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a b s t r a c t

In this letter, theKaup–Kupershmidt, (2+1)-dimensional Potential Kadomtsev–Petviashvili
(shortly PKP) equations are presented and the Exp-function method is employed to com-
pute an approximation to the solution of nonlinear differential equations governing the
problem. It has been attempted to show the capabilities and wide-range applications of
the Exp-function method. This method can be used as an alternative to obtain analytic
and approximate solution of different types of differential equations applied in engineering
mathematics.
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1. Introduction

Nonlinear phenomena play important roles in applied mathematics, physics and also in engineering problems in
which each parameter varies depending on different factors. Solving nonlinear equations may guide authors to know the
described process deeply and sometimes leads them to know some facts that are not simply understood through common
observations. Moreover, obtaining exact solutions for these problems is a great purpose that has been quite untouched.
However, in recent years, analytical solutions [1,2] have been developed considerably to be used for nonlinear partial
equations. Recently Ji-HuanHe [3–14] introduced somenewmethod such as the variation iterationmethod (VIM), homotopy
perturbation method (HPM) and Exp-function method to solve these equations. The Exp-function method is very strong for
solving high nonlinearity of nonlinear equations. Other authors such as Zhu [15,16] and Zhang [17] have been working in
this field.
In this study, the Exp-function method is used to derive new solitary and periodic solutions for a form of fifth order

nonlinear KdV (fKdV), namely, Kaup–kupershmidt, and also for potential kadomtsev–petviashvili (PKP) equations.
The fKdV equation, describes motions of long waves in shallow water under gravity and in a one-dimensional nonlinear

lattice and has wide applications in quantum mechanics, nonlinear optics, plasma physics and fluid dynamics.
Recently, several investigations on the solutions of the Kaup–Kupershmidt equation have been done. Wazwaz used the

tanh method and the extended the tanh method for finding solitonary solutions of this equation [18,19]. M. Al-Mdallal and
Syam applied the sine–cosine method to obtain solitonary and periodic Solutions of the generalized fifth order nonlinear
equation [20], also, Chun used the Exp-function method for finding solutions of another form of the fKdV equation [22].
Some methods, such as, the Adomian decomposition method (ADM) [23], the tanh method [24] and improved tanh

function method [25], were applied for solving the PKP equation.
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2. Basic idea of Exp-function method

We first consider a nonlinear equation of form
N(u, ut , ux, uxx, utt , utx, . . .) = 0 (1)

where N , is a nonlinear function with respect to the indicated variables or some functions which can be reduced to a
polynomial function by using some transformations. Introducing a complex variation η defined as

u = u(η), η = kx+ ωt, (2)
where k, ω are constants to be determined later. Then Eq. (1) reduces to the ODE:

N(u, ωu′, ku′, k2u′′, ω2u′′, kωu′′, . . .) = 0. (3)
And then solution of u(η) is a form of

u(η) =

d∑
n=−c

an exp(nη)

q∑
m=−p

bm exp(mη)
=
ac exp(cη)+ · · · + a−d exp(−dη)
ap exp(pη)+ · · · + a−q exp(−qη)

(4)

where c, d, p and q are positive integers which are unknown to be further determined, an and bm are unknown constants.

3. Application of Exp-function method

3.1. The kaup–kupershmidt equation

To illustrate the basic idea of the Exp-function method, we first consider the Kaup–Kupershmidt equation [20,21] in the
form

uxxxxx + ut + 45uxu2 −
75
2
uxxux − 15uuxxx = 0. (5)

Introducing a complex variation η defined as Eq. (2), and then Eq. (5) becomes an ordinary differential equation, which is a
form of

ωu′ + 45ku2u′ −
75
2
k3u′u′′ − 15k3uu′′′ + k5u′′′′′ = 0. (6)

In order to determine values of c and p, we balance the linear term of the highest order u′′′′′ with the highest order
nonlinear term u′′′u in Eq. (6), we have

u′′′′′ =
c1 exp((c + 31p)η)+ · · ·
c2 exp(32pη)+ · · ·

, (7)

and

uu′′′ =
c3 exp((c + 7p)η)+ · · ·
c4 exp(8pη)+ · · ·

×
exp(cη)
exp(pη)

=
c3 exp((2c + 30p)η)+ · · ·
c4 exp(32pη)+ · · ·

, (8)

where ci are determined coefficients only for simplicity. Balancing highest order of Exp-function in Eqs. (7) and (8), we have
c + 31p = 2c + 30p, (9)

which leads to the result
p = c. (10)

Similarly to determine values of d and q,we balance the linear term of lowest order in Eq. (6)

u′′′′′ =
· · · + d1 exp(−(d+ 31q)η)
· · · + d2 exp(−32qη)

, (11)

and

u′′′u =
· · · + d3 exp(−(d+ 7q))η
· · · + d4 exp(−8qη)

×
exp(−dη)
exp(−qη)

=
· · · + d3 exp(−(2d+ 30q))η
· · · + d4 exp(−32qη)

, (12)

where di are determine coefficients only for simplicity. Balancing lowest order of Exp-function in Eqs. (11) and (12), we have
30q+ 2d = d+ 31q, (13)

which leads to the result
q = d. (14)
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3.1.1. Case A: p = c = 1, q = d = 1
We can freely choose the values of c and d, but we will illustrate that the final solution does not strongly depend upon

the choice of values of c and d. For simplicity, we set p = c = 1 and q = d = 1, so Eq. (4) reduces to

u(η) =
a1 exp(η)+ a0 + a−1 exp(−η)
exp(η)+ b0 + b−1 exp(−η)

. (15)

Substituting Eq. (15) in to Eq. (6) and by the help of Maple, we have
1
A
[c5 exp(5η)+ c4 exp(4η)+ c3 exp(3η)+ c2 exp(2η)+ c1 exp(η)+ c0

+ c−1 exp(−η)+ c−2 exp(−2η)+ c−3 exp(−3η)+ c−4 exp(−4η)+ c−5 exp(−5η)] = 0, (16)
where we have

A = (exp(η)+ b0 + b−1 exp(−η))6 (17)
and cn are coefficients of exp(nη). Equating to zero the coefficients of all powers of exp(nη) yields a set of algebraic equations
for a0, b0, a1, a−1, b−1, k and ω. Solving the system of algebraic equations with the aid of Maple, we obtain:
Case 1.

ω = −11k5, b−1 =
1
4
b20, a1 =

2
3
k2, k = k,

a−1 =
1
6
k2b20, b0 = b0, a0 = −

10
3
k2b0.

(18)

Inserting Eq. (18) into (15), one admits to the generalized solitary wave solution of Eq. (5) as

u(x, t) =
2
3k
2 exp(kx− 11k5t)− 10

3 k
2b0 + 1

6k
2b20 exp(−(kx− 11k

5t))

exp(kx− 11k5t)+ b0 + 1
4b
2
0 exp(−(kx− 11k5t))

=
2
3
k2 −

16b0k2

4 exp(kx− 11k5t)+ 4b0 + b20 exp(−(kx− 11k5t))
. (19)

In case k andω are imaginary numbers, the obtained solitary solution (19) reduces to the periodic solution.Wewrite k = iK
and using the transformation

exp(kx− 11k5t) = cos(Kx− 11K 5t)+ i sin(Kx− 11K 5t),

exp(kx− 11k5t) = cos(Kx− 11K 5t)− i sin(Kx− 11K 5t).
(20)

Substituting Eq. (20) into (19) results in a periodic solution

u = −
2
3
K 2 −

16b0K 2

(4+ b20) cos(Kx− 11K 5t)+ 4b0 + (4− b
2
0)i sin(Kx− 11K 5t)

. (21)

If we search for a periodic solution or compact-like solution, the imaginary part in Eq. (21) must be zero, that requires that

4− b20 = 0. (22)
From Eq. (22) we obtain

b0 = ±2. (23)
Substituting b0 = 2 into Eq. (21) results

u(x, t) =
32K 2

8 cos(Kx− 11K 5t)+ 8
−
2
3
K 2 =

2K 2

cos2
( K
2 x−

11
2 K

5t
) − 2

3
K 2. (24)

And substituting b0 = −2 into Eq. (21) results

u(x, t) =
−32K 2

8 cos(Kx− 11K 5t)− 8
−
2
3
K 2 =

2K 2

sin2
( K
2 x−

11
2 K

5t
) − 2

3
K 2, (25)

where as k = iK , we write K = −ik and using the transformation into Eqs. (24) and (25)

u(x, t) = −
2k2

cos2
(
i
( 1
2kx−

11
2 k
5t
)) + 2

3
k2 = −2k2 sech2

(
k
2
x−

11
2
k5t
)
+
2
3
k2 (26)

u(x, t) = −
2k2

sin2
(
i
( 1
2kx−

11
2 k
5t
)) + 2

3
k2 = 2k2csch2

(
k
2
x−

11
2
k5t
)
+
2
3
k2. (27)

If we choose k = 4µ, our solution, Eq. (27), turns out to be Wazwaz’s solution as expressed in Eq. (59) into [18]
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Case 2.

ω = −
1
16
k5, b−1 =

1
4
b20, a1 =

1
12
k2, k = k,

a−1 =
1
48
k2b20, b0 = b0, a0 = −

15
12
k2b0.

(28)

Inserting Eq. (28) into (15), one admits to the generalized solitary wave solution of Eq. (5) as follows:

u(x, t) =
1
12k

2 exp
(
kx− 1

16k
5t
)
−

5
12k

2b0 + 1
48k

2b20 exp
(
−
(
kx− 1

16k
5t
))

exp
(
kx− 1

16k
5t
)
+ b0 + 1

4b
2
0 exp

(
−
(
kx− 1

16k
5t
))

=
1
12
k2 −

2b0k2

4 exp
(
kx− 1

16k
5t
)
+ 4b0 + b20 exp

(
−
(
kx− 1

16k
5t
)) . (29)

In case k andω are imaginary numbers, the solitary solution obtained (29) reduces to the periodic solution.Wewrite k = iK
and using the transformation

exp
(
kx−

1
16
k5t
)
= cos

(
Kx−

1
16
K 5t

)
+ i sin

(
Kx−

1
16
K 5t

)
,

exp
(
kx−

1
16
k5t
)
= cos

(
Kx−

1
16
K 5t

)
− i sin

(
Kx−

1
16
K 5t

)
.

(30)

Substituting Eq. (30) into (29) results in a periodic solution

u = −
1
12
K 2 +

2b0K 2

(4+ b20) cos
(
Kx− 1

16K
5t
)
+ 4b0 + (4− b20)i sin

(
Kx− 1

16K
5t
) . (31)

If we search for a periodic solution or compact-like solution, the imaginary part in Eq. (31) must be zero, Substituting b0 = 2
into Eq. (31) results

u(x, t) =
4K 2

8 cos
(
Kx− 1

16K
5t
)
+ 8
−
1
12
K 2 =

K 2

4 cos2
( K
2 x−

1
32K

5t
) − 1

12
K 2, (32)

and substituting b0 = −2 into Eq. (31) results

u(x, t) =
−4K 2

8 cos
(
Kx− 1

16K
5t
)
− 8
−
1
12
K 2 =

K 2

4 sin2
( K
2 x−

1
32K

5t
) − 1

12
K 2, (33)

where as k = iK , we write K = −ik and using the transformation into Eqs. (32) and (33)

u(x, t) = −
k2

4 cos2
(
i
( 1
2kx−

1
32k

5t
)) + 1

12
k2 = −

1
4
k2 sech2

(
k
2
x−

1
32
k5t
)
+
1
12
k2. (34)

u(x, t) = −
k2

4 sin2
(
i
( 1
2kx−

1
32k

5t
)) + 1

12
k2 =

1
4
k2csch2

(
k
2
x−

1
32
k5t
)
+
1
12
k2. (35)

If we choose k = 4µ, our solution, Eq. (35), turns out to be wazwaz’s solution as expressed in Eq. (58) into [18]

3.1.2. Case B: p = c = 2, q = d = 2
Since the values of c and d can be freely chosen, we can p = c = 2 and q = d = 2, the trial function, Eq. (4) becomes

u(η) =
a2 exp(2η)+ a1 exp(η)+ a0 + a−1 exp(−η)+ a−2 exp(−2η)
b2 exp(2η)+ b1 exp(η)+ b0 + b−1 exp(−η)+ b−2 exp(−2η)

. (36)

There are some free parameters in Eq. (36), we set b2 = 1, b1 = b−1 = 0 for simplicity, the trial function, Eq. (36) is
simplified as follows:

u(η) =
a2 exp(2η)+ a1 exp(η)+ a0 + a−1 exp(−η)+ a−2 exp(−2η)

exp(2η)+ b0 + b−2 exp(−2η)
. (37)

By the same manipulation as illustrated above, we have the following sets of solutions:
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Case 1.

ω = −k5, b−2 =
9
100

a20
k4
, a−2 =

3
100

a20
k2
, a1 = 0, k = k,

a−1 = 0, a0 = a0 a2 =
k2

3
, b0 = −

3
5
a0
k2
.

(38)

Substituting Eq. (38) into (37), we get the generalized solitary wave solution of Eq. (5) as follows:

u =
k2
3 exp(2(kx− k

5t))+ a0 + 3
100

a20
k2
exp(−2(kx− k5t))

exp(2(kx− k5t))− 3
5
a0
k2
+

9
100

a20
k4
exp(−2(kx− k5t))

. (39)

If we set a0 = − 103 k
2, then Eq. (39), can be easily converted to

u = −
2
3
k2 + k2 tanh2(kx− k5t). (40)

If we set a0 = 10
3 k
2, then Eq. (39), can be easily converted to

u = −
2
3
k2 + k2 coth2(kx− k5t). (41)

Comparing our results, Eqs. (40) and (41), with Wazwaz’s results in (83), (85) into [19], it can be seen that the results are
same. Here k acts as the role of µ in [19].
As illustrated in the previous cases, the obtained solitary solutions can be converted into periodic solutions or compact-

like solutions if k is chosen as an imaginary number. For case (p = c = 2, q = d = 2), we only discuss the solution given
by Eq. (39).
If k = iK , then it becomes

u =
−

(
K2
3 +

3
100

a20
K2

)
cos(2(Kx− K 5t))+ a0 + i

(
−K2
3 +

3
100

a20
K2

)
sin(2(Kx− K 5t))(

1+ 9
100

a20
K4

)
cos(2(Kx− K 5t))+ 3

5
a0
K2
+ i

(
1− 9

100
a20
K4

)
sin(2(Kx− K 5t))

. (42)

Elimination of the imaginary parts requires that

a0 = ±
10
3
K 2. (43)

We, therefore, obtain from Eq. (42) the periodic solutions

u = K 2 sec2(Kx− K 5t)−
K 2

3
, (44)

u = K 2 csc2(Kx− K 5t)−
K 2

3
. (45)

Case 2.

ω = −176k5, b−2 =
b20
4
, a−2 =

2
3
b20k

2, a1 = 0, k = k,

a−1 = 0, b0 = b0, a0 = −
40
3
k2b0 a2 =

8
3
k2.

(46)

By using Eq. (46) into (37), we obtain

u =
8
3k
2 exp(2η)− 40

3 k
2b0 + 2

3k
2b20 exp(−2η)

exp(2η)+ b0 +
b20
4 exp(−2η)

(47)

where η = kx− 176k5t.
If we choose b0 = ±2, then Eq. (47), can be easily converted to

u = −
16
3
k2 + 8k2 tanh2(kx− 176k5t), (48)

u = −
16
3
k2 + 8k2 coth2(kx− 176k5t). (49)
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Comparing our results, Eqs. (48) and (49), with Wazwaz’s solutions in (84), (86) into [19], it can be seen that the results are
same.
Case 3.

ω = −k5, b−2 =
b20
4
, a−2 =

1
12
b20k

2, a1 = 0, k = k,

a−1 = 0, b0 = b0, a0 = −
5
3
k2b0 a2 =

k2

3
.

(50)

By using Eq. (50) into (37), we have

u =
k2
3 exp(2(kx− k

5t))− 5
3k
2b0 + 1

12b
2
0k
2 exp(−2(kx− k5t))

exp(2(kx− k5t))+ b0 +
b20
4 exp(−2(kx− k

5t))
. (51)

If we set b0 = ±2,we can obtain solutions (40) and (41).
Case 4.

ω = −
1
16
k5, b−2 =

a41
k8
, a−2 =

1
12
a41
k6
, a1 = a1, k = k,

a−1 =
a31
k4
, b0 =

−2a21
k4

, a0 =
11
6
a21
k2

a2 =
1
12
k2.

(52)

Substituting Eq. (52) into (37), we obtain

u =
k2
12 exp(2η)+ a1 exp(η)+

11
6
a21
k2
+
a31
k4
exp(−η)+ 1

12
a41
k6
exp(−2η)

exp(2η)− 2a21
k4
+
a41
k8
exp(−2η)

(53)

where η = kx− k5
16 t .

Case 5.

ω = −11k5, b−2 =
1
4096

a41
k8
, a−2 =

1
6144

a41
k6
, a1 = a1, k = k,

a−1 =
1
64
a31
k4
, b0 =

−1
32
a21
k4
, a0 =

11
48
a21
k2

a2 =
2
3
k2.

(54)

Substituting Eq. (54) into (37), we have

u =
2
3k
2 exp(2η)+ a1 exp(η)+ 11

48
a21
k2
+

1
64
a31
k4
exp(−η)+ 1

6144
a41
k6
exp(−2η)

exp(2η)− 1
32
a21
k4
+

1
4096

a41
k8
exp(−2η)

. (55)

3.2. (2+ 1)-dimensional Potential Kadomtsev–Petviashvili (PKP) equation

Now, let us consider the PKP equation [23,25] in the form

1
4
uxxxx +

3
2
uxuxx +

3
4
uyy + uxt = 0. (56)

Using the transformation

η = kx+ ly+ ωt, u = u(η), (57)

then Eq. (56) becomes an ordinary differential equation, which is a form of

1
4
k4u′′′′ +

3
2
k3u′u′′ +

(
3
4
l2 + kω

)
u′′ = 0. (58)

In order to determine values of c and pwe balance the linear term of the highest order u′′′′ with the highest order nonlinear
term u′u′′ in Eq. (58), we have

u′′′′ =
c1 exp((c + 15p)η)+ · · ·
c2 exp(16pη)+ · · ·

, (59)
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and

u′u′′ =
c3 exp((c + 3p)η)+ · · ·
c4 exp(4pη)+ · · ·

×
exp((c + p)η)
exp(2pη)

=
c3 exp((2c + 14p)η)+ · · ·
c4 exp(16pη)+ · · ·

, (60)

where ci are determined coefficients only for simplicity. Balancing highest order of Exp function in Eqs. (59) and (60), we
have

15p+ c = 2c + 14p, (61)

which leads to the result

p = c. (62)

Similarly to determine values of d and q, we balance the linear term of lowest order in Eq. (58)

u′′′′ =
· · · + d1 exp(−(d+ 15q)η)
· · · + d2 exp(−16qη)

, (63)

and

u′u′′ =
· · · + d3 exp(−(d+ 3q))η
· · · + d4 exp(−4qη)

×
exp(−(d+ q)η)
exp(−2qη)

=
· · · + d3 exp(−(2d+ 14q))η
· · · + d4 exp((−16q)η)

(64)

where di are determine coefficients only for simplicity. Balancing lowest order of Exp-function in Eqs. (63) and (64), we have

15q+ d = 2d+ 14q, (65)

which leads to the result

q = d. (66)

3.2.1. Case A: p = c = 1, q = d = 1
For simplicity, we set p = c = 1 and q = d = 1, so Eq. (4) reduces to

u(η) =
a1 exp(η)+ a0 + a−1 exp(−η)
exp(η)+ b0 + b−1 exp(−η)

(67)

substituting Eq. (67) in to Eq. (58) and by the help of Maple, we have
1
A
[c4 exp(4η)+ c3 exp(3η)+ c2 exp(2η)+ c1 exp(η)

+ c0 + c−1 exp(−η)+ c−2 exp(−2η)+ c−3 exp(−3η)+ c−4 exp(−4η)] = 0, (68)

where we have

A = (exp(η)+ b0 + b−1 exp(−η))5 (69)

and cn are coefficients of exp(nη). Equating to zero the coefficients of all powers of exp(nη) yields a set of algebraic equations
for a0, b0, a1, a−1, b−1, k, l and ω. Solving the system of algebraic equations with the aid of Maple, we obtain:

ω = −
3l2 + k4

4k
, a1 = a1,

a−1 = −
4a1b20k

2
− 4a0b0k2 − 4a21b

2
0k+ 6a1a0b0k+ a1a

2
0 + a

3
1b
2
0 − 2a

2
1a0b0 − 2a

2
0k

4k2
,

b0 = b0, a0 = a0, b−1 = −
−2ka1b20 + 2ka0b0 + a

2
0 + a

2
1b
2
0 − 2a1a0b0

4k2
, k = k, l = l.

(70)

Inserting Eq. (70) into (67) admits to the generalized solitary wave solution of Eq. (56) as follows:

u =
a1 exp

(
kx+ ly− k4+3l2

4k t
)
+ a0

exp
(
kx+ ly− k4+3l2

4k t
)
+ b0

×

−
1
4k2
(4a1b20k

2
− 4a0b0k2 − 4a21b

2
0k+ 6a1a0b0k+ a1a

2
0 + a

3
1b
2
0 − 2a0b0a

2
1 − 2ka

2
0) exp

(
−

(
kx+ ly− k4+3l2

4k t
))

+
2a1b

2
0k−2a0b0k−a

2
0−a

2
1b
2
0+2a1a0b0

4k2
exp

(
−

(
kx+ ly− k4+3l2

4k t
)) ,

= a1 −
4k2a1b0 − 4k2a0 + 2k(2a1b20k− 2a0b0k− a

2
1b
2
0 + 2a1a0b0 − a

2
0) exp

(
−

(
kx+ ly− k4+3l2

4k t
))

4k2 exp
(
kx+ ly− k4+3l2

4k t
)
+ 4b0k2 + (2ka1b20 − 2ka0b0 − a

2
0 − a

2
1b
2
0 + 2a1a0b0) exp

(
−

(
kx+ ly− k4+3l2

4k t
)) . (71)
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Fig. 1. One of periodic solutions (74).

In case k, l and ω are imaginary numbers, the obtained solitary solution (71) reduces to the periodic solution. We write
k = iK , l = iL and using the transformation

exp
(
kx+ ly−

3l2 + k4

4k
t
)
= cos

(
Kx+ Ly+

K 4 − 3L2

4K
t
)
+ i sin

(
Kx+ Ly+

K 4 − 3L2

4K
t
)
,

exp
(
−

(
kx+ ly−

3l2 + k4

4k
t
))
= cos

(
Kx+ Ly+

K 4 − 3L2

4K
t
)
− i sin

(
Kx+ Ly+

K 4 − 3L2

4K
t
)
.

(72)

Substituting Eq. (72) into (71) results in a periodic solution

u = a1 +
2K [−2a0K + 2a1b0K + (2Ka1b20 − 2Ka0b0) cos(η)+ (a

2
1b
2
0 + a

2
0 − 2a1a0b0) sin(η)

(−4K 2 − a20 − a
2
1b
2
0 + 2a1a0b0) cos(η)− 4b0K 2 + (2Ka1b

2
0 − 2Ka0b0) sin(η)

×
+(a21b

2
0 + a

2
0 − 2a1a0b0)i cos(η)+ (−2Ka1b

2
0 + 2Ka0b0)i sin(η)]

+(2Ka1b20 − 2Ka0b0)i cos(η)+ (−4K 2 + a
2
0 + a

2
1b
2
0 − 2a1a0b0)i sin(η)

, (73)

where in this case η = Kx + Ly + K4−3L2
4K t and a0, a1 and b0 are free parameters. If we set b0 = 0, a0 = ±2K in Eq. (73),

becomes

u(x, y, t) = a1 − K i± K sec
(
Kx+ Ly+

K 4 − 3L2

4K
t
)
− K tan

(
Kx+ Ly+

K 4 − 3L2

4K
t
)
. (74)

where as k = iK , l = iL, we write K = −ik, L = −il and with Substituting into (74) we obtain

u(x, y, t) = (a1 − k)∓ ik sech
(
kx+ ly−

k4 + 3l2

4k
t
)
+ k tanh

(
kx+ ly−

k4 + 3l2

4k
t
)
. (75)

To compare our results, Eqs. (74) and (75),with Inan and kaya’s solutions in Eq. (14), (15) into [25], we set a1 = i, K = 1 and
L = β in Eq. (74) and also, we set a1 = k, k = 1 and l = β in Eq. (75), it can be seen that the results are the same.
One of periodic solutions (74), is shown at a1 = i, K = L = 1 and t = 2 (see Fig. 1).

3.2.2. Case B: p = c = 2, q = d = 2
As mentioned above the values of c and d can be freely chosen, we set p = c = 2 and d = q = 2, then trial function,

Eq. (4), reduces to Eq. (37).
By using Eq. (37) with (58), we determine three cases for coefficients, namely,

Case 1.

ω = −
1
4
3l2 + 4k4

k
, b−2 =

1
16
b20(−a

2
2 + 4ka2)+ a0b0(2a2 − 4k)− a

2
0

k2
, l = l,

a1 = 0, k = k, a−1 = 0,
b0 = b0, a0 = a0, a2 = a2,

a−2 =
−1
16
a0b0(−16k2 − 2a22 + 12ka2)+ b

2
0(16a2k

2
+ a32 − 8ka

2
2)+ a

2
0(a2 − 4k)

k2
.

(76)
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Fig. 2. Traveling wave solution (78).

Substituting Eq. (76) into (37), we have:

u =
a2 exp(2η)+ a0 +

(
−1
16
a0b0(−16k2−2a22+12ka2)+b

2
0(16a2k

2
+a32−8ka

2
2)+a

2
0(a2−4k)

k2

)
exp(−2η)

exp(2η)+ b0 +
(
1
16
b20(−a

2
2+4ka2)+a0b0(2a2−4k)−a

2
0

k2

)
exp(−2η)

(77)

where η = kx+ ly− 1
4
3l2+4k4
k t .

If we set k = 1, b0 = 0, a2 = 4 and a0 = ±4 in Eq. (77) we obtain:

u = 2 coth(2η)− 2csch(2η)+ 2 = 2 tanh(η)+ 2, (78)
u = 2 coth(2η)+ 2csch(2η)+ 2 = 2 coth(η)+ 2. (79)

Comparing our results, Eqs. (78) and (79), with Inan and kaya’s results in [25], it can be seen that the results are same. Here
l acts as the role of β in [25].
The traveling wave solution (78), is shown at k = l = 1 and t = 2 (see Fig. 2).

Case 2.

ω = −
1
4
3l2 + k4

k
, b−2 =

−1
16
a21(a

2
1 + 4b0k

2)

k4
, l = l, a1 = a1,

k = k, a−1 =
1
4
a1(a21 + 4b0k

2)

k2
,

b0 = b0, a0 =
1
2
2ka2b0 + a21

k
, a2 = a2, a−2 =

1
16
a21(8k

3b0 − a2a21 − 4a2b0k
2
+ 2a21k)

k4
.

(80)

By using Eq. (80) into Eq. (37), we have

u =
a2 exp(2η)+ a1 exp(η)+ 1

2
2ka2b0+a21

k +

(
1
4
a1(a21+4b0k

2)

k2

)
exp(−η)+

(
1
16
a21(8k

3b0−a2a21−4a2b0k
2
+2a21k)

k4

)
exp(−2η)

exp(2η)+ b0 +
(
−1
16
a21(a

2
1+4b0k

2)

k4

)
exp(−2η)

(81)

where η = kx+ ly− 1
4
3l2+k4
k t .

4. Conclusions

In this Letter, the Exp-functionmethodwas used for finding solutions of the kaup–kupershmidt equation and the (2+1)-
dimensional Potential Kadomtsev–Petviashvili (PKP) equation. It can be concluded that the Exp-function method is a very
powerful and efficient technique for finding exact solutions for wide classes of problems. The Exp-function method has
many merits and many more advantages than exact solutions. Calculations in the Exp-function method are simple and
straightforward. The reliability of the method and the reduction in the size of computational domain give this method a
wide applicability. The results show that the Exp-function method is a powerful mathematical tool for solving systems of
nonlinear partial differential equations having wide applications in engineering.



A. Borhanifar, M.M. Kabir / Journal of Computational and Applied Mathematics 229 (2009) 158–167 167

Acknowledgements

The authors wishes to thank an anonymous referee for valuable ideas that allowed us to improve the article.

References

[1] R.L. Burden, J.D. Faires, Numerical Analysis, PWS Publishing Company, Boston, 1993.
[2] D. Kaya, S.M. El-Sayed, On a generalized fifth order KdV equations, Physics Letters A 310 (2003) 44–51.
[3] J.H. He, Asymptotology by homotopy perturbation method, Applied Mathematics and Computation 156 (2006) 591–596.
[4] J.H. He, Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation 114 (2005) 115–123.
[5] J.H. He, Comparison of homotopy perturbation method and homotopy analysis method, Applied Mathematics and Computation 156 (2004) 527–539.
[6] J.H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear
Mechanics 35 (2000) 37–43.

[7] J.H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons & Fractals 26 (2005) 695–700.
[8] J.H. He, Homotopy perturbation method: A new nonlinear analytical technique, Applied Mathematics and Computation 156 (2004) 591–596.
[9] H.X. Wu, J.H. He, Solitary solutions periodic solutions and compacton-like solutions using EXP-function method, Computers & Mathematics with
Applications (2007) (in press).

[10] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals 30 (2006) 700–708.
[11] Ji-Huan He, Li-Na Zhang, Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method,

Physics Letters A (2007) (in press).
[12] J.H. He, Non-Perturbative method for strongly nonlinear problems. Berlin: Dissertation. De-Verlag im Internet GmbH. 2006.
[13] H.X. Wu, J.H. He, Exp-function method and its application to nonlinear equations, Chaos, Solitons & Fractals (2007) (in press).
[14] Ji-Huan He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons & Fractals 34 (2007)

1421–1429.
[15] S.D. Zhu, Exp-functionmethod for the hybrid-lattice system, International Journal of Nonlinear Science and Numerical Solution 8 (3) (2007) 461–464.
[16] S.D. Zhu, Exp-functionmethod for the discrete mKdV lattice, International Journal of Nonlinear Science and Numerical Solution 8 (3) (2007) 465–468.
[17] S. Zhang, Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos, Solitons & Fractals (2006) (in press).
[18] Abdul-majid Waz waz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics

and Computation 184 (2007) 1002.
[19] Abundant solitons solutions for several forms of the fifth-order KdV equations by using the tanh method, Applied Mathematics and Computaion 182

(2006) 283.
[20] M. Qasem, Al-Mdallal, Muhammad I. Syam, Sine–Cosine method for finding the soliton Solutions of the generalized fifth-order nonlinear equation,

Chaos, Solitons & Fractals 33 (2007) 1610–1617.
[21] A. Parker, On soliton solutions of the Kaup–Kupershmidt equation. I. Direct bilinearisation and solitary wave, Physica D 137 (2000) 25–33.
[22] Changbum Chun, Solitons and periodic solutions for the fifth-order KdV equation with the Exp-function method, Physics Letters A (in press).
[23] Dogan Kaya, Salah M. El-Sayed, Numerical soliton-like solutions of the potential Kadomtsev–Petviashvili equation by the decomposition method,

Physics Letters A 320 (2003) 192–199.
[24] M. Senthilvelan, Applied Mathematics and Computation 123 (2001) 381.
[25] Ibrahim E. Inan, Dogan Kaya, Some exact solutions to the potential Kadomtsev petviashvili equation and to a system of shallowwater wave equations,

Physics Letters. A 355 (2006) 314.


	New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations
	Introduction
	Basic idea of Exp-function method
	Application of Exp-function method
	The kaup--kupershmidt equation
	Case A:  p = c = 1, q = d = 1 
	Case B:  p = c = 2, q = d = 2 

	 (2+ 1) -dimensional Potential Kadomtsev--Petviashvili (PKP) equation
	Case A:  p = c = 1, q = d = 1 
	Case B:  p = c = 2, q = d = 2 


	Conclusions
	Acknowledgements
	References


