
Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A stochastic conjugate gradient method for the approximation of
functions
Hong Jiang ∗, Paul Wilford
Bell Laboratories, Alcatel-Lucent, 700 Mountain Ave, P.O. Box 636, Murray Hill, NJ 07974-0636, United States

a r t i c l e i n f o

Article history:
Received 2 April 2010
Received in revised form 7 September 2011

Keywords:
Stochastic conjugate gradient
Approximation of functions
Convergence in probability
Least squares solution
Polynomial predistortion
Power amplifier linearization

a b s t r a c t

A stochastic conjugate gradient method for the approximation of a function is proposed.
The proposed method avoids computing and storing the covariance matrix in the normal
equations for the least squares solution. In addition, the method performs the conjugate
gradient steps by using an inner product that is based on stochastic sampling. Theoretical
analysis shows that the method is convergent in probability. The method has applications
in such fields as predistortion for the linearization of power amplifiers.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concernedwith the best approximation of a function by a linear combination of a set of linearly independent
basis functions, for example, by a polynomial of a certain degree.

An example of such an approximation problem arises fromdigital predistortion for linearization of high power amplifiers
(HPAs). A key step in digital predistortion is to find an approximation of the inverse function of the HPA by, for example,
a polynomial; see [1,2] and the references given therein. The inverse function of the HPA is not known explicitly (neither
is the HPA itself), but it can be observed by monitoring samples of the input and output signals to and from the HPA. The
samples are usually from a waveform such as an orthogonal frequency-division multiplexing (OFDM) signal, which can be
modeled as a random process of a Rayleigh distribution. Furthermore, since the OFDM signal is continuously transmitted,
one can always capture samples when desired. Other examples of such function approximation can be found in [3].

Therefore, the approximation problem we are interested in can be characterized with the following properties. (1) The
function to be approximated is not known explicitly. (2) The input and output of the function can be observedwith samples.
The input samples are from a random process with a certain probability density function, and its distribution can be
observed, but cannot be controlled or altered. (3) There is an unlimited supply of input and output samples for observations,
but there may be a limit on how many samples one can observe at one time.

Since the function to be approximated is known only through observations, the approximation of the function is
computed for each set of samples from an observation. This naturally defines an iterative process in which a series of
approximations is computed for a series of sample sets, with the expectation that the approximations get progressively
more accurate as more sample sets are taken.

The best approximation in a vector space is normally carried out by the least squares method, in which a linear
combination of the basis functions is sought so that it best matches the observed output samples when evaluated at the
observed input samples. The coefficients of the least squares solution satisfy the normal equations. The normal equations
can be solved by an iterativemethod such as the conjugate gradient (CG)method. An iterativemethod for solving the normal

∗ Corresponding author.
E-mail addresses: hong.jiang@alcatel-lucent.com (H. Jiang), paw@alcatel-lucent.com (P. Wilford).

0377-0427/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2011.12.012

http://dx.doi.org/10.1016/j.cam.2011.12.012
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:hong.jiang@alcatel-lucent.com
mailto:paw@alcatel-lucent.com
http://dx.doi.org/10.1016/j.cam.2011.12.012

2530 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

equations hasmany advantages over a directmethod such as Cholesky decomposition.When the CGmethod is used to solve
the normal equations, the solution to the approximation problem of interest becomes an inner–outer loop. In the outer loop,
each iteration consists of taking a set of samples from the observation and forming the normal equations with the samples.
The inner loop is the CG iteration.

A conjugate gradient method involving random data, such as noise, stochastic sampling, and digital signals in wireless
communications, is conventionally called a stochastic conjugate gradient (SCG) method. SCGmethods have been presented
in the literature to solve systems of linear equations from many different applications. A CG method with data from noisy
measurements is considered in [4], where improvements are made to stabilize the conjugate gradients in the noisy Hessian
calculation. In [5], a frame algorithmusing adaptive iterative directions is used to alleviate the issue of noisy evaluation of the
gradient direction. Equalization in wireless communications is considered in [6–8]. A nonlinear system is solved iteratively
in an inner–outer loop in which a linear system of equations with the Hessian as the matrix is formed in the outer loop, and
the CG iteration is used in the inner loop to solve the linear system.

In an CG or SCG method, a matrix by vector multiplication is needed. In many applications, it is possible to perform
the matrix–vector multiplication directly without the explicit computation and storage of the matrix. In [9], fast curvature
matrix–vector products are formed to avoid storage of the Hessian. The work in [10] has investigated approximations that
can be used to efficiently perform matrix–vector multiplications when computing electric fields. The computation of the
Jacobian is avoided in [10] because the product of the Jacobian with a vector can be computed by using a perturbation in the
search direction for approximation of derivatives. A similar approach is used in [6,7] for the Hessian. There are also many
other publications, e.g., [11,12], on improving the efficiency of CG-type methods for different applications. However, since
the matrix has a different structure in different applications, there is no universal matrix–vector multiplication method for
avoiding matrix computation and storage. A specific application requires a specific algorithm for efficient matrix–vector
multiplication without explicit usage of the matrix.

In this work, we present a stochastic conjugate gradientmethod for the application of approximating a function, as stated
at the beginning of this section. In the SCG method of this work, only one CG iteration is performed for each set of samples
taken from observation. After each CG iteration, the update is used in the outer loop, and a new set of samples is taken to
compute the search direction for the next update.

There are two objectives for this paper. First, a transformation is used in this work so that the conjugate gradient
computations are performed in a function space instead of the traditional Euclidean vector space. Therefore, the iterations
are carried out directly on the functions themselves, rather than on the coefficients of the basis functions. Because of this
transformation, both explicit computation and storage of the covariance matrix are avoided for this application, whereas
traditionally the matrix is computed and stored [1,2,8]. This significantly reduces the complexity in the computations.

Second, the inner products used in the conjugate gradient computations are approximated by a stochastic sampling
method. The use of the sample-evaluated inner products provides further efficiency for the calculations, and this is a
distinctive feature of the SCG algorithm proposed in this paper. It is mainly because of this feature that the algorithm of
this paper is called a stochastic conjugate gradient method. While it is natural to approximate the inner products by using
sample averages, it is not obvious whether the SCG using only one iteration per sample set would converge. A theoretical
proof will be given to show that the SCG method of this work is convergent in probability. Simulations are performed to
confirm the theoretical results, and the convergence is demonstrated even for very small sample size.

This paper is organized as follows. The new stochastic conjugate gradient algorithm is introduced in Section 2. The
theoretical analysis of convergence is given in Section 3. Some implementation issues are discussed in Section 4. In Section 5,
an algorithm formultivariate functions is presented. Simulation results are given in Section 6. AnAppendix containing proofs
for the theoretical statements of Section 3 is given at the end of the paper.

2. The stochastic conjugate gradient method

Let g(x) be a complex-valued function defined on [0, 1]. Let Y (t) be a random process with a probability density function
ρ(x) > 0, x ∈ [0, 1] and

 1
0 ρ(x)dx = 1. Let Z(t) = g(Y (t)). We assume that ρ(x) is known. However, the function g(x),

which is to be approximated, is not known explicitly, but the random process Z(t) can be observed, and its samples can be
taken as desired.

Let {φ0(x), . . . , φM−1(x)} be a set of linearly independent complex-valued functions of real variables defined on the
interval [0, 1]. Let φ = [φ0(x), . . . , φM−1(x)]T . For example, {φ0(x), φ1(x), . . . , φM−1(x)} = {1, x, . . . , xM−1} forms a basis
for the polynomials of degree less thanM . Let E(y) denote the expected value of the random variable y, and y∗ the complex
conjugate of y. The problem that we are interested in can be stated as follows.

Problem 1. Find ū(x) =
M−1

i=0 ūiφi(x), such that

E

(g(Y)− ū(Y))∗ (g(Y)− ū(Y))


= E


Z −

M−1
i=0

ūiφi(Y)

∗ 
Z −

M−1
i=0

ūiφi(Y)


= min


E

(Z − u(Y))∗ (Z − u(Y))


|u ∈ V


,

V = span {φ0(x), φ1(x), . . . , φM−1(x)} .

(2.1)

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2531

The solution to Problem 1 can be readily obtained through a minimization process. Define the inner product ⟨·, ·⟩ of
complex-valued functions on the interval [0, 1] by

⟨u, v⟩ = E(u∗v) =
 1

0
ρ(x)u∗(x)v(x)dx. (2.2)

Define a functional of functions defined on [0, 1] by

J(u) = ⟨u− g, u− g⟩ . (2.3)

Then the solution ū to Problem 1 is equivalent to the solution to the following minimization problem:

J(ū) = min {J(u)|u ∈ V} . (2.4)

It is well known that solving (2.4) is equivalent to solving the normal equations

Au = b, (2.5)

where A = A(φ) is theM×M covariancematrix, and u = [u0, . . . , uM−1]
T and b = [b0, . . . , bM−1]T are complexM-tuplets.

Their components are given by

aij =

φi, φj


, bi = ⟨φi, g⟩ . (2.6)

Therefore, the solution to Problem 1 is completely determined if the inner products in (2.6) are known.
The solution ū = [ū0, . . . , ūM−1]

T to the normal equations (2.5) can be found iteratively by using the CG method.
After the coefficients are computed, the approximating function ū(x) can be obtained: ū(x) =

M−1
i=0 ūiφi(x). The details

of the CG method can be found, for example, in [13]. Instead of computing the coefficients [ū0, . . . , ūM−1]
T first, and then

computing the approximating function ū(x) using the coefficients, it is possible to compute the approximating function ū(x)
directly without computing the coefficients. For this purpose, the CG method for the solution of (2.4) can be derived with a
minimization process working on the function space V = span {φ0, . . . , φM−1} directly. The resulting algorithm is given as
follows.

Algorithm CG:

u0
= 0; v0 = 0;

loop for k = 1, 2, . . . ,M

rk−1 =
M−1
j=0


φj, g − uk−1φj (2.7)

terminate when

rk−1, rk−1


= 0

βk =

rk−1, rk−1


/

rk−2, rk−2


, k > 1 (2.8)

vk = rk−1 + βkv
k−1 (2.9)

αk =

rk, g − uk−1 / vk, vk (2.10)

uk
= uk−1

+ αkv
k (2.11)

end loop

After the termination of Algorithm CG, uk is the solution to Problem 1. As a convention in this paper, unless otherwise
stated, we use a superscript for the index of CG iteration if the variable is a vector or a function, e.g., uk, so that the subscript
can be used as the index for the components of the vector. Wewill use a subscript for the index of CG iteration if the variable
is a scalar, e.g., αk.

Algorithm CG above computes the functions rk−1, vk and uk in the function space V, as opposed to the classic CGmethod
which computes complex M-tuplets of the Euclidean space CM . In Algorithm CG, Eq. (2.7) computes the residual rk−1 from
the previous approximation uk−1. The new search direction vk is computed in (2.9). Initially, the search direction is equal to
the residual. Subsequently, the new search direction is orthogonal to the previous search direction in the inner product ⟨·, ·⟩
defined in (2.2), which is conjugate-orthogonal in the Euclidean inner product of theM-tuplets. The new approximation uk

is computed in (2.11) tominimize the functional J(u) in the search direction of vk. The algorithm terminates in nomore than
M iterations in the absence of round-off errors. Function uk after the termination of the iteration is the solution to Problem 1.
Note that Algorithm CG only requires the computation of the residual in (2.7); it does not require the computation or storage
of the covariance matrix A.

In practice, Algorithm CG cannot be realized if function g(x) to be approximated is not known explicitly. This is because
the computations in (2.7) and (2.10) involve the inner product of g(x). Therefore, the inner products in (2.7) and (2.10) must
be approximated in a way that they become computable.

2532 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

Let {z0, . . . , zN−1} and {y0, . . . , yN−1}, be sets of samples taken from the random processes Z(t) and Y (t), respectively,
so that zn = g(yn), n = 0, 1, . . . ,N − 1. The inner product of any two functions is given by (2.2). Evaluating the functions
u(x), v(x) at the samples {y0, . . . , yN−1}, and defining

u(y) = [u(y0), . . . , u(yN−1)]T , and v(y) = [v(y0), . . . , v(yN−1)]T , (2.12)

we have

⟨u, v⟩ = E(u(Y)∗v(Y)) = lim
N→∞

1
N
u(y)Hv(y).

Therefore, the inner product ⟨u, v⟩may be approximated by

⟨u, v⟩ ≈
1
N
u(y)Hv(y) =

1
N

N−1
n=0

u(yn)∗v(yn).

For any two functions u, v defined on [0, 1], we define

⟨u, v⟩s
∆
=

1
N

N−1
n=0

u(yn)∗v(yn). (2.13)

Strictly speaking, ⟨u, v⟩s is not an inner product because the support of u(x), v(x) may not intersect the sample set
{y0, . . . , yN−1}. In addition, the value of ⟨u, v⟩s depends on a particular instance of samples. However, it is reasonable to
assume that, when u(x) is continuous andwhen the sample size N is large enough, at least one sample will be in the support
of u(x), and hence ⟨·, ·⟩s of (2.13) defines an inner product. This inner product differs from sample set to sample set, i.e., in
general, ⟨u, v⟩s1 ≠ ⟨u, v⟩s2 , where s1, s2 represent two different sample sets.

Some modifications need to be made to Algorithm CG for it to be practical. First, the inner product ⟨·, ·⟩ will be
approximated by ⟨·, ·⟩s of (2.13). Second, there is a need to restart the iteration process, i.e., to reset the search direction
vk to residual rk−1, from time to time. The reason is that the search directions may no longer be orthogonal to each other
because the inner products ⟨·, ·⟩s are different from iteration to iteration. Restarting a Krylov subspace method is a common
practice, for example,with GMRES [14]. A simple strategy is to restart the process after a predetermined number of iterations
have been performed. Third, the calculation of βk in (2.8) needs to be revised to guarantee orthogonality between vk and
vk−1 when a different inner product is used at a different iteration. The following algorithm is derived from Algorithm CG
with these modifications, and the notation ⟨·, ·⟩k is used to signify that the inner product is computed as (2.13) with the
sample set k.

Algorithm SCG
At start:

Given threshold ε > 0
Determine a strategy to reset the search direction at least once everyM iterations

u0
= 0; v0 = 0;

loop for k = 1, 2, . . .
take sample sets {y0, . . . , yN−1}, {z0, . . . , zN−1} such that zn = g(yn), n = 0, . . . ,N − 1

rk−1 =
M−1
j=0


φj, g − uk−1

k φj (2.14)

if at start, or at reset, then

βk = 0 (2.15)

else

βk = −

rk−1, vk−1


k /

vk−1, vk−1


k (2.16)

end if

vk = rk−1 + βkv
k−1 (2.17)

if

vk, vk


k < ε, then

reset at next iteration and go to next iteration
end if

αk =

rk, g − uk−1

k /

vk, vk


k (2.18)

uk
= uk−1

+ αkv
k (2.19)

end loop

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2533

At each iteration k, uk(x) is an approximation of the solution to Problem 1. Algorithm SCG has no stopping criteria; it
provides an approximation of g(x) continuously. At each iteration, a number of samples are taken. The sample size, N , may
be different from iteration to iteration. It is also possible that the same samples are used from the previous iteration. This
corresponds to performingmore than one iteration of AlgorithmSCGwith the same inner product. If the same sets of samples
are kept unchanged for M iterations, the residual is guaranteed to be zero in no more than M iterations in the absence of
round-off errors, although the resulting function uk may still not be the solution to Problem 1, because the resulting function
uk minimizes Jk(u) = ⟨u− g, u− g⟩k, but not necessarily J(u) = ⟨u− g, u− g⟩.

The formulas given in Algorithm SCG are for the convenience of presentation, and they can be rewritten for more
computational efficiency. For example, the coefficient of φj in (2.14) can be computed as

γj =
1
N

N−1
n=0

φj(yn)∗(zn − uk−1(yn)) j = 0, . . . ,M − 1. (2.20)

And the numerator of (2.18) can be simplified as
rk−1, g − uk−1

k =

M−1
j=0

γ ∗j γj. (2.21)

Also, 
vk−1, vk−1


k =

1
N

N−1
n=0

vk−1(yn)∗vk−1(yn), and

vk, vk


k =

1
N

N−1
n=0

vk(yn)∗vk(yn). (2.22)

If the reset (2.15) is performed at every iteration, Algorithm SCG becomes a stochastic steepest decent method, because
the search direction vk is always equal to the residual rk−1, which is the direction of the steepest decent.

3. The convergence analysis

In this section, we discuss the convergence properties of Algorithm SCG. While it is natural to approximate the inner
product (2.2) by the sample average (2.13), the question also arises as to whether Algorithm SCG actually converges. We
will show theoretically that the approximation computed from Algorithm SCG converges to the solution of Problem 1 in
probability.

We start with some necessary definitions. Let ū ∈ V = span {φ0, . . . , φM−1} be the solution to Problem 1. We define a
functional on V as

H(u) = ⟨u− ū, u− ū⟩ . (3.1)
The error in the approximation after k iterations of Algorithm SCG is uk

− ū, and H(uk) is therefore the square of the norm
of the error, or mean square error. Therefore, Algorithm SCG is convergent if and only if limk→∞ H(uk) = 0. We denote the
condition number1of the covariance matrix A of (2.6) by c = cond(A).

Next, we define the counterparts of these in the sample-evaluated inner product ⟨·, ·⟩k which is defined in (2.13) with
the samples taken at iteration k of Algorithm SCG. First, we define the counterparts of J(u) and H(u) as

Jk(u) = ⟨g − u, g − u⟩k , Hk(u) =

u− ūk, u− ūk

k . (3.2)

In (3.2), ūk is the solution to the minimization problem

Jk(ūk) = min {Jk(u)|u ∈ V} . (3.3)
It can be shown that, for every u ∈ V,

Hk(u) = Jk(u)−

g − ūk, g − ūk

k . (3.4)

For a given k, the last term in (3.4) is a constant, independent of u. At each iteration k, a covariance matrix Ak can be defined
similarly to A of (2.6) except that ⟨·, ·⟩ is replaced by ⟨·, ·⟩k. Matrix Ak is not needed in Algorithm SCG, but it is convenient in
the discussion of convergence properties. The condition number of Ak is denoted by ck = cond(Ak). We will assume that the
sample size taken at each iteration of Algorithm SCG is large enough so that ⟨·, ·⟩k approximates ⟨·, ·⟩, and that the condition
numbers of Ak are in the same order as that of A. More precisely, we make the following assumptions.

Assumptions. We assume that the following properties hold for ⟨·, ·⟩k.
(1) ⟨·, ·⟩k is an inner product; i.e., for any function u,

⟨u, u⟩k = 0 implies u = 0. (3.5)

1 The condition number is traditionally denoted by the Greek letter κ , but this is too easily confused with the iteration index k.

2534 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

(2) For k ≥ 1 and u ≠ 0, the random variables

ω = ω(k, u) =
⟨u, u⟩k
⟨u, u⟩

(3.6)

are independent and identically distributed. Their logarithms have a finite mean and variance, and they are given by

E (ln (ω(k, u))) = µ,

Var (ln (ω(k, u))) =
σ 2

2
.

(3.7)

The valuesµ, σ 2 are related to the number of samples. If the sample size is sufficiently large that ⟨·, ·⟩k well approximates
⟨·, ·⟩, then µ, σ 2 have small values because ω of (3.6) is close to 1.

(3) The condition numbers ck of Ak have an upper bound. The solutions ūk of (3.3) have an upper bound. That is, there exist
c0 (c0 ≥ c ≥ 1) and d0 > 0 such that

ck ≤ c0,

ūk, ūk < d20, for all k ≥ 1. (3.8)

We are now in a position to state some properties of Algorithm SCG. All proofs are postponed to the Appendix.

Lemma 1. Let uk be the approximation after k ≥ 1 iterations of Algorithm SCG. Then, there exist a sequence δk with

0 ≤ δk ≤ 1, (3.9)

such that

Hk(uk) = δkHk(uk−1), k = 1, 2, (3.10)

Furthermore, there exists a p with 0 < p < 1 such that

k
j=1

δj ≤


1−

1
c0

pk

, for large k, (3.11)

where c0 is the bound on the condition numbers given in (3.8).

Proof. See the Appendix. �

Eqs. (3.9) and (3.10) show that Hk(uk) is reduced at each iteration, while (3.11) provides an estimate on the rate of
reduction. It is worthwhile pointing out that the upper bound on the right-hand side (RHS) of (3.11) is too pessimistic.
The left-hand side (LHS) of (3.11) is expected to be much smaller than the RHS. The base of the upper bound, 1 − c−10 , is
pessimistically too large. As is shown in the proof of Lemma 1, the upper bound in (3.11) is derived essentially based on
the steepest decent method, but we expect Algorithm SCG to perform better. Also, the factor in the exponent, p, could be
very close to 1. Regardless, (3.11) is all we need to establish the convergence of Algorithm SCG, although, in reality, the
convergence can be much faster than predicted by it. Lemma 1 alone, however, does not imply that uk will converge to
the solution of Problem 1, because the reduction is measured according to ⟨·, ·⟩k, which varies from iteration to iteration.
Lemma 1 does not guarantee that H(uk) is also reduced. The next lemma is to address the stochastic nature of ⟨·, ·⟩k.

Lemma 2. If H(uk) ≠ 0 for all k = 1, 2, . . . , then there exist a sequence ηk and a random process θk such that

H(uk) = ηkθkH(u0). (3.12)

Furthermore, there exists a p0 with 0 < p0 < 1, such that ηk satisfies

ηk ≤


1−

1
c0

p0k

, for large k. (3.13)

For large k, the random variable θk has a log-normal distribution, and its probability density function is given by

fθk(t) = fLogN(t; 0, kσ 2) =
1

t
√
kσ
√
2π

e−
(lnt)2

2kσ2 , t > 0, (3.14)

where σ 2 is given in (3.7).

Proof. See the Appendix. �

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2535

The two factors on the RHS of (3.12) characterize the asymptotic behaviors of the two processes involved in the SCG
method. The first factor ηk is the result of the conjugate gradient iterative process in which the mean square error, Hk(uk), is
reduced by that amount after k iterations. The second factor θk captures the impact of the stochastic process of replacing the
inner product ⟨·, ·⟩ by its sample-evaluated version ⟨·, ·⟩k. Although the first factor gets progressively smaller as the number
of iterations is increased, the second factor θk may get unboundedly large as the number of iterations is increased. In fact,
as k→ +∞, E (θk)→ +∞. The two factors, ηk and θk, counteract each other, but the rate of decay of ηk is faster than the
rate of growth of θk, so Algorithm SCG converges, which is stated in the following theorem.

Theorem 1. The computed function uk from Algorithm SCG converges to the solution of Problem 1 in probability. More precisely,
we have

(1) either H(uk) = 0 for some k, in which case uk
= ū is the solution to Problem 1, or

(2) limk→+∞ H(uk) = 0 in probability, i.e., for every ε > 0,

lim
k→+∞

Pr
H(uk)

 < ε

= 1. (3.15)

In (3.15), Pr (·) is the probability.

Proof. See the Appendix. �

As shown in the proof of Theorem 1, there are two numbers that determine the convergence rate of Algorithm SCG. The
first is 1−c−10 ; the smaller this number is, the faster the convergence is. The parameter c0 is related to the condition number
c of the covariance matrix A, and a reduced c speeds up convergence. Therefore, it is important to properly choose the basis
functions {φ0, . . . , φM−1} to reduce the condition number of the resulting covariancematrix A, even though thematrix does
not explicitly appear in Algorithm SCG.

The second number that affects the convergence rate is the variance σ 2 of the logarithm of the random variables defined
in (3.6) and (3.7). The smaller σ 2 is, the faster the convergence is. This number is determined by the sample sets used in the
evaluation of the inner products ⟨·, ·⟩k. A large sample size implies a small variance σ 2, and hence a fast convergence rate for
Algorithm SCG. Also, when σ 2 is small, the variance in the approximation uk is small, and the convergence will be smooth.
In fact, if c0 and σ 2 are sufficiently small that

1−
1
c0

p0
eσ

2/2 < 1, (3.16)

then uk converges to ū in mean square; i.e.,

lim
k→+∞

E

H(uk)


≤ H(u0) lim

k→+∞


1−

1
c0

p0k

E(θk)


= H(u0) lim

k→+∞


1−

1
c0

p0
eσ

2/2
k

= 0. (3.17)

Eq. (3.17) is a directly consequence of Lemma 2 because E(θk) = eσ
2/2. Eq. (3.17) represents a stronger result than

Theorem 1 because of the additional assumption (3.16).

4. Implementation considerations

4.1. Orthogonal basis functions

Although Theorem 1 guarantees convergence of Algorithm SCG, the convergence rate depends on the condition numbers
of the covariance matrices. This is clear from Eqs. (3.12) and (3.13). The rate of convergence is bounded by ηk, as given
in (3.12), and, in turn, the bound of ηk depends on c0, as is shown by (3.13), where c0 is the bound of condition numbers
ck = cond(Ak) given in (3.8). The larger the condition numbers are, the slower the convergence rate is. Inmany applications,
the covariance matrices may be ill conditioned, resulting in slow convergence. This problem can be alleviated by using an
orthogonal basis.

Orthogonal basis functions help reducing the condition number of the covariance matrix, and hence improving
convergence of Algorithm SCG. The basis functions {φ0, . . . , φM−1} may be orthogonalized by, for example, the
Gram–Schmidt process, in which an orthonormal basis {ψ0, . . . , ψM−1} is obtained with the property

ψk(x) ∈ span{φ0(x), . . . , φk(x)}, k = 0, . . . ,M − 1,
ψi(x), ψj(x)


=


0 i ≠ j
1 i = j.

For polynomialswith the basis functions {φ0(x), φ1(x), . . . , φM−1(x)} = {1, x, . . . , xM−1}, an orthonormal basis {ψ0, . . . ,
ψM−1} can be constructed simply by using a three-term recursion. Orthogonal polynomials are also considered in [15] for
the application of predistortion.

2536 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

With an orthonormal basis, the covariance matrix has condition number cond(A(ψ)) = 1. However, this does not imply
that the solution of the least squares problem can be found after one iteration of Algorithm SCG. The reason is that the basis
functions that are orthogonal in ⟨·, ·⟩ may no longer be orthogonal in ⟨·, ·⟩k, and therefore the condition number of Ak is
in general greater than 1. Nevertheless, we expect the condition number of Ak to be smaller when the basis functions are
orthogonal.

4.2. Estimate for the probability density function

The probability density function ρ(x) of the random process Y (t) is needed in the orthogonalization process. In general,
a histogram or the kernel density estimation may be used to estimate the probability density function. In the application of
predistortion, the signal is usually an OFDM signal. The amplitude of an OFDM signal has a distribution close to a Rayleigh
distribution, and therefore we may choose the probability density function as ρ(x) = xe−x

2/(2σ 2)/σ 2. The parameter σ may

be estimated from the observed samples by σ̂ =


1
2N

N−1
n=0 y2n.

4.3. Look-up table implementation

In many applications, the computed function uk(x) from Algorithm SCG is used in further processing in an outer loop.
In hardware implementation such as on a field-programmable gate array (FPGA), the evaluation of a function is best
accomplished by the use of a look-up table (LUT). An LUT of a function is a vector whose index corresponds to a quantized
value of the independent variable of the function. Therefore, the probability density function, function uk(x), the basis
functions {φ0, . . . , φM−1}, and other functions in the SCG algorithm can all be represented by LUTs. Quantize [0, 1] into
B levels, and let xj = j/B, j = 0, . . . , B − 1. Then a look-up table representation can be defined as LUTu(j) = u(xj), for
j = 0, . . . , B− 1.

4.4. The complexity of Algorithm SCG

The cost of AlgorithmSCG is determined by its complexity. The complexity of AlgorithmSCG can be analyzed by assuming
that the functions involved are implemented by LUTs of size B. The majority of operations are from the computation of
residual in (2.14) in which the LUT values are evaluated at N samples, and then M inner products ⟨·, ·⟩k are computed, for
a total of MN operations. Direction vk is formed with M basis functions to give MB operations. The rest of the operations
require two inner products ⟨·, ·⟩k, and two function updates. Therefore, the complexity for Algorithm SCG per iteration is
O(MN +MB+ N + B).

This can be compared with the traditional CG algorithm, which is similar to Algorithm CG with the exceptions that (1)
the residual in (2.7) is computed with a matrix by vector multiplication, and (2) each inner product is computed by vector
dot product of M-tuplets. When the matrix is computed at each iteration, the computation requires M(M + 1)/2 inner
products, each of which requires evaluation at N samples, for a total of O(M2N) operations. The residual computation needs
MN operations. The rest is similar to Algorithm SCG. Therefore, the complexity per iteration for the traditional CG algorithm
is O(M2N +MN +MB+ B), which is higher than the complexity of Algorithm SCG.

5. Multivariate functions

Although theoretical treatment of multivariate functions is very close to that of functions of one variable, there are
significant practical issues in multivariate functions that warrant more discussion. In this section, the superscript will be
used as the index of dimensions, and will no longer be used as the iteration index. The omission of the iteration index
should not cause confusion, because the algorithm specifies the computations within one iteration to compute the updates
for the next iteration.

For multivariate functions, even if the function to be approximated, g(x1, . . . , xQ), is known, it is no longer feasible to
compute the inner product ⟨·, ·⟩. Its computation not only requires multivariate integrals, but also requires knowledge of
the joint probability density function ρ(Y 1, . . . , YQ), both of which may not be practical due to the curse of dimensionality.
The inner product must be approximated by sampling as defined by

⟨u, v⟩s
∆
=

1
N

N−1
n=0

u(y1n, . . . , y
Q
n)
∗v(y1n, . . . , y

Q
n).

An additive separable function is a special form of multivariate function which is a sum of functions of one variable.
Additive separable functions arise in many applications. In [3], the approximation of a multivariate function is reduced to

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2537

a series of problems of finding the best additive separable function approximation. In the application of predistortion for
HPAs with memory, it is assumed that the inverse of the HPA can be approximated by a memory polynomial of the form

zn = P(xn, . . . , xn−Q+1) =
Q

q=1

xn−q+1Pq(|xn−q+1|). (5.1)

In (5.1), xn are complex samples from the transmitted signal. Pq(·) is a polynomial of a degree less than M . (5.1) is said
to be a memory polynomial because zn depends on not only xn but also its past states xn−1, . . . , xn−Q+1. The delays in
samples are necessary to account formemory effects of anHPAwithmemory. The objective is, therefore, to find polynomials
Pq(·), q = 1, . . . ,Q , so that the pair of sample sets {xn}, {zn} from (5.1) best match the sample sets from observing the
output and input signals of the HPA. In this context, the inverse of the HPA is regarded to be amultivariate function in which
a dimension is the current state or a state in the past; see [1,2] for more details.

Let g(x1, . . . , xQ) be a complex-valued function of Q complex variables. Let Y 1, . . . , YQ be complex-valued random
processes. Each of |Y q| has the same probability density function ρ(x). Let Y = [Y 1, . . . , YQ

]. Define the random variable
Z = g(Y 1, . . . , YQ). Let {ψ0(|x|), . . . , ψM−1(|x|)} be a set of linearly independent complex-valued functions of one real
variable defined on the interval [0, 1]. Let {τ1(x), . . . , τQ (x)} be a given set of complex-valued functions of one complex
variable. A generalization of the memory polynomial predistorter (5.1) is given by

zn = P(xn, . . . , xn−Q+1) =
Q

q=1

τq(xn−q+1)
M−1
i=0

uq
iψi(|xn−q+1|). (5.2)

The memory polynomial predistorter in (5.1) becomes a special case of (5.2) with τq(x) = x, q = 1, . . . ,Q and ψi(x) =
xi, i = 0, . . . ,M − 1. With these definitions, finding the best predistorter (5.2) is tantamount to solving the best
approximation problem stated as follows.

Problem 2. Find ūq (|x|) =
M−1

i=0 ūq
iψi (|x|) , q = 1, . . . ,Q such that

E


g(Y)−

Q
q=1

τq(Y q)ūq Y q
∗ · g(Y)− Q

q=1

τq(Y q)ūq Y q


= min
vq∈V

E


Z −

Q
q=1

τq(Y q)vq
Y q

∗ · Z − Q
q=1

τq(Y q)vq
Y q

 ,
V = span {ψ0, . . . , ψM−1} .

The solutions ūq (|x|) , q = 1, . . . ,Q to Problem 2 can be computed using the following algorithm, in which the superscript
is now the index of the dimensions in a multivariate function, rather than the index of iterations as in Algorithm SCG. Since
no iteration index is used, the same variable will be used both before and after an iteration, but the notation ‘‘←’’ will be
used to indicate that the variable has been assigned to a new value.

Algorithm SCG_MUL
At start:

Given ε > 0, and basis functions {ψ0(|x|), . . . , ψM−1(|x|)}
Determine a strategy to reset the search direction at least once every QM iterations.

uq(x) = 0, for q = 1, . . . ,Q

loop:
Take sample sets {yq0, . . . , y

q
N−1}, q = 1, . . . ,Q , and {z0, . . . , zN−1} such that zn = g(y1n, . . . , y

Q
n), n = 0, . . . ,N−1

γ
q
i =

1
N

N−1
n=0


(τq(yqn)ψi(|yqn|))

∗
·


zn −

Q
q=1

τq(yqn)u
q(|yqn|)


, q = 1, . . . ,Q , i = 0, . . . ,M − 1

rq = [γ q
0 , . . . , γ

q
M−1]

T , q = 1, . . . ,Q

if at start or reset

vq(|x|)←
M−1
i=0

γ
q
i ψi(|x|), q = 1, . . . ,Q

2538 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

else

β =


Q

q=1


rq
H rq


ω,

ω←

Q
q=1


rq
H rq,

vq(|x|)←
M−1
i=0

γ
q
i ψi(|x|)+ βvq(|x|), q = 1, . . . ,Q

end if
if ω < ε

reset at next iteration and go to next iteration
else

λ =

N−1
n=0

 Q
q=1

τq(yqn)v
q(|yqn|)


2

,

α =
ω

λ
,

uq(|x|)← uq(|x|)+ αvq(|x|), q = 1, . . . ,Q

end
end loop

Although the same number of basis functions and the same basis functions themselves are used in Algorithm SCG_MUL
for each dimension q = 1, . . . ,Q , this is done purely for convenience. The number of basis functions and the basis functions
themselves can be made different for each different dimension q.

It is also advantageous to use orthonormal basis functions to reduce the condition number of the covariance matrix. For
Problem 2, the orthonormal basis functions are defined as

τq(x)ψi(|x|), τq(x)ψj(|x|)

=


0 i ≠ j, q = 1, . . . ,Q
1 i = j, q = 1, . . . ,Q .

Even if {ψ0, . . . , ψM−1} is an orthonormal basis, the condition number of the covariance matrix for the multivariate
Problem 2 is still larger than 1 in general because the covariance matrix may not be diagonal as the dimensional variables
are not necessarily independent random variables. However, experiments show that using the orthonormal basis functions
for each dimension will reduce the conditional number of the covariance matrix for the multivariate problem.

6. Simulations

6.1. Function of one variable

In the first example, Algorithm SCG is applied to computing an approximation of a function of one variable given by

g(y) = sin(2πy), y ∈ [0, 1].

The basis functions {ψ0, . . . , ψM−1} are orthogonal polynomials of degree less than M with respect to the uniform weight
function on [0, 1]. At each iteration,N samples are taken from a Rayleigh distribution; i.e., the samples are computed by yn =

x1n
2
+

x2n
2, where x1n, x

2
n are random numbers from the normal distribution with mean= 0.25 and variance= 0.0625.

The values of yn that are outside [0, 1] are ignored. Therefore, the uniformweight function is not the same as the probability
density function of the samples. The basis functions are intentionally chosen to be not orthogonal in the inner product ⟨·, ·⟩
defined by the Rayleigh distribution, but, at the same time, the resulting covariance matrix still has a modest condition
number. An LUT of B entries is used to represent each function involved in Algorithm SCG. The algorithm is reset after
every M iterations. Only one iteration is performed for each set of samples captured. At each iteration, the mean square
error, H(uk), is obtained by computing uk(y) − sin(2πy) at 1000 evenly spaced points in the interval [0, 1], and therefore
the measurement H(uk) is independent of the sample set. We report the values of H(uk), which is computed with the
uniform weight function in the inner product, as a function of the iteration number k. Four simulations are performed
in which a different sample size N is used for each simulation run. The parameters used in the simulations are given as
M = 10, B = 216,N = 1, 50, 100, 500. In other words, the sine function is approximated by a polynomial of degree 9. The
simulation results for first 100 iterations are shown in Fig. 1.

For the simulation with sample size N = 500, the mean square error H(uk) reaches the level of about 4.0e − 10 in less
than 30 iterations, and after that it remains at that level almost as a straight horizontal line. The error cannot be reduced

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2539

Fig. 1. Convergence of mean square error: from top to bottom, sample size N = 1, 50, 100, 500.

Fig. 2. Convergence of mean square error when N = 1: expanded view of Fig. 1.

further for two reasons: (1) the computed function uk(y) is represented by an LUT of 16 bits, which limits the resolution
of the LUT and hence the accuracy of uk(y), and (2) the mean square error H(uk) is bounded below by the square of the
distance between the function sin(2πy) and the linear space of polynomials of degrees less than M = 10. To demonstrate
this further, the curve for N = 1000 (not shown) after convergence is almost indistinguishable from that of N = 500.

The errors for N = 100 and N = 50 also reach the level of 4.0e − 10, in no more than 50 iterations, but, for N = 1,
it takes much longer for the error to reach the same level, as shown in Fig. 2. Nevertheless, it is quite remarkable that the
algorithm does converge even with N = 1.

Note that, when N = 1, we need to restart the algorithm after every iteration because the covariance matrix has rank 1
and there is no need to search in any directions other than the direction of the residual. In this case, Algorithm SCG effectively
becomes the steepest decent method.

6.2. Digital predistortion

Next we present simulation results in applying the SCG_MUL algorithm to digital predistortion of an HPA as studied in
[1,2]. In [1,2], memory polynomials are used as a predistorter and the computation of the predistorter amounts to solving
the minimization Problem 2, in which the basis functions are polynomials. A block diagram of the polynomial predistortion
is shown in Fig. 3.

In a polynomial predistorter, the signal is predistorted by a polynomial. The signal after the predistorter is converted
to an analog signal and transmitted to an HPA. A feedback signal from the HPA is sampled, and the pair yn, zn forms the
input–output pair of the function to be approximated. The objective is to approximate the inverse of the HPA, where yn is

2540 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

Fig. 3. Polynomial predistorter.

Fig. 4. Power spectra. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

considered the input, and zn the output. The polynomial that best approximates the inverse function is computed, and it is
used as predistorter to form zn from xn.

In our simulations, we use the memory polynomial PA model as given in Example 2 of [1]. The memory polynomial of
degree 5 with three delay taps is used as the predistorter. That is, the parameters of Problem 2 are given by M = 5,Q = 3.
As suggested by Ding et al. [1], this choice of parameters results in good performance for the predistortion with the given
PA model. A multivariate function g(y) is a function of the variables yn, yn−1, yn−2; i.e., zn = g(yn, yn−1, yn−2).

An OFDM signal with 16QAM modulation is used in our simulations. At the beginning of each simulation, 25,600
samples are captured for each yn, zn pair. These samples are used to estimate the probability density function ρ using the
histogram method. The orthogonal polynomial basis {ψ0(|x|), . . . , ψM−1(|x|)} is then formed using three-term recursion.
These functions are represented by LUTs with B = 4096 entries each. In each data capture of the SCG_MUL algorithm, a total
of N = 1280 samples are taken for each yn, zn pair.

Three simulations using the SCG_MUL algorithm are performed, which are named Sim1, Sim2, and Sim3. In Sim1, the
algorithm is performed with the maximum number of iterations per set of samples captured, i.e., MQ = 15 iterations are
performed for each data captured. The solution at the last iteration corresponds to the solution by a direct method applied
to the normal equations with the inner products formed with the given set of the samples. In Sim2, only one iteration is
performed for each set of samples captured. In both Sim1 and Sim2, the weight function used for the orthogonalization
of the basis functions is the estimated probability density function. Sim3 is similar to Sim2, but the weight function is the
uniform distribution (that is, no weight function is used in the orthogonalization process). In all simulations, the search
direction v is reset after every MQ = 15 iterations. In Sim1, the reset is performed every time a new set of samples is
captured. In all simulations, at each iteration of the SCG_MUL, the newly updated u is immediately used in the outer loop as
the predistorter.

In each simulation, a total of 210 SCG iterations are performed. In Sim1, a total of 14 data captures are performed (there
are 15 SCG iterations for each data capture), and 210 data captures are performed in other simulations. At the end of each
simulation, the linearization of theHPA is achieved, because theHPA output signal yn is almost identical to the original signal
xn. A plot of the spectra of different signals for Sim2 is shown in Fig. 4. Spectra from Sim1 and Sim3 are indistinguishable
from Fig. 4.

In Fig. 4, the red curve, the curve with the highest spectrum shoulders, shows the spectrum of the signal after HPA when
no predistortion is used. The green and blue curves, which are almost identical and indistinguishable, show the spectra of
the original signal xn and the signal yn after HPA when the predistortion is used, respectively.

The spectrum plot in Fig. 4 shows that, at the end of the iteration after the convergence, the solutions from all three
simulations have the desired accuracy because the nonlinear efforts of the HPA have been completely removed with the

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2541

Fig. 5. The convergence of normalized residuals.

computed predistorter. A comparison of Fig. 4with the plot in [1, Figure 4] also demonstrates that the solutions from iterative
methods of Sim1, Sim2, and Sim3 all have the same accuracy as a solution obtained by a direct method from [1]. However,
the SGC algorithm is much more efficient in terms of computational complexity than a direct method.

To show the performance of the SCG_MUL algorithm, we examine the residual computed at the beginning of each SCG
iteration. Let yn, zn be the set of the captured samples. Let P be the computed polynomial from the previous iteration. Then
thenormalized residual is defined as r = ∥zn − P(yn)∥ / ∥zn∥. Thenormalized residuals as functions of SCG iterationnumber
are shown in Fig. 5 for all simulations.

We can make the following observations. First, as expected, in Sim1, a fairly accurate solution is obtained in 15 SCG
iterations. After that, the residual does not change significantly. The variation in the residuals after 15 SCG iterations is
mainly due to the fact that they are computedwith different sets of samples. After convergence, the residual remains almost
constant during the 15 SCG iterations in which the same set of samples is used. This demonstrates that, after some initial
time, there is no need to perform more iterations in the SCG_MUL algorithm using the same set of captured samples. One
reason for the residual to be prohibited from being further reduced is because the inverse function of the HPA is not a
polynomial. There is also noise in the signal which contributes to errors in the approximation.

In Sim2, the first five or six iterations are almost identical to those in Sim1. After that, the convergence slows down.
Again this is expected, because the SCG_MUL algorithm loses orthogonality when different samples are taken at different
iterations. However, the normalized residuals are reduced to the similar level as in Sim1 after about 60 SCG iterations (which
is equivalent to four data captures in Sim1).

In Sim3, we see that the convergence of the SCG_MUL algorithm is significantly slower when the uniform distribution is
used as the weight function in forming the orthogonal basis. This is because the condition number of the covariance matrix
is larger when the weight function is not equal to the probability density function of the samples.

7. Conclusions

We have presented a stochastic conjugate gradient method in which the approximating function is computed directly
without using the covariance matrix. This reduces the complexity of the computation. Furthermore, the inner products
involved in the algorithm are computed by evaluating at the samples. We have provided a rigorous proof that the algorithm
is convergent in probability. Simulations are performed to confirm the theoretical results.

Appendix

Proof of Lemma 1. In iteration k of the SCGmethod, the update uk is computed to minimize the functional Jk(u). Therefore,
the update satisfies

Jk(uk) ≤ Jk(uk−1). (A.1)

Combining Eqs. (A.1) and (3.4), we have

Hk(uk) ≤ Hk(uk−1). (A.2)

2542 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

If we define

δk =


Hk(uk)/Hk(uk−1), if Hk(uk−1) ≠ 0
0, otherwise, (A.3)

then (3.10) holds, and Eqs. (A.2) and (A.3) imply (3.9).
In order to show (3.11), we note that, at the start or the reset of Algorithm SCG, the computation is exactly the same as in

the steepest decent method because the search direction is the residual. By using the same process as in the steepest decent
method, see for example [1], it can be easily shown that

Hj(uj) ≤

1− c−1j


Hj(uj−1), (A.4)

if iteration j is at a reset.
Algorithm SCG requires a reset at least once every M iterations, and therefore (A.4) is satisfied at least once every M

iterations. For large k, there must be at least k/M occurrences of reset, and hence as many times for which (A.4) is satisfied.
For each such occurrence, we have

δj ≤ 1− c−1j ≤ 1− c−10 . (A.5)

In arriving at (A.5), assumption (3.8) has been applied. This shows that there is a fraction of k iterations for which (A.5) is
satisfied. More precisely, there exists a p with 1

M ≤ p ≤ 1 such that, for large k, among all δj, j = 1, . . . , k, at least pk of
them satisfy (A.5), and the others satisfy (3.9). This proves (3.11). �

Proof of Lemma 2. Since H(uk) ≠ 0 for all k = 1, 2, . . . , we define

ωk0 = Hk(uk)/H(uk),

ωk1 = Hk(uk−1)/H(uk−1).
(A.6)

From (3.10) and (A.6), we have

ωk0H(uk) = δkωk1H(uk−1). (A.7)

We first give the proof by assuming that ωk0 ≠ 0 and ωk1 ≠ 0 for all k. Applying (A.7) repeatedly for k, k− 1, . . . , 1, we
get

H(uk) = δkωk1ω
−1
k0 H(uk−1) =

k
j=1

δj

k
j=1

ωj1


k

j=1

ωj0

−1
H(u0) = ηkθkH(u0),

ηk =

k
j=1

δj,

θk =

k
j=1

ωj1


k

j=1

ωj0

−1
.

(A.8)

Therefore, ηk satisfies (3.13) with p0 = p thanks to Lemma 1. The quantities ωj0, ωj1 are random variables defined in
(3.6). Since they are independent and identically distributed by assumption, the product

k
j=1 ωj1 approaches a log-normal

distribution as k→+∞ according to theCentral Limit Theorem. Since themean andvariance of the logarithmof the random
variables in (A.6) are µ and σ 2/2, respectively, the log-normal distribution in the limit has the parameters kµ and kσ 2/2,
respectively. The same argument also applies to product

k
j=1 ωj0. Furthermore, the inverse of a log-normal distribution is

also a log-normal distribution, and the product of independent log-normal distributions is also log-normal. Therefore, for
large k, we have the following distributions:

k
j=1

ωjq ∼ LogN (kµ, kσ 2/2), q = 0, 1


k

j=1

ωj0

−1
∼ LogN (−kµ, kσ 2/2),

θk =

k
j=1

ωj1


k

j=1

ωj0

−1
∼ LogN (0, kσ 2).

The probability density function of the log-normal distribution LogN (0, kσ 2) is given by (3.14). This proves Lemma 2 under
the assumptions that ωk0 ≠ 0 and ωk1 ≠ 0 for all k.

H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544 2543

Next,we consider the casewhenωj0 orωj1 = 0 for some j = 1, . . . , k. Because of (A.7) and the assumption thatH(uj) ≠ 0,
we have that ωj1 = 0implies ωj0 = 0. Therefore, we only need to consider the case when ωj0 = 0 for some j. From (A.6),
ωj0 = 0 implies that Hj(uj) = 0, and hence uj

= ūj. For each such j, we have, because of (3.8),

H(uj) =

ūj
− ū, ūj

− ū

≤


ūj, ūj


+


⟨ū, ū⟩

2

≤


d0 +


⟨ū, ū⟩

2
∆
= d1H(u0). (A.9)

This shows that (A.8) is still true if we replace δjωj1ω
−1
j0 by d1 in each of the terms in (A.8) for which ωj0 = 0. Since uj is

computed by random samples and only one iteration of the SCG algorithm is performed, the probability of ωj0 = 0, and
hence of Hj(uj) = 0, is zero; i.e., Pr(Hj(uj) = 0) = 0. Therefore, for large k, there are no more than, say, (p/4)k terms in (A.8)
for which (A.9) holds, and for the rest of terms (A.7) holds. Absorbing those terms for which (A.9) holds into the product ηk
of (A.8), we have

ηk ≤

1− c−10

3pk/4
dpk/41 ≤


1− c−10

pk/4
, for large k.

Therefore, (3.13) holds for some p0, say p0 = p/4. The product θk has fewer terms than given in (A.8), but for large k, it still
approximates the log-normal distribution with the same parameters, which concludes the proof. �

Proof of Theorem 1. First, if H(uk) = 0 for some k, then

uk
− ū, uk

− ū

= 0. This shows that uk

= ū, and uk is therefore
the solution to Problem 1. Otherwise, if H(uk) ≠ 0 for all k = 1, 2, . . . , then Lemma 2 holds. For a given ε > 0, we consider
the probability of

H(uk)
 < ε. From Lemmas 1 and 2, we haveH(uk)

 = ηkθkH(u0) ≤

1− c−10

p0k H(u0)θk. (A.10)

Since the LHS of (A.10) is smaller than or equal to the RHS, the probability of the LHS being smaller than a number is larger
than the probability of the RHS being smaller than the same number. Therefore, we have

Pr
H(uk)

 ≤ ε ≥ Pr


1− c−10

p0k H(u0)θk ≤ ε

. (A.11)

The probability on the RHS of (A.11) is the same as that of θk ≤ εk if we define

εk = ε

1− c−10

−p0k H(u0)
−1

, (A.12)

because all numbers on the RHS of (A.12) are deterministic positive numbers. Therefore,

Pr
H(uk)

 ≤ ε ≥ Pr (θk ≤ εk) . (A.13)

Since the probability density function θk is given by (3.14), we have

Pr (θk ≤ εk) =
 εk

0
fθk(t)dt =

 εk

0
fLogN(t; 0, kσ 2)dt. (A.14)

Thus, combing (A.13), (A.14), we get

Pr
H(uk)

 ≤ ε ≥  εk

0
fLogN(t; 0, kσ 2)dt. (A.15)

To evaluate the integral in (A.15), we make a change of variable: sσ
√
k
= t . Then the integral is computed as εk

0
fLogN(t; 0, kσ 2)dt =

 εk

0

1

t
√
kσ
√
2π

e−
(lnt)2

2kσ2 dt =
 sk

0

1

s
√
2π

e−
(lns)2

2 ds =
 sk

0
fLogN(s; 0, 1)ds, (A.16)

where

sk = (εk)
1

σ
√
k = ε

1
σ
√
k

H(u0)

− 1
σ
√
k

1− c−10

−p√k
σ . (A.17)

As k→ +∞, the first two terms in the RHS of (A.17) go to 1 and the last term goes to+∞. Therefore, the limit of (A.17) is
limk→+∞ sk = +∞. Now taking the limit of (A.16), we have

lim
k→+∞

 εk

0
fLogN(t; 0, kσ 2)dt = lim

k→+∞

 sk

0
fLogN(s; 0, 1)ds =


+∞

0
fLogN(s; 0, 1)ds = 1. (A.18)

Finally, from (A.15) and (A.18), we have

lim
k→+∞

Pr
H(uk)

 ≤ ε ≥ lim
k→+∞

 εk

0
fLogN(t; 0, kσ 2)dt = 1.

Since the probability cannot exceed 1, this implies (3.15), which concludes the proof. �

2544 H. Jiang, P. Wilford / Journal of Computational and Applied Mathematics 236 (2012) 2529–2544

References

[1] L. Ding, G.T. Zhou, D.R. Morgan, Z. Ma, J.S. Kenney, J. Kim, C.R. Giardina, A robust digital baseband predistorter constructed usingmemory polynomials,
IEEE Transactions on Communications 52 (1) (2004) 159–165.

[2] D.R. Morgan, Z. Ma, J. Kim, M.G. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers, IEEE
Transactions on Signal Processing 54 (10) (2006) 3852–3860.

[3] G. Beylkin, J. Garcke, M.J. Mohlenkamp, Multivariate regression and machine learning with sums of separable functions, SIAM Journal on Scientific
Computing 31 (3) (2009) 1840–1857.

[4] N.N. Schraudolph, T. Graepel, Towards stochastic conjugate gradient methods, in: Proceedings of the 9th International Conference on Neural
Information Processing, vol. 2, 2002, pp. 853–856.

[5] Z. Xu, Y. Dai, A stochastic approximation frame algorithm with adaptive directions, Numerical Mathematics: Theory, Methods and Applications 1 (4)
(2008) 460–474.

[6] Z.Wang, E.M.Dowling, Stochastic conjugate gradient constantmodulus blind equalizer forwireless communications, in: IEEE International Conference
on Communications, vol. 2, 1996, pp. 832–836.

[7] P. Arasaratnam, S. Zhu, A.G. Constantinides, Stochastic conjugate gradient basedmulti-user constantmodulus algorithm for use inmultiuser DS-CDMA
environment, in: Proceedings of Global Telecommunications Conference, vol. 1, 2002, pp. 458–462.

[8] P.S. Chang, A.N. Willson Jr., Analysis of conjugate gradient algorithms for adaptive filtering, IEEE Transactions on Signal Processing 48 (2) (2000)
409–418.

[9] N.N. Schraudolph, Fast curvature matrix–vector products for second-order gradient descent, Neural Computation 14 (7) (2002) 1723–1738.
[10] R. Telichevesky, K.S. Kundert, J.K. White, Efficient steady-state analysis based on matrix-free Krylov-subspace methods, in: Proceedings of the 32nd

Annual ACM/IEEE Design Automation Conference, 1995, pp. 480–484.
[11] S.D. Senturla, N. Aluru, J. White, Simulating the behavior of MEMS devices: computational methods and needs, IEEE Computational Science and

Engineering 4 (1) (1997) 30–43.
[12] J. Kanapka, J. Phillips, J. White, Fast methods for extraction and sparsification of substrate coupling, in: Proceedings of the 37th Annual Design

Automation Conference, 2000, pp. 738–743.
[13] G.H. Golub, C.F. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore, London, 1989, p. 522.
[14] A.H. Baker, E.R. Jessup, Tz.V. Kolev, A simple strategy for varying the restart parameter in GMRES, Journal of Computational and Applied Mathematics

230 (2) (2009) 751–761.
[15] R. Raich, G.T. Zhou, Orthogonal polynomials for complex Gaussian processes, IEEE Transactions on Signal Processing 52 (10) (2004) 2788–2797.

	A stochastic conjugate gradient method for the approximation of functions
	Introduction
	The stochastic conjugate gradient method
	The convergence analysis
	Implementation considerations
	Orthogonal basis functions
	Estimate for the probability density function
	Look-up table implementation
	The complexity of Algorithm SCG

	Multivariate functions
	Simulations
	Function of one variable
	Digital predistortion

	Conclusions
	Appendix
	References

