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1. Introduction

The behavior of granular assemblies is of central importance for a large number of engineering disciplines, finding
applications in soil mechanics, material handling and powder technology, to name a few. It is the complex range of behavior
that makes granular material difficult to understand and explain why modeling such material is still a challenge. In the
numerical area, the Discrete Element Method (DEM) which takes into account the discrete character of granular materials
has been pioneered in [1,2]. The name DEM refers to the fact that the method considers the granular material as a system
of individual particles and not as a continuum. When contact occurs between particles, a local constitutive law determines
the inter-particle contact forces and consequently the resulting motions of the particles involved in the contact. Among the
DEM, one can distinguish the smooth DEM from the non-smooth DEM.

In the smooth DEM, a smooth interaction law between particles is used. The pioneers of this method are Cundall and
Strack [1,2]. Interaction laws allow particles to interpenetrate each other. The most popular is the spring-dashpot model,
which consists of a spring to provide the repulsive force and a dashpot to dissipate a portion of energy. The results obtained
are less accurate but approximating equations are smoother resulting in a better convergence.

In the non-smooth DEM, granular materials are more realistically modeled by a system of particles that do not
interpenetrate and are subjected to friction and shocks with restitution coefficients. Thus, this approach is described as non-
smooth. The interaction laws between grains are no longer smooth (non-differentiable) and the velocity is not continuous
with respect to the time (some jumps occur during the shocks). The Non-Smooth Contact Dynamics (NSCD) method, initiated
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Fig. 1. Configuration of the system.

in [3,4] is more general. The contact between particles is modeled by Coulomb’s unilateral contact law with dry friction. With
this method, multiple contacts and shocks between particles or multibody systems can be taken into account [5,6]. The non-
smoothness of the equations is the source of numerical difficulties. Computing time increases rapidly in accordance with
the number of contacts. These technical difficulties make the simulation of system with a large number of particles hard.

We present in this paper an improved non-smooth DEM based on the NSCD method. We consider a three-dimensional
collection of rigid particles (spheres) during the motion of which contacts can occur or break. The dry friction is modeled
by Coulomb’s law which is typically non-associated: during the contact, the sliding vector is not normal to the friction cone.
The non-associativity of the constitutive law poses numerical challenges. The main feature of our algorithm is to overcome
this kind of difficulty by means of the bi-potential theory [7]. More precisely, by adopting a variational inequality-based
formulation of the frictional contact law, its time-integration is reduced to a single predictor corrector step. This contrasts
with the classical method where contact and friction are treated separately leading to a time stepping algorithm that involves
two predictor-corrector steps: one for the contact problem and another for the friction problem [8]. The MULTICOR software
so developed [9] is based on a NSCD model. At each time step, an iterative algorithm is used to compute the values of the
variables at the end of the step. In the local stage, for each particle, the forces are computed from the relative displacements
using an interaction law with the bi-potential concept, which models the frictional contact and shocks. In the global stage,
Newton'’s second law is used to determine, for each particle, the resulting acceleration, which is then time-integrated to find
the new particle positions. This process is repeated until the simulation is achieved.

Numerical applications will show the robustness of the algorithm and the possibilities of the MULTICOR software for
solving three-dimensional problems.

2. Configuration of the system and equations of motion

The DEM consists in modeling the granular media as a system of discrete particles (the grains) where the forces governing
particle motion reduce to gravity and inter-grain contact forces. In three dimensions, the grains are considered as rigid
spherical particles.

We consider a dry granular material modeled by a system X = UI,f:] £2, of p rigid spheres 2. The system X can be
classically parameterized by the generalized coordinates (degrees of freedom) q = (q1, 42, - - -, qn), With n = 6p.

The bodies interact between themselves and with the boundaries according to unilateral constraints specified by
Signorini conditions and Coulomb'’s frictional law. In the following, we present a description of the state of the mechanical
system using generalized coordinates and recall the equations of motion using Lagrangian formulation.

Let ()51 , )52, )53) and (x1, X2, x3) be a system of coordinates relative to a global orthonormal frame R, = (O; E4, E;, E3) and
to the local frame R, = (0'; t1, t;, t3) respectively, where O’ denotes the center of gravity of 2, (Fig. 1).

—>
Thus, a current point M of the rigid body 2, depends on the time t through O'M = R(t)0’'My, where M, denotes the
position of M at time t = 0, and R(t) the rotation matrix defined by Euler’s angles (¥ (t), 6(t), ¢(t)).
For a rigid body, the matrix of the generalized coordinates is then:

q = (x1(t), x2(t), x3(6), ¥ (1), (), (1)). (1)

The position and velocity of any point M of a body §2; can be respectively written;

X(t) = X(t) + ROK©O) — X(0),  X(t) = X(t) +jw)(X(t) — X(1)) (2)

where X(t) and )~((t) denote at time ¢ the position in R, of the center of gravity of £2, and the position of M respectively.
With j(w) = R(t)‘R(t), where j(X) denotes the “operator of cross-product operator by xX” defined by j(x)(y) = x A y.

To study a mechanical system composed of rigid bodies with a finite number of degrees of freedom, it is necessary to be
able to characterize their positions in a reference coordinate system. Moreover, bodies cannot move freely since they cannot
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penetrate each other (contact law). Classically, the generalized coordinates vector q, collecting the independent position of
mass center and angular rotation of all rigid bodies, is associated to any position of the system X. Then, at each time, the
position of a point M of ¥ defined in (2) is determined by the n variables (q1, q2, . . . , qn)-

If we denote by k the number of contacts between rigid bodies and boundaries, the total number of unknowns is 6p + 2k
with 2k corresponding to normal and tangential forces. The two components of the tangential force will be deduced from
knowing the global tangential force determined from the tangential velocity and the normal force. Therefore, while the total
number of unknowns is 6p + 2k, the number of equations of the dynamics is 6p. In this configuration, the dynamics system
governed by Newton’s second law is written here as:

k
Mi=F+) Q. (3)
c=1
where F denotes the generalized forces associated to the external forces applied to X, and Q° the generalized forces
associated to the contact forces summed on all the contacts k. M is a symmetric positive definite n x n matrix.
Thus, 2k additional equations are needed in order to solve the problem. These equations are given by relations that
describe interaction between bodies.

2.1. The complementary relations (contact law) and local variables

Eq. (3) is general and we must now specify the number of contacts and the modeling of the contact between the solids
£2i. So let us assume that X' which has a priori n degrees of freedom is subjected to k supplementary relations between the
bodies. When the interactions are modeled by unilateral contact between bodies, where contacts can occur or break, we can
write the interaction law as follows:

law(a, r) = TRUE. (c=1,2,...,k) (4)

where the local relative velocity u and the contact reaction r are the chosen variables to describe the contact. The system to
solve then becomes:

k
Mi=F+) Q, 5)

c=1
law(a, r) = TRUE. (c=1,2,...,k). (6)

This system must be completed with the kinematic relations i = 'Pq and r = *PQ’ (see Section 2.2) which link the dual
variables of (6) to the generalized coordinates and forces involved in (5). The matrix P depends on the geometry of the grains
and the orientation of the contacts.

2.2. Expression of the P matrix

Let £2; and £2; be two bodies in contact at a point I for some value of the time (see Fig. 2 given in two dimensions). The
instantaneous velocity of the particles £2; and £2; passing at point I are respectively w; and ;. The relative velocity is then
u = w; — u;. Let r be the contact reaction acting at I from £2; onto £2;. To each couple £2; and £2;, candidate to contact, is
associated a local basis (n, s, t). n denotes the normal unit vector orthogonal at point I directed towards £2;. s and t are the
unit tangent vectors at point I (Fig. 2). T is the matrix of basis change between R, and the local basis (n, s, t).

Thus any element i and r may be decomposed into the form

u=u; +u+ u,n, r=r;+r,+rn (7)
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where 11, is the normal velocity, @, the sliding velocity according to t axis, Uy the sliding velocity according to s axis, r;, the
normal contact reaction or contact pressure, r; and r; the friction forces or resistance forces to sliding.
According to (2), the relative velocity of body £2; compared to body £2; is given by:
Xij = Xi +j(w) (X — Xi) — X; — j(w) (X; — X;). ®)

For the spherical particles in contact at a point on the surface, we can write:

Xj = (Lajm) —1ajm) @, 9
where a; and g; denote the radii of the bodies £2; and £2; respectively and j(n) has been defined in (2).

By projecting (9) on the local basis (n, s, t), we obtain a relation between the local relative velocity a1 = tT)~(,~]- and the
generalized velocities of the two bodies candidates to the contact ¢, given by the matrix ‘P [9].

u="Pq withP="T(Iajm) —Iajmn)). (10)

Then the interaction law (4) is now written between the local relative velocity @ and the local contact reaction r. By
projecting r on to the global frame by using the relation r = *PQ‘, we obtain Q° the generalized force associated to the
contact reaction r.

3. Coulomb’s contact law with dry friction based on a bi-potential

As mentioned before, the spherical bodies are assumed to be rigid and cannot overlap. We assume that contacting bodies
£2 interact according to Coulomb’s unilateral contact law with dry friction. This dissipative non-linear law can be written:

ifr,=0thenu, >0 no contact,
ifr, > 0and ||r7|| < ur, thenu =0 contact with sticking,
ifr, > O0and |rr| = ur, contact with sliding. (11)
. . . . ¥
theni, = 0,3\ > Osuchasuy = —Aﬁ
rr

where rr = r; + r; and 4y = u, + U denote the tangential components of the contact reaction and the relative velocity
respectively. Let K, be the Coulomb’s friction cone which defines the set of admissible forces:

K, = {(rn, rr) suchas [lrr || — ur, < 0} (12)

where ||| and u denote the euclidian norm of R? and the friction coefficient respectively. Then the inverse contact law can
be written:

ifil, > Othenr =10 no contact,
ifau=0thenr e K, contact with sticking, (13)
. u N
if —uy <Othenr, > 0andry = —ur, ﬁ contact with sliding.
ur

Itis clear from geometrical considerations that the relative velocity uis not normal to Coulomb’s cone, because the normal
relative i1, is equal to zero. This observation indicates that normality does not apply. Therefore, for the frictional contact law,
an associated formulation does not exist in terms of a sub-differential using a pseudo-potential of the type —it € 9, (r).
De Saxcé and Feng [10] have shown that this complete contact law can be written in the form of the following differential
equation:

— (ar + (i + pllur|hn) € 9%, (r). (14)

The behavior of materials admitting this kind of constitutive law is qualified as non-standard or non-associated. By
developing the previous relation, de Saxcé has shown that the contact law along with its inverse, can be obtained by applying
the normality rule to a function, called bi-potential, which depends on both dual variables. For the complete contact law
with dry friction, de Saxcé et al. proposed to introduce a bi-potential as follows:

b.:VXF—>R
(=0, 1) = b (=1, 1) = Y- (=) + ¥, (r) + puryll — bzl

where V and F denote respectively the spaces of generalized velocities and forces, put in duality through the scalar product
of R3. The condition of non inter-penetrability it, > 0 (see Fig. 3) is represented by the indicatory function of R~, noted
Wp- (—11,), which is equal to zero when —iI, < 0 and to 400 otherwise. The contact bi-potential also takes infinite values
if the condition r € K|, is not satisfied.

This bi-potential of the contact is bi-convex (convex with respect to each of the variables) and satisfies [7,10]:

(15)

V—ureR? b(—ur)>—uir. (16)
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Fig. 3. The unilateral contact law.

Moreover, the couples for which the equality is reached in the previous relation, are called extremal couples:
be(—ua,r) = —ar & ury| — arl| = —(ar.re + t,ry). (17)
These couples verify Coulomb’s unilateral contact law with dry friction (11) and the inverse law (13), which can be written
implicitly:
—u € db.(—1u,r), re€ d_gb(—u,r) (18)

where d,b, denotes the sub-differential of b, with respect to the variable x.

4. Local resolution of the contact law

The classical formulation of the unilateral contact problem with dry friction needs two variational inequalities. The first
inequality expresses the unilateral contact condition and the second the friction one. Based on this formulation, efficient
predictor-corrector algorithms have been proposed in the literature [8]. Basically such algorithms solve alternatively the
contact and the friction problems until convergence. As a consequence, two predictor-corrector steps are required. By
adopting the use of the bi-potential, a faster and more robust time stepping algorithm with only one predictor-corrector
step where the contact and the friction are coupled can be devised. This formulation is quite general and well suited for non-
standard behaviors admitting a bi-potential. For the resolution of the unilateral contact law with the bi-potential formalism,
we use the augmented Lagrangian method [11]. First, let us write relation (18) as follows:

vr' € K,, bc(—a,r)—b.(—u,r) > —a@ —r). (19)

During the local stage, the relative velocity u is given for each contact. The aim is now to find the corresponding contact
reaction r, solution of (19). Let us choose a positive arbitrary coefficient p, whose value will be fixed later to ensure the
numerical convergence of the algorithm [9]. Then inequality (19) can be written:

vr' € Ky,  pbc(—u, 1) — pbe(—@, 1) + [r — (r + p(—)].(" — 1) > 0. (20)

Using now the definition (15) of the contact bi-potential, relation (20) becomes with 1, > 0 andr € K,:

vreK,, (t—1).(' —1r)>0 (21)
where T = r — p[ur + (i, + 1| — ar|}).n] denotes the augmented reaction. Relation (21) implies that r is the projection
of T onto the Coulomb’s cone (r = proj(z, K,,)).

It can be solved with a Usawa-like algorithm. Indeed, let (—u', r') be an approximation of (—u, r) at the iteration i. Then
the calculus of r'*! is decomposed into one predictor-corrector step:

Predictor: 7' =1 — p[ﬁiT + (i}, + || — @ |[).n],

. ~ Pl (22)
Corrector : "' = proj(z"", K,,).

The projection onto the Coulomb’s cone, which corresponds to the correction step of the scheme (22), leads to the three
following events:

if't! e K, no contact,
if rf“ € Ky, contact with sticking, (23)
ifr't! e R’ — (K, U K?) contact with sliding,

where K, the dual of the Coulomb’s cone, is defined by:

Ky = {(itn, @r) such as pllar || + i, < 0}. (24)
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The corrector step requires computing the project of the prediction and can be reformulated as solution of the convex
non-linear programming problem with constraints (25) which is transformed into an unconstrained minimization problem
by means of the Lagrange multipliers technique ([11]).

) 1 . .
rl+1 — inf 7||l.l+l _ TH_]”Z. (25)
ritlek, 2

Moreover, one of the great interests of this formulation, is that the projection onto the Coulomb’s cone can be calculated
analytically as follows:

if )| T < =7+ thenr' ™ =0 separating out,
if |71 < ueit! then P! = 1 contact with sticking,
) . ||1"4+1 | — ,U,TH_l it (26)
elsert! = 771 — T - 4 —un | contact with sliding.
(14 u?) Iz Il

4.1. Non-smooth formulation of the contact law and shock law

At the local stage, contact reactions are computed from the values of the relative velocities, which have been calculated
during the global stage. Newton’s second law is used to determine for each particle the resulting acceleration and velocity,
which are then integrated in time to find the new particle states. However, in the case of collisions between the bodies £2,
the relative velocity of an impacting particle is discontinuous and energy is dissipated. Furthermore, contact forces have
to be replaced by impulsive forces to allow an instantaneously change of the velocity. Therefore, Eq. (5) which have been
established in the case of a smooth evolution of the rigid bodies £2; constituting the system X, should be conveniently
modified to take into account the dissipation occurring during collisions. This difficulty can be solved with the formalism of
the NSCD method [4]. With this formalism, (5) becomes for two bodies subjected to contact:

M@ —§7) =Fdt+ ) Ps. (27)

where @ = Pa' and ¢- = Pu~ denote respectively the generalized coordinates after and before the shock, s = rdt the
contact impulsion measures, and dt the time interval considered. This frictional contact law is adapted to take into account
of the collision by introducing the local average velocity a in Moreau’s sense [4]:

U+ eqlly - uf +erup
=, Uy=—-— (28)
1+e, 1+er
This formal velocity, which corresponds to the real velocity if the evolution is smooth, enables one to take account of
the friction during the shocks and of the propagation of these shocks in the granular medium. It depends on a normal and a
tangential coefficient of restitution, e, and er respectively.

5. Algorithm of resolution

For the solution of the problem, the time interval [0, T] of the study is split into time interval h and the solution is obtained
by solving successive finite-step problems on h. For each iteration, two stages are performed. The three key parts of the NSCD
version of the DEM MULTICOR software developed are:

e A search algorithm used to construct a particle near-neighbor interaction list. In order to reduce the size of the non-
smooth problem, only established or potential contacts are considered. For this aim, one considers a restricted list of
candidates to the contact, called selected candidates. The method of selection uses a connection table [12].

e Alocal stage where collisional forces for each collision are estimated using the discrete contact law (22).

e A global stage where all collisional and other forces acting on the particles are summed and the resulting equation of
motion (27) is integrated.

5.1. Global stage

Newton’s second law is used to determine, for each particle, the resulting acceleration, which is then time-integrated to
find the new positions of the particles. This process is repeated until the simulation is achieved. More precisely, it can be
decomposed into the following steps:
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e Prediction of the generalized coordinates q,, on the mean time step t,. Starting with the values of q, and q, given at the
time step t,:

tm = th + %h and q, =4q,+ %hqn. (29)

e Computation of the generalized velocities ¢, ; at time step t,, by integration of Newton'’s second law:
gt =a,+M" (hF +y Ps"“) . (30)
The exponent ! means that the computation of q;ﬂ is linked to those of s*! which is calculated in another iterative

process (the local predictor-corrector scheme) until the convergence is achieved.
5.2. Local stage

After updating the relative velocities u at the contacts using relations defined in Section 2.1, a new estimation of the
impulsion s is computed by using the finite-step frictional contact law. Thus, with the formalism of the NSCD method,
the local scheme of predictor-corrector (22) becomes (31). For each particle, first the value of s° is initialized to zero. Then
starting from the value of s' at step i > 0, the contact impulsions s at step i + 1 are computed with the following local
predictor-corrector scheme:

predictor : 7' =" — p[it; + (@, + u| — r[).n], (31)
corrector :  s'"! = proj(z't!, K,),

where the formal velocities u are defined in (28). Updating u, let us note that only the value of (@*)™*" after the shocks
changes during the iterations, because linked to q;:;] by (30). The relative velocity u™ before the shocks remains constant,
because linked to q,. A crucial point is to decide when the local iterative procedure converges. So as to decrease the iteration
number of the local scheme, we use as criterion of convergence the following error estimator in constitutive law, based on
the “violation” of the contact bi-potential [13]:

€= b s +i" s (32)

where the sum carries on active contacts. This quantity is always positive and equal to zero when the couple of dual variables
is extremal (when the contact law is exactly satisfied).

This kind of error estimator was proposed first by Ladevéze [14] in order to assess Finite Element computations. In
order to obtain finite values of the bi-potential (15), which contains indicatory functions, the impenetrability and friction
conditions have to be enforced prior to calculate the error [13]. The global stage and the local stage are successively applied
until convergence is reached. Finally, the generalized velocities are obtained using relations defined in Section 2.1 and the
generalized coordinates are updated according to:

1 .
Qi1 = A + thn+1- (33)

6. Numerical simulation with MULTICOR

In the following examples of dynamics simulations, the computations are made with the extension in 3D of the MULTICOR
software [15]. This software is based on the Non-Smooth Contact Dynamics (NSCD) method and the contact bi-potential
formalism presented above. We have focused our attention on examples representative of the capabilities of MULTICOR.
The particles as well as the boundaries are assumed to be perfectly rigid. Each particle is subjected to the gravitation force
and to the contact force resulting from neighborhood particles and boundaries.

6.1. Discharge of a silo with inclined bottom

This example presents the discharge of a silo constituted of 1000 spherical particles with a radius of 5 mm, subjected to
gravity and contact forces (Fig. 4). The friction coefficient is equal to 0.2, e, = 0 and e; = 1. The time stepish = 1073 s.
Granular flows, such as the movement during the discharge of material from a hopper are of special interest in materials
handling. Firstly, we study the evolution of potential and effective contacts. An effective contact is a contact with impulse
value higher than zero. In Fig. 5, we clearly observe different stages during the discharge of the silo. Firstly, at the beginning
of the simulation when the discharge is quasi-static (Fig. 4(a)), we observe that the the number of potential and effective
contacts is very close. After the beginning of the turbulent flow where we observe a short but important difference between
potential and effective contacts, we can see a constant gap during the discharge. The number of contacts decreases during the
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Fig. 4. Discharge of a silo with inclined bottom.
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Fig. 5. Evolution of potential and effective contacts during the discharge of the silo.

particles falling until the formation of a particle pile at the bottom of the silo (Fig. 4(b)). During the formation of the pile the
number of contacts swiftly increases and the difference between potential and effective contacts is very small because we
find again a static stage. Fig. 6(a) and (b) show the evolution of the CPU time with the number of particles and the coefficient
of friction respectively. We can observe a non-exponential evolution of the computation time. Therefore, we can use the
proposed method for the simulation of large granular media. We can notice that the CPU time used for the detection phase
of potential contacts is always less than 2% of the global CPU time. More than 96% of the global CPU time arises from the
computation of impulses. This result prove the efficiency of the method used to select the restricted list of candidates to the
contact [12]. In order to highlight the influence of the coefficient of friction u, Fig. 7 shows the evolution of the number of
effective contacts at the bottom of the silo with u for the same time during the discharge flow of the silo. We can see that
the flow of particles is less important when p increases. From Fig. 4, we observe that during the discharge of the silo, the
particles in the middle of the pile go down more quickly than the other particles. This phenomenon is in accordance with
observations in a silo.

6.2. Formation of a pile of particles

This example allows to describe the formation of a pile of particles from the discharge of a silo constituted of 5600
spherical particles with different radii, only subjected to gravity and contact forces (Fig. 8). The friction coefficient is equal
t0 0.6, e, = 0 and e; = 1. The time step ish = 51073 s. In order to avoid the dispersal of the first particles touching
the floor, we block the velocity of the particles in contact with the floor. This simulation enables to highlight a well-known
phenomenon during the formation of a sand pile. Indeed, experimental results show that the pressure under the sand pile
is minimal in the middle of the contact surface [16]. This pressure hole phenomenon can be explained by the propagation
of the chain forces during the formation of the pile. Fig. 9 shows that the simulation enables this important phenomenon
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to be described. We notice that this phenomenon disappears when considering the pressure under a regular canon-ball
arrangement (Fig. 10(a)). Indeed for this regular arrangement, the chain of forces is homogeneous and the pressure under

the pile displayed an expected form with a maximum of pressure in the middle of the contact surface (Fig. 9(b)).
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Fig. 11. (a): Regular canon-ball arrangement, (b): Impact on the pile.

6.3. Impact of a particle on a canon-ball arrangement

This example enables to observe the behavior of a canon-ball arrangement after the impact of a bigger particle (Fig. 11).
The friction coefficient is equal to 0.2, e, = 0 and e; = 0. The time step is h = 5 10~* s. The velocity of the bigger particle is
5m/s.

6.4. Granular segregation and Brazil nut effect

Segregation of particles in granular media is a common problem in the chemical and pharmaceutical industries and in
materials processing. Vertical shaking of a mixture of small and large particles can lead to segregation and the so-called
Brazil nut effect where the large particles accumulate at the top [17]. In this example, we report numerical results on the
segregation of a vertically shaken mixture of 960 particles with different diameters (1.6 mm, 1.8 mm and 2 mm,). The
particles are shaken sinusoidally in a rectangular box with an amplitude A and a fixed frequency f = 28 Hz. The friction
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Fig. 12. Granular segregation.

coefficient is equal to 0.5, e, = 0 and e; = 0. The time step is h = 5 10~* s. The mixture is shaken during 20 s. Fig. 12 shows
that the simulation exhibits a Brazil nut effect where all of the large particles accumulate at the top of the sample.

7. Conclusion

In this paper, we have presented an improved Discrete Element Method in 3D based on the Non Smooth Contact Dynamics
and the bi-potential concept. The interaction law is described by Coulomb’s unilateral contact law with dry friction in the
framework of the bi-potential theory. This leads to an easy implementation of a predictor-corrector scheme involving just
an orthogonal projection onto the friction cone. The numerical simulations presented have been made with the extension
in 3D of the MULTICOR software developed by using this improved DEM. The numerical examples show the convergence
and the robustness of our algorithm to model correctly the behavior of granular materials in complex three-dimensional
problems, even in presence of numerous multiple contacts.
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