rn,

H(y)−H(x) ∈ conv �H([x, y])(y − x), (2.4)

where the right-hand side denotes the convex hull of all points of form V (y − x) with V ∈ �H(u) for some point u in
[x, y]. It is known (see [10, Proposition 1]) that semismoothness of H at x implies that

sup
V∈�H(x+d)

{H(x + d)−H(x)− V d} = o(‖d‖). (2.5)

It is obvious that if H is continuously differentiable in a neighborhood of x ∈ X, then H is semismooth at x and
�H(x)= �BH(x)= {∇H(x)}.

Typically, global extension of the semismooth Newton methods requires the additional assumption of the natural
merit function h : Rn→ R1 as follows

h(x)
def= 1

2 H(x)TH(x),
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where h is continuously differentiable when the function H is semismooth. We safeguard this locally convergent iteration
by a Levenberg–Marquardt-type globalization that is based on the minimization reformulation

minimize h(x)
def= 1

2 ‖H(x)‖2 subject to x ∈ �
def={x|l�x�u}. (2.6)

As motivated above, a classical algorithm for solving the constrained semismooth equations (1.1) will be based on the
reformulated problem (2.6). Basically, the concept of nonsmooth (Gauss–Newton) Levenberg–Marquardt-type method
is to make Newton-like method globally convergent while maintaining its excellent local convergence behavior. Now,
we begin the description of the affine scaling interior Levenberg–Marquardt-type method with its core, the underlying
Newton-like iteration.

Ignoring primal and dual feasibility of the reformulated problem (2.6), the first-order necessary conditions for x∗ to
be a local minimizer and⎧⎪⎨⎪⎩

(g∗)i = 0 if li < (x∗)i < ui,

(g∗)i �0 if (x∗)i = li ,

(g∗)i �0 if (x∗)i = ui,

where g(x)
def= ∇h(x). The scaling matrix Dk =D(xk) arises naturally from examining the first-order necessary con-

ditions for the bound-constrained nonlinear minimization transformed by the bound-constrained problem (1.1), where
D(x) is the diagonal scaling matrix suggested in [5] such that

D(x)
def= diag{|�1(x)|−1/2, . . . , |�n(x)|−1/2} (2.7)

and the ith component of vector �(x) defined componentwise as follows:

�i (x)
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x)i − ui if (g)i < 0 and ui <+∞,

(x)i − li if (g)i �0 and li >−∞,

−1 if (g)i < 0 and ui =+∞,

1 if (g)i �0 and li =−∞.

(2.8)

Definition 2.1 (Coleman and Li [6]). A point x ∈ � is nondegenerate if, for each index i,

gi(x)= 0 
⇒ li < (x)i < ui , (2.9)

where gi(x) is the ith component of vector g(x). A reformulated problem (2.6) is nondegenerate if (2.9) holds for every
x ∈ �.

The Levenberg–Marquardt-type equation and the affine scaling matrix Dk arise naturally from examining the
Kuhn–Tucker conditions for the reformulated problem (2.6),

D−2(x)g(x)=D−2(x)V (x)TH(x)= 0 for V (x) ∈ �BH(x). (2.10)

We remark that, even though D(x) may be undefined on the boundary of �, D(x)−1 can be extended continuously to
it. We will denote this extension as a convention by D(x)−1 for all x ∈ �. The basic idea is based on the local linear
approximation of the squared Euclidean norm of the semismooth systems (2.6) at xk and hence the affine scaling trust
region subproblem is

min �k(d)
def= 1

2 ‖Mkd +Hk‖2 = 1
2 ‖Hk‖2 +HT

k Mkd + 1
2 dT(MT

k Mk)d

s.t. ‖Dkd‖��k ,

where �k is the trust region radius, Mk is an approximation to Vk ∈ �H(xk) or Mk = Vk ∈ �H(xk). The Levenberg–
Marquardt method is a modified trust region strategy that is designed to maintain advantages of trust region method.
Examining the Kuhn–Tucker conditions (2.10) and considering the transformation d̂k =Dkdk , we take the continuous
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differentiability of the merit function h for granted, and return to building the global minimum of the affine scaling
quadratic model

(Pk) min 	k(d̂)
def= 1

2 ‖Hk‖2 + (D−1
k gk)

Td̂ + 1
2 d̂TD−1

k (MT
k Mk)D

−1
k d̂ + 1

2 
kd̂
Td̂,

where 
k > 0 is a positive parameter and quadratic affine scaling matrix model 1
2 
kd̂

Td̂ is added instead of the affine
scaling trust region subproblem. We now state an affine scaling Levenberg–Marquardt-type method applied to the
solution of the semismooth problem (1.1). Let d̂k be the solution of the subproblem (Pk). Since 	k(d̂) is a strick convex
function, d̂k is also the global minimum of the subproblem (Pk) which is in fact equivalent to solving the following
affine scaling Levenberg–Marquardt-type equation

(D−1
k MT

k MkD
−1
k + 
kI )d̂k =−D−1

k ∇h(xk)=−D−1
k V T

k Hk , (2.11)

where Mk�Vk ∈ �BH(xk) and 
k > 0 is a positive parameter. The relevance of the used affine scaling matrix D−1
k

and scaling matrix 
kI depends on the fact that the affine scaled Levenberg–Marquardt trial step dk =D−1
k d̂k is angled

away from the approaching bound. Consequently the bounds will not prevent a relatively large stepsize along dk from
being taken. In order to maintain the strict interior feasibility, a step-back tracking along the solution dk of the Eq.
(2.11) could be required by the strict interior feasibility and nonmonotonic line research technique.

Now, we describe an affine scaling Levenberg–Marquardt algorithm with nonmonotonic interior backtracking line
search technique for approximating zeros of the bound-constrained semismooth Equations (1.1) under an error bound
assumption.

Algorithm
Initialization step
Choose parameters � ∈ (0, 1

2 ), � ∈ (0, 1), ε > 0, 0 < 
l < 1 and positive integer M as nonmonotonic parameter. Let
m(0)= 0. Give a starting point x0 ∈ int(�) ⊂ Rn, select an initial matrix M0 approximate to V0 ∈ �H(x0). Set k= 0,
go to the main step.

Main step

1. Evaluate hk=h(xk)
def= 1

2 ‖H(xk)‖2 and Mk�Vk ∈ �H(xk). Calculate Dk given in (2.7) and gk=∇h(xk)
def= V T

k Hk .

2. If ‖D−1
k gk‖�ε, stop with the approximate solution xk .

3. Solve a step d̂k , based on the affine scaled Levenberg–Marquardt equation

(D−1
k MT

k MkD
−1
k + 
kI )d̂k =−D−1

k ∇h(xk) (2.12)

and set

dk =D−1
k d̂k . (2.13)

4. Choose �k = 1, �, �2, . . . ,�lk with lk the smallest nonnegative integer such that

h(xk + �kdk)�h(xl(k))+ �k�gT
k dk (2.14)

with xk + �kdk ∈ �, (2.15)

where h(xl(k))=max0� j �m(k){h(xk−j )}.
5. Set

sk
def=
{

�kdk if xk + �kdk ∈ int(�),


k�kdk otherwise,

where 
k ∈ (
l , 1] and 
k − 1= O(‖dk‖) and then set

xk+1 = xk + sk . (2.16)

6. Take the nonmonotone control parameter m(k + 1)=min{m(k)+ 1, M} and update Mk to obtain Mk+1�Vk+1 ∈
�H(xk+1). Then set k← k + 1 and go to step 1.
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Remark 1. The scalar �k given in (2.15) of step 4, denotes the step size along the direction dk to the boundary on the
variables l�xk + �kdk �u, that is, �k ∈ (0, �k] and

�k
def= min

{
max

{
li − (xk)i

(dk)i
,
ui − (xk)i

(dk)i

}
, i = 1, 2, . . . , n

}
(2.17)

where �k =+∞ if (dk)i = 0 for all i = 1, 2, . . . , n.

Remark 2. In order to investigate the convergence properties of our algorithm, we assume that the termination pa-
rameter ε is equal to zero and Mk = Vk ∈ �H(xk). We further note that the proposed algorithm is well defined since

k > 0 and the search direction d̂k is always a descent direction for the merit function h.

In order to obtain the global convergence result, for the sake of simplicity, we assume that from examining the
Kuhn–Tucker conditions (2.10), 
k is given in this paper by


k
def= �‖∇h(xk)‖ = �‖V T

k Hk‖, Vk ∈ �H(xk) (2.18)

for a certain constant ��1, although several other choices of 
k yield the same result including the more realistic
choices


k
def= min{�1, �2‖D−1

k ∇h(xk)‖}
for certain constants �1, �2 > 0. Note that these choices are consistent with the requirements for local superlin-
ear/quadratic convergence in the following sections.

3. Convergence analysis

Throughout this section we assume that H : X ⊂ Rn→ Rm is semismooth. Given x0 ∈ int(�) ⊂ Rn, the algorithm
generates a sequence {xk} ⊂ � ⊂ Rn. In our analysis, we denote the level set of h by

L(x0)= {x ∈ Rn|h(x)�h(x0), l�x�u}.
The following assumption is commonly used in convergence analysis of most methods for the constrained systems.

Assumption (A1). Sequence {xk} generated by the algorithm is contained in a compact set L(x0) on Rn.

Assumption (A2). There exist some positive constants �D and �V such that

‖D(x)−1‖��D, ‖V ‖��V , ∀V ∈ �H(x), ∀x ∈L(x0). (3.1)

Ulbrich established the continuous differentiability of the merit function h which can be found from Lemma 4.2
in [15].

Lemma 3.1. Under the Assumptions (A1) and (A2) on the mapping H, the merit function h(x)
def= 1

2 ‖H(x)‖2 is
continuously differentiable on X with gradient ∇h(x)= V TH(x), where V ∈ �H(x) is arbitrary.

Lemma 3.2. If ‖D−1
k gk‖ �= 0, then the proposed algorithm will produce an iterate xk+1=xk+�kdk in a finite number

of backtracking steps in (2.14)–(2.15).

Proof. Since ‖D−1
k g(xk)‖ �= 0, by continuity there exist � > 0 and ε > 0 such that ‖D(x)−1g(x)‖�ε for all x with

‖xk − x‖��. Hence, 
(x)
def= �‖g(x)‖��‖D(x)−1g(x)‖/‖D(x)−1‖��ε/�D for all x with ‖xk − x‖��. It is clearly

to see that �k will satisfy �k ��k in a finite number of backtracking reductions where �k given in (2.17). Using the
mean value theorem, we have that with 0�ϑk �1,

h(xk + �kdk)= h(xk)+ ��k∇h(xk)
Tdk + {(1− �)�k∇h(xk)

Tdk

+ �k[∇h(xk + ϑk�kdk)− ∇h(xk)]Tdk}. (3.2)
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Since ∇h(x) is Lipschitzian continuous, there exists sufficiently small �k when ‖ϑk�kdk‖�� such that

|[∇h(xk + 
k�kdk)− ∇h(xk)]Tdk|� �ε(1− �)

2�D

‖dk‖2.

By the affine scaling Levenberg–Marquardt equation (2.12), we have that noting the matrix V T
k Vk is positive semidefinite

[∇h(xk)]Tdk = − d̂T
k (D−1

k V T
k VkD

−1
k + 
kI )d̂k

� − 
kd̂
T
k d̂k � − �‖∇h(xk)‖‖dk‖2 � − �ε

�D

‖dk‖2, (3.3)

where the last inequality is deduced by ‖dk‖�‖D−1
k d̂k‖��D‖d̂k‖. This gives that after a finite number of reductions,

the last term in brackets in the right-hand side of (3.2) will become negative and the corresponding �k will be acceptable.
Since h(xk)�h(xl(k)), the conclusion of the lemma holds. �

Theorem 3.3. Let {xk} be a sequence generated by the proposed algorithm. Assume that Assumptions (A1)–(A2) and
the nondegenerate condition of the reformulated problem (2.6) hold, then

lim inf
k→∞ ‖D

−1
k ∇hk‖ = lim inf

k→∞ ‖D
−1
k V T

k Hk‖ = 0, (3.4)

where Vk ∈ �H(xk).

Proof. According to the acceptance rule in step 4, we have

h(xl(k))− h(xk + �kdk)� − ��kg
T
k dk =−��k(D

−1
k V T

k Hk)
T(Dkdk). (3.5)

Taking into account that m(k+ 1) � m(k)+ 1, and h(xk+1) � h(xl(k)), we have h(xl(k+1))�max0� j �m(k)+1
{h(xk+1−j )} = h(xl(k)). This means that the sequence {h(xl(k))} is nonincreasing for all k and hence {h(xl(k))} is
convergent.

By (2.16) and (3.3), for all k > M , we get

h(xl(k))� max
0� j �m(l(k)−1)

{h(xl(k)−j−1)} + �l(k)−1�∇hT
l(k)−1dl(k)−1

� max
0� j �m(l(k)−1)

{h(xl(k)−j−1)} − �l(k)−1��‖V T
l(k)−1Hl(k)−1‖‖dl(k)−1‖2. (3.6)

If the conclusion of the theorem is not true, there exists some ε > 0 such that

‖D−1
k V T

k Hk‖�ε, k = 1, 2, . . . . (3.7)

Hence, ‖V T
k Hk‖�‖D−1

k V T
k Hk‖/‖D−1

k ‖�ε/�D . As {h(xl(k))} is convergent, we obtain that from (3.7),

lim
k→∞ �l(k)−1‖dl(k)−1‖2 = 0.

Following the way of proof used in [7], we can also prove by induction that

lim
k→∞ �k‖dk‖2 = 0. (3.8)

Therefore, we have that either Case (I)

lim inf
k→∞ �k = 0, (3.9)

or Case (II)

lim
k→∞‖dk‖2 = 0 (3.10)

holds.
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Case (I), assume that �k given in step 4 is the stepsize to the boundary of box constraints along dk . From (2.17),
we have

�k
def= min

{
max

{
li − (xk)i

(dk)i
,
ui − (xk)i

(dk)i

}
, i = 1, 2, . . . , n

}
.

If (3.9) holds, we have that there exists a subset K ⊂ {k} such that

lim
k→∞, k∈K

�k = 0

and hence, without loss of generality, assume (x∗)i = li for some i where x∗ is any accumulation point of the sequence
{xk} and without loss of generality, {xk}K a subsequence converging to x∗. Call (2.12), we can write


kdk =−D−2
k [∇hk + (V T

k Vk)dk]. (3.11)

Since 
k is a positive parameter, and x∗ is nondegenerate with (v∗)i = 0 for any i, we have that from x∗i = li < ui for
some i, (dk)i and −(gk)i have the same sign for k sufficiently large. Hence, if �k is defined by some (v∗)j = 0 and
(g∗)j �= 0, then �k = |(vk)j |/|(dk)j | for k sufficiently large. Using (3.11), again, it is rewritten as follows:

�k = 
k

|(gk)j + (V T
k Vkdk)j |

� 
k

‖gk + V T
k Vkdk‖∞

. (3.12)

It is clear that from (3.12) and 
k = �‖g(xk)‖ = �‖V T
k Hk‖��ε/�D , �k given in step 4 is the stepsize to the boundary

of box constraints along dk ,

lim inf
k→∞ �k � lim inf

k→∞
�ε

�D‖gk + V T
k Vkdk‖∞

> 0. (3.13)

Furthermore, if (3.9) holds, the acceptance rule (2.14) means that, for large k,

�k

�
gT

k dk + o
(�k

�
‖dk‖

)
= h

(
xk + �k

�
dk

)
− hk �h

(
xk + �k

�
dk

)
− h(xl(k))��

�k

�
gT

k dk .

Hence, we have

(1− �)
�k

�
gT

k dk + o
(�k

�
‖dk‖

)
�0. (3.14)

Dividing (3.14) by (�k/�)‖dk‖ and noting gT
k dk �0, we have

lim
k→+∞

gT
k dk

‖dk‖ = 0. (3.15)

From (3.3) and (3.7), we have that (3.15) means

0= lim
k→+∞

gT
k dk

‖dk‖ � lim
k→+∞−

�ε

�D

‖dk‖2
‖dk‖ �0. (3.16)

This also means that limk→+∞,k∈K‖dk‖ = 0 and hence (3.10) holds, that is, Case (II) holds.
On the other hand, i.e., Case (II), taking into account that {dk}K → d∗ = 0 and {xk}K → x∗, we obtain from the

affine scaling Levenberg–Marqwarddt equation (2.12) that

− [D−1
k ∇h(xk)]T[D−1

k V T
k VkD

−1
k + 
kI ][D−1

k ∇h(xk)]
= [D−1

k ∇h(xk)]Td̂k = [∇h(xk)]Tdk → 0. (3.17)

Since {xk}K→ x∗, we get from the upper semicontinuity of the B-subdifferential that the sequence {Vk}K is bounded.
Without loss of generality, we therefore have {Vk}K → V∗ for some matrix V∗ ∈ �BH(x∗). Since D(x)−1∇h(x) is
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continuous, we also obtain {D−1
k ∇h(xk)}K→ D−1∗ ∇h(x∗) and therefore {
k}K→ 
∗ with 
∗

def= �‖∇h(x∗)‖�0. We
can obtain that

−[D−1∗ ∇h(x∗)]T[D−1∗ V T∗ V∗D−1∗ + 
∗I ]−1[D−1∗ ∇h(x∗)] = 0.

This shows that x∗ is a stationary point of D(x)−1∇h(x). Hence the conclusion of the theorem is true. �

Theorem 3.3 indicates that at least one limit point of {xk} is a stationary point. Next, we shall extend this theorem to
a stronger global convergent result.

Theorem 3.4. Let {xk} be a sequence generated by the proposed algorithm. Assume that Assumptions (A1)–(A2) and
the nondegenerate condition of the reformulated problem (2.6) hold, then

lim
k→+∞‖D

−1
k gk‖ = lim

k→+∞‖D
−1
k V T

k Hk‖ = 0. (3.18)

Proof. Assume that there are an ε1 ∈ (0, 1) and a subsequence {D−1
mi

gmi
} of {D−1

k gk} such that for all mi, i=1, 2, . . . ,

‖D−1
mi

gmi
‖�ε1. (3.19)

Theorem 3.3 guarantees the existence of another subsequence {D−1
ni

gni
} such that

‖D−1
k gk‖�ε2 for mi �k < ni (3.20)

and

‖D−1
ni

gni
‖�ε2 (3.21)

for an ε2 ∈ (0, ε1).
Since the matrix (D−1

k V T
k VkD

−1
k + 
kI ) is nonsingular in the affine scaling Levenberg–Marqwardt equation (2.12),

we have that

∇h(xk)
Tdk = − [D−1

k ∇h(xk)]T(D−1
k V T

k VkD
−1
k + 
kI )−1[D−1

k ∇h(xk)]

� − ‖D−1
k ∇h(xk)‖2

‖D−1
k V T

k VkD
−1
k ‖ + 
k

(3.22)

and hence, by (3.3), i.e.,

∇h(xk)
Tdk � − ‖D−1

k ∇h(xk)‖‖dk‖2, (3.23)

we have that

(∇h(xk)
Tdk)

2 �
‖D−1

k ∇h(xk)‖3
‖(D−1

k V T
k VkD

−1
k ‖ + 
k

‖dk‖2. (3.24)

This gives that from the matric ‖D−1
k V T

k VkD
−1
k ‖ and 
k = �‖V T

k Hk‖ being bounded

∇h(xk)
Tdk � − ‖D

−1
k ∇h(xk)‖3/2‖dk‖√
‖D−1

k V T
k VkD

−1
k ‖ + 
k

� −
√

ε3
2‖dk‖

�D

√
�2
V �2

D + ��V �H

. (3.25)

Similar to the proof of Theorem 3.3, we have that the sequence {h(xl(k))} is nonincreasing for mi �k < ni , and hence

{h(xl(k))} is convergent. Eqs. (3.20) and (3.6) mean that from setting �
def=
√

ε3
2/�D

√
�2
V �2

D + ��V �H ,

h(xl(k))�h(xl(l(k)−1))− ��l(k)−1�‖dl(k)−1‖. (3.26)
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That {h(xl(k))} is convergent means

lim
k→∞ �l(k)−1‖dl(k)−1‖ = 0.

Similar to the proof of (3.8) in Theorem 3.3, we have also that

lim
k→∞ �k‖dk‖ = 0. (3.27)

Therefore, similar to the proof of (3.13), we can also get that there exists a subset K ⊂ {k} such that

�k�k∈K0, (3.28)

where �k give in the step size to the boundary of box constraints along dk , that is, the step size {�k} cannot converge
to zero.

Since ∇h(x) is continuous, and (3.27) holds, we have that for � given in (3.26),

|[∇h(xk + �k
k�kdk)− ∇h(xk)]Tdk|� 1
2 (1− �)�‖dk‖. (3.29)

Similar to prove (3.2), using the mean value theorem, (3.25) and (3.29) mean that

h(xk + �k
kdk)= h(xk)+ ��k
k∇h(xk)
Tdk + (1− �)�k
k∇h(xk)

Tdk

+ �k[∇h(xk + �k
k�kdk)− ∇h(xk)]Tdk

�h(xk)+ ��k
k∇h(xk)
Tdk , (3.30)

where �k ∈ [0, 1] and the last second inequality is deduced since the last term in brackets in the right-hand side of
equality in (3.30) will become negative when �k
k‖dk‖ is small enough. And hence the corresponding 
k → 1, as
‖dk‖ → 0. From (3.30) and (3.25), this means that for sufficiently large i, mi �k < ni ,

hk − h(xk + sk)��k�∇h(xk)
Tdk ���
l�k‖dk‖. (3.31)

We then deduce from this bound that for i sufficiently large,

‖xmi
− xni

‖�
ni−1∑
k=mi

‖xk − xk+1‖�
ni−1∑
k=mi

�k‖dk‖

� 1

��
l

ni−1∑
k=mi

[hk − h(xk + sk)] = 1

��
l

(hmi
− hni

). (3.32)

Therefore, (3.24) implies that hmi
− hni

tends to zero as i tends to infinity. (2.8) implies |(vmi
)j − (vni

)j |� |(xmi
)j −

(xni
)j | → 0, as i tends to infinity. Finally, from (3.21)–(3.22) and triangle inequality, we get that from ‖V T

mi
Hmi
−

V T
ni

Hni
‖��V ‖xmi

− xni
‖ and assuming ‖xmi

− xni
‖�ε2,

ε1 �‖D−1
mi

V T
mi

Hmi
‖

�‖D−1
mi
‖‖V T

mi
Hmi
− V T

ni
Hni
‖ + ‖(D−1

mi
−D−1

ni
)V T

ni
Hni
‖ + ‖D−1

ni
V T

ni
Hni
‖

�(�Dε2 + �V �H ε2 + ε2)

which contradicts ε2 ∈ (0, ε1), for arbitrarily small. From above, the conclusion of the theorem is true. �

4. The local convergence

Throughout this section we assume that the function H is locally Lipschitz continuous in the region of interest. To
establish the (local) convergence results for the proposed algorithm, we need the following assumptions in [16] under
the basic properties of the B-differentiable function H at any point x∗ ∈ X∗.
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Assumption (A3). The solution set X∗ of problem (1.1) is nonempty. For some solution x∗ ∈ X∗, there exist constants
� > 0, �1 > 0, �2 > 0 and local Lipschitz constant L > 0 such that the following inequalities hold:

�1 dist(x, X∗)�‖H(x)‖, ∀x ∈ B�(x
∗) ∩ �, (4.1)

‖H(x)−H(xk)− Vk(x − xk)‖��2‖x − xk‖2, ∀Vk ∈ �H(xk), ∀x, xk ∈ B�(x
∗) ∩ �, (4.2)

‖H(x)−H(y)‖�L‖x − y‖, ∀x, y ∈ B�(x
∗) ∩ �. (4.3)

Throughout this section, the constants �, �1, �2 and L that appear in the subsequent analysis are always the constants
from Assumption (A3).

Assumption (A3) only says that H is locally Lipschitzian in a neighborhood of the solution x∗. Of course, this
condition is automatically satisfied if H is a semismooth function. Assumption (A3) is a local error bound condition
and known to be much weaker than the more standard BD-regular zero of H at which H is semismooth in the case
where the generalized subdifferential exists. Due to Hoffman’s [13] famous error bound result, there exists � > 0
such that

� dist(x, X∗)�‖H(x)‖ + ‖P�(x)‖. (4.4)

If x ∈ B�(x
∗) ∩ � for some x∗ ∈ X∗, then P�(x) = 0. So, (4.4) reduces to � dist(x, X∗)�‖H(x)‖, which implies

condition (4.1). Since the function H is locally Lipschitz continuous in the region of interest, Pang [9] proved that if H
is B-differentiable on an open convex set D, then for any x, x + d, z ∈ D,

‖H(x + d)−H(x)−H ′(z; d)‖� sup
0� t �1

{‖H ′(x + td; d)−H ′(z; d)‖}.

Therefore, if H ′(z; d) is Lipschitz continuous at z ∈ D with Lipschitz constant L, then

‖H(x + d)−H(x)−H ′(z; d)‖�L max{‖x − z‖, ‖x + d − z‖}‖d‖,
which implies condition (4.2).

For this purpose of the locally convergent rate for the proposed algorithm, we need to prove following technical
lemma.

Lemma 4.1. Assume that Assumption (A3) holds. There exist constants �3 > 0 and �4 > 0 such that the following
inequalities hold for each xk ∈ B�/2(x

∗) ∩ � where x∗ ∈ X∗ is some nondegenerate solution (here without loss of
generality, ���2

1/L�2)

(a) ‖dk‖��3 dist(xk, X
∗);

(b) ‖H(xk)+ Vkdk‖��4 dist(xk, X
∗)3/2.

Proof. (a) Let x̄k ∈ X∗. Denote the closest solution to xk so that

‖xk − x̄k‖ = dist(xk, X
∗). (4.5)

In fact the affine scaling Levenberg–Marquardt-type equation is equivalent that d̂k is the global minimum of the
following subproblem:

(Pk) min 	k(d̂)
def= 1

2‖Hk‖2 + (D−1
k gk)

Td̂ + 1
2 d̂TD−1

k (MT
k Mk)D

−1
k d̂ + 1

2
kd̂
Td̂.

By the assumption xk ∈ B�/2(x
∗), we obtain

‖x̄k − x∗‖�‖x̄k − xk‖ + ‖xk − x∗‖�‖x∗ − xk‖ + ‖xk − x∗‖��

so that x̄k ∈ B�(x
∗) ∩ �. Since

‖H(xk)‖2 =H(xk)
T[H(x̄k)+ Vk(xk − x̄k)] +H(xk)

Trk ,
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where rk
def= H(xk)−H(x̄k)+ Vk(xk − x̄k), we have that

H(xk)
TVk(xk − x̄k)= ‖H(xk)‖2 −H(xk)

Trk .

From (4.1)–(4.3), we can obtain that from ‖rk‖��2‖xk − x̄k‖2,

‖H(xk)
TVk‖‖xk − x̄k‖��2

1‖xk − x̄k‖2 − L�2‖xk − x̄k‖3 �(�2
1 − L�2�/2)‖xk − x̄k‖2.

As �2
1/L�2 ��, we have that

‖V T
k H(xk)‖� �2

1

2
‖xk − x̄k‖. (4.6)

Moreover, the definition of 
k in the proposed algorithm together with (4.1) and (4.5) gives


k = �‖V T
k H(xk)‖� ��1

2
‖xk − x̄k‖ = ��1

2
dist(xk, X

∗). (4.7)

For the solution x∗ ∈ X∗, the nondegenerate condition of the reformulated problem (2.6) implies that there exists
sufficiently small � ∈ (0, 2] such that li + ��(x∗)i �ui − � for i = 1, . . . , n. For each xk ∈ B�/2(x

∗) ∩ �, then

|li − (xk)i |> �/2 and |ui − (xk)i |> �/2 for i = 1, . . . , n. Hence, ‖Dk‖�√2n/�
def= � where

√
2/��1.

Using (4.5) and (4.2), we obtain from the definition of the function 	k in the subproblem (Pk) that for ∀Vk ∈ �H(xk),

‖dk‖2 � 2


k

	k(d̂k)�
2


k

	k(Dk(x̄k − xk))

= 1


k

(‖H(xk)+ Vk(x̄k − xk)‖2 + 
k‖Dk(x̄k − xk)‖2)

� 1


k

‖H(xk)−H(x̄k)− Vk(xk − x̄k)‖2 + ‖Dk‖2‖x̄k − xk‖2

�
2�2

2

��1
‖xk − x̄k‖2 + �2‖xk − x̄k‖2 =

(
2�2

2

��1
+ �2

)
dist(xk, X

∗)2. (4.8)

Therefore, statement (a) holds with �3
def=
√

(2�2
2/��1)+ �2.

(b) Since (4.3) yields


k = �‖V T
k H(xk)‖ = ��V ‖H(xk)−H(x̄k)‖��L�V ‖xk − x̄k‖,

we have that from the above inequality, (4.2) and the definition of 	k in the subproblem (Pk),

‖H(xk)+ Vkdk‖2 �‖H(xk)−H(x̄k)− Vk(xk − x̄k)‖2 + 
k�
2‖x̄k − xk‖2

��2
2‖xk − x̄k‖4 + �L�V �2‖xk − x̄k‖2. (4.9)

Hence statement (b) holds with �4
def=
√

�2
2�+ �2�L�V . �

Theorem 4.2. Assume that Assumptions (A1)–(A3) hold. If there exists a limit point x∗ of the sequence {xk} generated
by the proposed algorithm such that x∗ ∈ int(�), then limk→∞ ‖Hk‖ = 0, and all the accumulation point solve the
semismooth systems (1.1).

Proof. For x∗ ∈ int(�), there exists sufficiently small � ∈ (0, 2] such that the open ballB(x∗, �)
def={x|‖x−x∗‖< �} ⊂

int(�).
Let {xkj

} be subsequence such that xkj
→ x∗ and j0 be the index such that for k > kj0 , the sequence {xkj

} belongs
to B(x∗, �/2). Assume kj > kj0 . Then |li − (xkj

)i |> �/2 and |ui − (xkj
)i |> �/2 for i = 1, . . . , n, where li , ui and

(xkj
)i are the ith components of l, u and xkj

, respectively. Hence, ‖Dkj
‖�√2n/� where

√
2/��1. Also, since

‖H(xk)‖2 =H(xk)
TH(xk)=H(xk)

T[H(x̄k)+ Vk(xk − x̄k)] +H(xk)
Trk ,
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we have that H(xk)
TVk(xk−x̄k)=‖H(xk)‖2−H(xk)

Trk . From (4.1)–(4.3), we can obtain that from ‖rk‖��2‖xk−x̄k‖2,

‖H(xk)
TVk‖‖xk − x̄k‖��1‖H(xk)‖‖xk − x̄k‖ − �2‖H(xk)‖‖xk − x̄k‖2

�(�1 − �2�/2)‖H(xk)‖‖xk − x̄k‖.
As �1/�2 ��, we have that

‖V T
k H(xk)‖� �1

2
‖H(xk)‖.

Further, similar to the proof of theorem in [7], (3.14) means that the sequence {h(xk)} is convergent. Then, from the
following inequality and (3.18),

‖Hkj
‖

�1
√

2n/�
�
‖V T

kj
Hkj
‖

2‖Dkj
‖ �‖D−1

kj
V T

kj
Hkj
‖ → 0,

where Vkj
∈ �H(xkj

) which implies that the theorem is proved. �

Theorem 4.3. Assume that Assumptions (A1)–(A3) hold and that x∗ is an accumulation point of {xk} such that x∗ is
a nondegenerate zero of H at which H is semismooth. Then the full stepsize �k = 1 and 
k = 1 is always accepted for k
sufficiently large so that xk+1 = xk + dk when 
k given in (2.18).

Proof. Since x∗ is an accumulation point of {xk} there exists � > 0 such that for sufficiently large k, xk ∈ B�(x
∗) def={x ∈

Rn|‖x − x∗‖��}. From (2.11), we have that for ∀Vk ∈ �H(xk),

∇h(xk)
Tdk = (V T

k Hk)
Tdk

= 1

2
‖Hk + Vkdk‖2 − 1

2
‖Hk‖2 − 1

2
dT
k V T

k Vkdk

� 1

2
(‖Hk + Vkdk‖2 + 
k‖Dk‖2‖dk‖2)− 1

2
‖Hk‖2

� 1

2
(‖H(xk)−H(x̄k)− Vk(xk − x̄k)‖2 + 
k�

2‖x̄k − xk‖2 − ‖Hk‖2)

� 1

2
(�2

2‖xk − x̄k‖4 + 
k�
2‖xk − x̄k‖2 − �2

1‖xk − x̄k‖2)

� − 1

2
[�2

1 − (�2
2�

2 + �L�D�2�)] dist(xk, X
∗)2 � − �2

1

4
dist(xk, X

∗)2, (4.10)

where the last inequality is deduced by ‖xk−x̄k‖�� for sufficiently large k and sufficiently small � such that ���2
1/2(�2

2+
�L�D�2). According to the acceptance rule in step 4, we have

h(xl(k))− h(xk + �kdk)� − ��k∇h(xk)
Tdk ��

�2
1

4
�k dist(xk, X

∗)2. (4.11)

Similar to the proof of Theorem 3.3, we can prove that

lim
k→∞ �l(k) dist(xl(k), X

∗)2 = 0. (4.12)

By (a) in Theorem 4.2, we can also have that

lim
k→∞ �l(k)‖dl(k)‖2 = 0. (4.13)

Similar to the proof of theorem in [7], we can prove that limk→∞ h(xl(k)) = limk→∞ h(xk). From (4.11), we also
have that

lim
k→∞ �k dist(xk, X

∗)2 = 0. (4.14)
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Hence,

lim
k→∞ �k‖dk‖2 = 0. (4.15)

Let the step size scalar �k be given in (2.17) along the direction dk to the boundary (2.15) of the box constraints.
Since the nondegenerate of the reformulated problem (2.6) holds at every limit point of {xk}, similar to the proof of
Theorem 3.3, we can first obtain that lim infk→+∞ �k �= 0 when dk is given in (2.15) along dk to the boundary of
the box constraints. Therefore, we assume that if lim infk→+∞ �k = 0 when the acceptance rule (2.14) determines �k ,
similar to the proof of (3.15) in Theorem 3.3, we can also obtain that

lim
k→+∞

∇hT
k dk

‖dk‖ = 0.

Hence, (4.15), (4.10) and (a) in Theorem 4.2 mean

0= lim
k→+∞

∇hT
k dk

‖dk‖ � lim
k→+∞ −

�2
1

4

dist(xk, X
∗)2

‖dk‖ � lim
k→+∞ −

�2
1

4�3

‖dk‖2
‖dk‖ �0. (4.16)

This gives that if (4.15) holds, then

lim
k→+∞ ‖dk‖ = 0. (4.17)

We now prove that if (4.17) holds, then �k = 1 must satisfy the accepted condition (2.14) in step 4. For large enough
k, there exists 
k �0 such that from (2.11),

h(xk + dk)− h(xk)− 1
2∇hT

k dk

= 1
2‖Hk + Vkdk + o(‖dk‖)‖2 − 1

2‖Hk‖2 − 1
2 (V T

k Hk)
Tdk

= 1
2 (V T

k Hk)
Tdk + 1

2dT
k (V T

k Vk)dk + o(‖dk‖2)
=− 1

2
k‖dk‖2 + o(‖dk‖2)�o(‖dk‖2), (4.18)

where the last inequality is deduced by (4.8). Using the above equality, we have that from (4.10) and Lemma 4.1(a),

h(xk + dk)− h(xk)− �∇hT
k dk =

(
1

2
− �

)
∇hT

k dk − 1

2

k‖dk‖2 + o(‖dk‖2)

� −
(

1

2
− �

)
�2

1

4
dist(xk, X

∗)2 + o(‖dk‖2)�0, (4.19)

where inequality is deduced by (4.10) and (a) in Lemma 4.1. Therefore, the accepted condition (2.14) holds when
�k = 1, since h(xk)�h(xl(k)).

Now, we prove that if (4.15) holds, when �k = 1 the accepted condition (2.15) given in step 4 also holds at the
stepsize to the boundary of box constraints along dk . Eq. (4.15) means that (dk)i → 0, for all i. If (g∗)i = 0 for any i,
assume that �k given in step 4 is the step size to the boundary of box constraints along dk , the nondegenerate means
that li < (x∗)i < ui , then

lim
k→∞ �k

def= min

{
max

{
li − (xk)i

(dk)i
,
ui − (xk)i

(dk)i

}
, i = 1, 2, . . . , n

}
=+∞.

If (g∗)i �= 0 for some i, without loss of generality, assume (x∗)i = li for some i. since (V T
k Vkdk) converges to zero

and 
kI is a positive semidefinite diagonal matrix in (3.11), the nondegenerate condition of reformulated problem (2.6)
at the limit point implies that (dk)i and −(gk)i have the same sign for k sufficiently large. Hence, if �k is defined by
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some (v∗)j = 0 and (g∗)j �= 0, then �k = |(vk)j |/|(dk)j | for k sufficiently large. Using (3.12), again, noting ��1,

min{1, �k} = min

{
1,


k

|(gk)j + (V T
k Vkdk)j |

}

� min

{
1, �− �‖V T

k Vkdk‖
‖gk‖ + ‖V T

k Vkdk‖

}
−→ 1 as dk → 0. (4.20)

Further, by the condition on the strictly feasible stepsize 
k ∈ (
0, 1], for some 0 < 
0 < 1 and 
k − 1 = O(‖dk‖2),
limk→∞ 
k = 1, comes from limk→∞ dk = 0.

So �k = 1, i.e., sk = dk and hence xk+1 = xk + dk .
From above, when �k given in step 4 is the step size to the boundary of box constraints along dk , we always have

that whether (g∗)i = 0 for any i or (g∗)i �= 0 for some i,

lim
k→∞ min{1, �k} = 1

holds.
We have also obtained that as ‖dk‖ → 0 and 
k → 1, the full step �k ≡ 1 is eventually accepted, for large enough

k, if �k is determined by (2.14)–(2.15), that is,

h(xk + dk)�h(xl(k))+ �∇h(xk)
Tdk with xk + �kdk ∈ �.

The conclusion of Theorem holds. �

Theorem 4.3 means that the local convergence rate for the proposed algorithm depends on the quality of the approx-
imate subdifferentials, local error bound condition at X∗, and the local convergence rate of the step dk .

We now show that the proposed algorithm is locally Q-superlinear convergent in the sense that the distance from
the iterates xk to the solution set X∗ goes down to zero with a Q-superlinear convergent rate. In order to verify this
result, we need to prove a couple of technical lemmas. These lemmas can be derived by suitable modifications of
the corresponding constrained results in [8] by setting 
k in (2.18). The next result is a major step in verifying local
superlinear convergence of the distance function.

Lemma 4.4. Assume that Assumption (A3) holds. If both xk−1 and xk belong to the ball B�/2(x
∗) for each k where

the nondegenerate condition holds at the point x∗, then there is a constant �5 > 0 such that

dist(xk, X
∗)��5 dist(xk−1, X

∗)3/2

for each k.

Proof. Since xk , xk−1 ∈ B�/2(x
∗) and xk = xk−1 + dk−1, we obtain from (4.3) that

‖H(xk−1 + dk−1)‖ − ‖H(xk−1)+ Vk−1dk−1‖
�‖H(xk−1)−H(xk−1 + dk−1)+ Vk−1dk−1‖��2‖dk−1‖2.

Using the error bound assumption (4.2) and Lemma 4.1, we therefore obtain

�1 dist(xk, X
∗)�‖H(xk−1 + dk−1)‖

�‖H(xk−1)+ Vk−1dk−1‖ + �2‖dk−1‖2

��4 dist(xk−1, X
∗)2 + �2�

3/2
3 dist(xk−1, X

∗)3/2

= (�4�
1/2 + �2�

3/2
3 ) dist(xk−1, X

∗)3/2

and this completes the proof by setting �5
def= (�4�

1/2 + �2�
3/2
3 )/�1. �



D. Zhu / Journal of Computational and Applied Mathematics 219 (2008) 198–215 213

The next result shows that the assumption of Lemma 4.3 is satisfied if the starting point x0 in the proposed algorithm
is chosen sufficiently close to the solution set X∗. Let

r
def= min

{
�

2(1+ 3�3)
,

2

3�2
5

}
. (4.21)

Lemma 4.5. Assume that Assumption (A3) holds. If the starting point x0 ∈ � used in the proposed algorithm belongs
to the ball Br (x

∗), where r is defined by (4.21) and the nondegenerate condition holds at the point x∗, then all iterates
xk generated by the proposed algorithm belong to the ball B�/2(x

∗).

Proof. The proof is by induction on k. We start with k = 0. By assumption, we have x0 ∈ Br (x
∗). Since r ��/2, this

implies x0 ∈ B�/2(x
∗). Let k�0 be arbitrarily given and assume that xj ∈ B�/2(x

∗) for all j = 0, . . . , k, now we
prove that xk+1 also belongs to B�/2(x

∗).
From Lemma 4.4, we have that

dist(xj , X
∗)��5 dist(xj−1, X

∗)3/2 ��5�
3/2
5 [dist(xj−2, X

∗)3/2]3/2 � · · ·
��5�

3/2
5 · · · �(3/2)(j−1)

5 dist(x0, X
∗)(3/2)j = (�2

5)
[(3/2)j−1] dist(x0, X

∗)(3/2)j

�(�2
5)
[(3/2)j−1]‖x0 − x∗‖(3/2)j �(�2

5)
[(3/2)j−1]r(3/2)j

for all j = 0, . . . , k. Using r �2/(3�2
5), we therefore get that from Lemma 4.3

‖xk+1 − x∗‖ = ‖xk + dk − x∗‖�‖xk − x∗‖ + ‖dk‖

�‖x0 − x∗‖ +
k∑

j=0

‖dj‖�r + �3

k∑
j=0

dist(xj , X
∗)

�r + �3

k∑
j=0

(�2
5)
[(3/2)j−1]r(3/2)j

�r + �3r

k∑
j=0

(
2

3

)(3/2)j−1

�r + �3r

∞∑
j=0

(
2

3

)j

= (1+ 3�3)r � �

2

where the last inequality follows from (4.21) of r. This completes the induction. �

We now obtain the following superlinear convergence result for the distance function as an immediate consequence
of Lemmas 4.4 and 4.5.

Theorem 4.6. Let Assumption (A3) be satisfied and {xk} be a sequence generated by the proposed Algorithm with
starting point x0 ∈ Br (x

∗), where r is defined by (4.21) and the nondegenerate condition holds at the point x∗. Then
the sequence {dist(xk, X

∗)} 1.5-order Q-superlinear converges to zero, i.e., the iterates xk approach the solution set
X∗ at the 1.5-order rate of local convergence.

Theorem 4.6 shows that the proposed affine scaling Levenberg–Marquardt-type algorithm is locally superlinearly
convergent under fairly mild assumptions. In view of Theorem 4.6, we know that the distance dist(xk, X

∗) from the
iterates xk to the solution set X∗ converges to zero locally superlinearly. We start by showing that the sequence {xk}
proposed by the algorithm is convergent.

Theorem 4.7. Let Assumption (A3) be satisfied and {xk} be a sequence generated by the proposed algorithm with
starting point x0 ∈ Br (x

∗), where r is defined by (4.21) and the nondegenerate condition holds at the point x∗. Then
the sequence {xk} converges to a solution x̄ of (1.1) belonging to the ball B�/2(x

∗).
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Proof. Since the entire sequence {xk} remains in the closed ball B�/2(x
∗) by Lemma 4.5, every limit point of this

sequence belongs to this set, too. As in the proof of Lemma 4.5, we have that for any positive integer l,

‖dj‖��3 dist(xj , X
∗)��3(�

2
5)

(3/2)j−1r(3/2)j ��3r(
2
3 )(3/2)j−1 �c3r(

2
3 )j ,

where the first inequality follows from Lemma 4.3 and the third inequality follows from r �2/(3�5). Therefore, for
any positive integers k and m such that k > t , we have

‖xk − xt‖�‖xk−1 − xt‖ + ‖dk−1‖�
k−1∑
j=t

‖dj‖��3r

∞∑
j=t

(
2

3

)j

→ 0 as t →∞.

This means {xk} is a Cauchy sequence and hence convergent. �

We now obtain our main local convergence result of this section.

Theorem 4.8. Let Assumption (A3) be satisfied and {xk} be a sequence generated by the proposed algorithm with
starting point x0 ∈ Br (x

∗) where r is defined by (4.21) and the nondegenerate condition holds at the point x∗ and limit
point x̄. Then the sequence {xk} converges locally Q-superlinearly to x̄ at 1.5-order rate of local convergence.

Proof. Letting x̄k+1 ∈ X∗ denote the closest solution to xk+1, we then obtain that for all k large enough

‖dk‖ = ‖xk − xk+1‖�‖xk − x̄k+1‖ − ‖x̄k+1 − xk+1‖
�dist(xk, X

∗)− dist(xk+1, X
∗)� 1

2 dist(xk, X
∗), (4.22)

where last inequality follows from dist(xk+1, X
∗)� 1

2 dist(xk, X
∗) for all k sufficiently large in Theorem 4.6.

From Lemmas 4.3, 4.4, and (4.22), we have that setting �6 = 1
2 ,

‖dk+1‖��3 dist(xk+1, X
∗)��3�5 dist(xk, X

∗)3/2 ��3�5�
3/2
6 ‖dk‖3/2 def= �7‖dk‖3/2 (4.23)

for all k sufficiently large.
For sufficiently large k, without loss of generality, we assume that �7‖dk‖1/2 � 1

2 holds, and hence, (4.23) means that
‖dk+1‖� 1

2‖dk‖ holds. We can then apply (4.23) successively to obtain that for all j = 0, 1, 2, . . . ,

‖dk+j‖��7‖dk+j−1‖3/2 �( 1
2 )3/2�7‖dk+j−2‖3/2 �( 1

2 )2‖dk+j−2‖�( 1
2 )j‖dk‖.

Let {xk} be a sequence generated by the proposed algorithm and converging to x̄. Since

xk+l = xk +
t−1∑
j=0

dk+j and x̄ = lim
t→∞ xk+t ,

we therefore get

‖xk − x̄‖ = ‖xk − lim
t→∞ xk+t‖ = ‖ lim

t→∞

t−1∑
j=0

dk+j‖

� lim
t→∞

l−1∑
j=0

‖dk+j‖ =
∞∑

j=0

‖dk+j‖�‖dk‖
∞∑

j=0

(
1

2

)j

= 2‖dk‖. (4.24)

Setting �9
def= �3, Lemma 4.3 implies ‖dk‖��3 dist(xk, X

∗)�‖xk − x̄‖ for all k. Setting, again, �8
def= 1/2 in (4.24), we

have that for all k sufficiently large,

�8‖xk − x̄‖�‖dk‖��9‖xk − x̄‖, (4.25)
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which implies that the length of the search direction dk is eventually in the same order as the distance from the current
iterate xk to the limit point x̄ of the sequence {xk}. Using (4.25), we immediately obtain

�8‖xk+1 − x̄‖�‖dk+1‖��7‖dk‖3/2 ��7�
3/2
9 ‖xk − x̄‖3/2

for all k sufficiently large. This shows that the sequence {xk} converges locally Q-superlinearly to x̄ at 1.5-order rate
of local convergence. �

In view of Theorem 4.6, we have known that the distance dist(xk, X
∗) from the iterates xk to the solution set X∗

converges to zero locally Q-superlinearly. However, in this section, we further see that about the behavior of the sequence
{xk} itself, this sequence converges to a solution of (1.1), and that the rate of convergence is also locally Q-superlinear
at 1.5-order rate of local convergence. We have presented the globalized and local version of the constrained affine
scaling interior Levenberg–Marquardt method. We feel that the numerical test will be implemented in practice further.
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