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a b s t r a c t

We consider the numerical integration of the Degasperis–Procesi equation, which was
recently introduced as a completely integrable shallow water equation. For the equation,
we propose nonlinear and linear finite difference schemes that preserve two invariants
associated with the bi-Hamiltonian form of the equation at the same time. We also prove
the unique solvability of the schemes, and show some numerical examples.
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1. Introduction

In this paper,1 we consider numerical methods for the Degasperis–Procesi equation:

ut − uxxt = uuxxx + 3uxuxx − 4uux, x ∈ R, t > 0, (1)

where the subscript t (or x, respectively) denotes the differentiation with respect to time variable t (or x). This equation was
found in a study by Degasperis and Procesi [2], where they considered asymptotic integrability of a family of the third order
dispersive nonlinear equations:

ut − α2uxxt + γ uxxx + c0ux = (c1u2
+ c2u2

x + c3uuxx)x.

The parameters α, γ , c0, c1, c2, c3 are constants, and Degasperis and Procesi concluded that under only three special choices
of them the equation becomes integrable; namely, the KdV equation: ut +uux+uxxx = 0, the Camassa–Holm (CH) equation:

ut − uxxt = uuxxx + 2uxuxx − 3uux, (2)

and the DP equation (1). As for the KdV and the CH, the structure of solutions has been studied in detail so far, and also
considerable effort has beendevoted to their numerical treatment. In contrast to this, there seems to have been relatively few
studies on the DP, and much remains to be investigated both mathematically and numerically. In view of this background,
this paper is intended to provide a good numerical scheme for the equation.

At this point, some readers might feel that due to the apparent similarity between the DP and CH (actually they only
differ in two coefficients), we can naturally extend the knowledge on the CH to the DP, and nothing special is left to be
investigated separately. In fact, the DP is quite similar to the CH in the following senses. They both were discovered in the
context of integrable systems (CH [3], DP [2]), and can be viewed asmodels of shallowwater waves (CH [4,5], DP [6,7]). They
both have bi-Hamiltonian structures, are completely-integrable, and thus have infinitelymany conservation laws. They have
peakon (peaked soliton) solutions (CH [4], DP [2,8]).
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Nevertheless, the DP and CH are in some aspects truly different. From the perspective of PDE theory, the solutions of
the CH basically belong to H1(R) (the first order Sobolev space), while the DP can develop shock solutions which should
be understood as entropy solutions [9–11] (see also [12,13] for smoother solutions). Furthermore there are differences in
invariants and bi-Hamiltonian structures. The CH has the following two invariants:

H̃2 = −
u3

+ uux
2

2
,

d
dt


R
H̃2dx = 0, H̃1 = −

u2
+ ux

2

2
,

d
dt


R
H̃1dx = 0,

which define the associated bi-Hamiltonian structure:

mt = (∂x − ∂x
3)

δH̃2

δm
= (m∂x + ∂xm)

δH̃1

δm
, m = (1 − ∂2

x )u. (3)

(The symbol ∂x denotes ∂/∂x.) Note that, as usual in this research field, we promise that the ‘‘operator’’ (m∂x+∂xm) operates
to a function f in such a way that (m∂x + ∂xm)f = mfx + ∂x(mf ). For the DP, the first two invariants are

H−1 = −
1
6
u3,

d
dt


R
H−1dx = 0,

H0 = −
9
2
(u − uxx),

d
dt


R
H0dx = 0,

and the bi-Hamiltonian structure is

mt = B0
δH−1

δm
= B1

δH0

δm
,

where B0, B1 are the skew-symmetric operators:

B0 = ∂x(1 − ∂x
2)(4 − ∂x

2), B1 = m
2
3 ∂xm

1
3 (∂x − ∂x

3)−1m
1
3 ∂xm

2
3 .

As can be easily seen, the invariants and the bi-Hamiltonian structures are substantially different. Considering all the
differences above, now researchers believe that the equations are essentially different, and there is no simple transformation
that casts the DP into the CH and vice versa (see the introductions of [13,14]).

The mathematical differences also make the numerical treatment of the DP inevitably different. Before precisely stating
this point, we first like to recall a fact that for conservative PDEs such as the CH and DP, numerical methods preserving
the invariants are often advantageous, and in the last two decades much effort has been devoted in this topic to finally
find out several general frameworks. For example, Furihata and Mori [15] and Celledoni et al. [16] proposed frameworks in
finite-difference context (see also related references in [17]), and Matsuo [18] devised a Galerkin framework. With these
frameworks, some conservative schemes for the CH have been already proposed based on the bi-Hamiltonian structure:
H̃1-preserving finite difference schemes [19–21] and a Galerkin scheme [22] based on the second form of (3); and
H̃2-preserving finite difference schemes [20,21] and a Galerkin scheme [23] based on the first form. Obviously similar study
is expected for the DP equation, but to the best of the authors’ knowledge, none has been done yet. Main reason of this
may be simply because the DP is quite new, but our attention should also go to the fact that, as mentioned above, the bi-
Hamiltonian structures are very different, which causes several difficulties in the DP case. The first difficulty is caused by the
complex skew-symmetric operators B0 and B1; they are much more complicated than those in the CH (see (3)), and due to
this, the general Galerkin framework [18] cannot be applied. Thus, whether a conservative Galerkin scheme for the DP can
be constructed or not remains an open question, as of writing this paper (we will come back to this point in the end of this
paper). In contrast, the finite-difference frameworks can be applied, but here arises a second difficulty that, even in the finite-
difference framework, the operator B1 is too cumbersome, and it is quite unlikely that the resulting H0-preserving scheme
is numerically efficient in practice. This is in sharp contrast to the CH case where both of the bi-Hamiltonian representations
were fully utilized for efficient H̃2-and H̃1-preserving schemes.

Taking these backgrounds into account, in this paper we propose conservative finite-difference schemes based on the
first form of the bi-Hamiltonian structure. More precisely, we propose two finite-difference schemes. The first scheme is
a nonlinear scheme derived with the general framework [15] (which is now called the ‘‘discrete variational derivative
method’’), and the second is its linearized version based on a linearization technique [24]. Both schemes conserveH−1 (or its
approximation), and furthermore, it turns out that fortunately they also conserve H0 at the same time. This means we can
preserve H0 without the second form of the bi-Hamiltonian structure; this happens thanks to the fact that H0 is a linear
invariant. This is an interesting property in that, as far as the authors know, this is the first scheme that preserves both
invariants associated with a bi-Hamiltonian structure. We also prove the unique existence of the solutions of the proposed
schemes, and show several numerical examples.

Finally, we like to briefly mention the existing numerical schemes. Operator splitting schemes were devised in [25,26],
and a particle method based on multi-shockpeakon solutions was exploited in [27]. These numerical methods were mainly
intended to capture shock solutions, and does not conserve H−1 (actually H−1 becomes less important in such a situation; it
is no longer conserved when the solution develops a shock [11]). In this sense, these schemes and our conservative schemes
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(which mainly focus on smoother solutions) seem to complement each other. We will mention this point again in the end
of this paper.

In view of numerical computation, hereafter let us choose the periodic boundary condition:

u(x + L, t) = u(x, t), t ≥ 0, x ∈ R. (4)

We denote the periodic first-order Sobolev space by H1(S) where S is the torus of the length L. Global existence of the
smooth solutions in H1(S) was proved in [12]. It is straightforward to confirm that the invariants mentioned above are also
invariants under the periodic boundary condition.

This paper is organized as follows. In Section 2 notation and useful lemmas are introduced. In Section 3 the proposed
schemes are presented, and its properties are discussed. In Section 4 some numerical results are provided. Concluding
remarks and comments are given in Section 5.

2. Preliminaries

In this section, we prepare notation and useful lemmas. The numerical solution is denoted by U (n)
k ≃ u(k1x, n1t),

where N is the number of the spatial grids (i.e., 1x = L/N), and 1t is the time mesh size. We often write this as a vector:
U (n)

= (U (n)
0 ,U (n)

1 , . . . ,U (n)
N−1)

⊤. In order to treat the periodic boundary condition (4), we consider {U (n)
k }

∞

k=−∞
, an infinitely

long vector, and then its N-dimensional restriction by the discrete periodic boundary condition U (n)
k = U (n)

k mod N (∀k ∈ Z).
We denote the latter space by R(N), and define its inner product by (a, b) =

N−1
k=0 akbk1x. The norm ∥ · ∥ is defined

accordingly. They are the natural discretization of L2(S). For a, b ∈ R(N), we define the operator ∗ : R(N)
× R(N)

→ R(N) by
a ∗ b := (a0b0, a1b1, . . . , aN−1bN−1)

⊤. It is easy to see ∥a ∗ b∥ ≤ ∥a∥ ∥b∥/
√

1x.
The standard central difference operators that approximate ∂x, ∂

2
x are denoted by δ

⟨1⟩
k , δ

⟨2⟩
k respectively:

δ
⟨1⟩
k U (n)

k :=
U (n)
k+1 − U (n)

k−1

21x
, δ

⟨2⟩
k U (n)

k :=
U (n)
k+1 − 2U (n)

k + U (n)
k−1

1x2
.

We often write them in matrix form; for example, D⟨1⟩a := (δ
⟨1⟩
0 a0, δ

⟨1⟩
1 a1, . . . , δ

⟨1⟩
N−1aN−1)

⊤ for a ∈ R(N).
The following estimates are useful. Although they are well known, we here show a rough proof for the readers’

convenience. We note that (1 − ∂x
2)−1 has a meaning as (1 − ∂x

2)−1
: L2(S) → H2(S) [28].

Lemma 2.1. For D⟨1⟩,D⟨2⟩
: R(N)

→ R(N),

∥D⟨1⟩
∥ ≤

1
1x

, ∥D⟨2⟩
∥ ≤

4
1x2

,

I − D⟨2⟩−1
 = 1

hold, where I is the identity mapping, Ia = a.
Proof. We first prove the statement for ∥D⟨1⟩

∥. Since for every v ∈ R(N),

∥D(1)
k v∥2

=

N−1
k=0


vk+1 − vk−1

21x

2

1x ≤
1

(1x)2

N−1
k=0

v2
k+1 + v2

k−1

2
1x =

1
(1x)2

∥v∥2

holds, we get ∥D⟨1⟩
∥ ≤ 1/1x. The statements for D⟨2⟩ and


I − D⟨2⟩

−1 can be shown by eigenvalue arguments. Let us
introduce a cyclic matrix Bwhose subdiagonal and superdiagonal elements are 1 (note that B1.N = BN,1 = 1 by periodicity).
Then the eigenvalues of the matrix are 2 cos(2jπ/N) (j = 0, . . . ,N − 1). This immediately implies ∥D⟨2⟩

∥ ≤ 4/1x2,
since D⟨2⟩

= (B − 2I)/1x2 (note that we defined the norm by the two-norm). Next, the eigenvalues of matrix I − D⟨2⟩
=

I − (B − 2I)/1x2 are

1 −
2

(1x)2


cos


2jπ
N


− 1


, j = 0, 1, . . . ,N − 1,

thus

I − D⟨2⟩

−1 exists because all eigenvalues of I − D⟨2⟩ are greater than or equal to 1 (independent of 1x). ThenI − D⟨2⟩
−1
 = 1 holds because all eigenvalues of


I − D⟨2⟩

−1 is less than or equal to 1. �

As for the difference operators, the following summation-by-parts formulas hold [29]:
N−1
k=0

Uk


δ

⟨1⟩
k Vk


1x +

N−1
k=0


δ

⟨1⟩
k Uk


Vk1x =


UkVk−1 + Uk−1Vk

2

N
k=0

, (5)

N−1
k=0

Uk


δ

⟨2⟩
k Vk


1x −

N−1
k=0


δ

⟨2⟩
k Uk


Vk1x =


Uk


δ

⟨1⟩
k Vk


−


δ

⟨1⟩
k Uk


Vk

N
k=0

, (6)

where [Uk]
N
k=0 = UN −U0. Under the discrete periodic boundary condition, the boundary terms are automatically canceled.
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Next we prepare a useful lemma on the discrete operators. In this paper, we use the discrete versions of ∂x,
(1 − ∂x

2)−1∂x(4 − ∂x
2), (4 − ∂x

2), and (1 − ∂x
2)−1. Obviously they are skew-symmetric or symmetric, and the following

lemma shows that difference operators inherit the symmetries.

Lemma 2.2. With respect to the inner product of R(N), δ⟨1⟩
k , (1 − δ

⟨2⟩
k )−1δ

⟨1⟩
k (4 − δ

⟨2⟩
k ) are skew-symmetric, and (4 − δ

⟨2⟩
k ),

(1 − δ
⟨2⟩
k )−1 are symmetric operators.

Proof. The skew-symmetry of δ⟨1⟩
k and symmetry of δ⟨2⟩

k are obvious form (5) and (6). Accordingly (4−δ
⟨2⟩
k ) and (1−δ

⟨2⟩
k )−1

are symmetric. Combining these symmetries, we see that (1 − δ
⟨2⟩
k )−1δ

⟨1⟩
k (4 − δ

⟨2⟩
k ) is skew-symmetric. �

3. H−1,H0-conserving schemes

In this section we propose two finite difference schemes (nonlinear and linear) that conserve both H−1 and H0. For
comparison, we also show the standard Crank–Nicolson scheme.

3.1. The first form expressed in u

As noted above, we consider the first form of the bi-Hamiltonian structure. Although it is possible to directly apply the
framework [15] to the first form (in the variable m), it is more convenient to rewrite it with u, in view of the fact that the
initial data is given by u(x, 0) and the final solution is demanded also in the form of u(x, t). We then see

1 − ∂x
2 ut = ∂x


4 − ∂x

2 δH−1

δu
. (7)

This still keeps the H−1 conservation law.

d
dt

 L

0
H−1dx =

 L

0

∂H−1

∂u
utdx =

 L

0

δH−1

δu


(1 − ∂x

2)−1∂x(4 − ∂x
2)

δH−1

δu


dx = 0.

The first equality is just the chain rule. The second equality follows from (7). The third equality is from the skew-symmetry
of (1 − ∂x

2)−1∂x(4 − ∂x
2). Also the H0 conservation follows from (7):

d
dt

 L

0
H0dx = −

9
2

 L

0
∂x(4 − ∂x

2)
δH−1

δu
dx = −

9
2


(4 − ∂x

2)
δH−1

δu

L
0

= 0.

The final equality is from the periodic boundary condition.

Remark 1. We here like to make additional comments on the H0 conservation. Above we showed it based on the u
expression (7), but the property itself is more easily seen by the original m expression. Actually, if we rewrite it to
mt − ((1 − ∂x

2)(4 − ∂x
2)δH−1/δm)x = 0, it is in the so-called ‘‘conservation law’’ form, and the conservation of


m dx

is immediate. This implies that, although the second form of the DP states an important mathematical fact that the invariant
H0 can generate the equation, it is not so relevant for the (proof of the) preservation of H0. This happens since H0 is a linear
invariant. Below we show that based on the same principle, the H−1 conservative schemes based on the discrete version of
the first form fortunately conserve H0 as well.

3.2. A H−1,H0-conserving nonlinear scheme

Now we present a nonlinear scheme preserving both H−1 and H0. We define a discrete version of H−1 = −u3/6, and
accordingly a ‘‘discrete variational derivative’’ that approximate δH−1/δu = −u2/2 as

(H−1)
(n)
k := −

(U (n)
k )3

6
,

δH−1

δ(U (n+1),U (n))k
:= −

(U (n+1)
k )2 + U (n+1)

k U (n)
k + (U (n)

k )2

6
. (8)

Due to the restriction of space, the detail of the concept of ‘‘discrete variational derivative,’’ and the derivation of its concrete
form from the discrete Hamiltonian (H−1)

(n)
k is skipped; interested readersmay refer to the general framework: the ‘‘discrete

variational derivative method’’ [15]. For the purpose of this paper, it is sufficient to note the key equality:

N−1
k=0

(H−1)
(n+1)
k 1x −

N−1
k=0

(H−1)
(n)
k 1x =

N−1
k=0


δH−1

δ(U (n+1),U (n))k
(U (n+1)

k − U (n)
k )


1x, (9)

which can be easily checked with the concrete forms in (8). We also define the discrete H0 as

(H0)
(n)
k := −

9
2
(1 − δ

⟨2⟩
k )U (n)

k .

Now we are in a position to define the nonlinear finite difference scheme.



3732 Y. Miyatake, T. Matsuo / Journal of Computational and Applied Mathematics 236 (2012) 3728–3740

Scheme 1 (H−1,H0-Conserving Nonlinear Finite Difference Scheme). We define the initial approximate solution by U (0)
k =

u(0, k1x) (k = 0, . . . ,N − 1). Then for n = 1, 2, . . . ,
1 − δ

⟨2⟩
k

 U (n+1)
k − U (n)

k

1t
= δ

⟨1⟩
k


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n))k
, k = 0, . . . ,N − 1. (10)

Obviously (10) corresponds to (7). Numerical solutions by Scheme 1 conserve both (H−1)
(n)
k and (H0)

(n)
k under the discrete

periodic boundary condition.

Theorem 3.1 (Scheme 1: Conservation Laws). Under the discrete periodic boundary condition, the numerical solution by
Scheme 1 conserves both H−1 and H0:

N−1
k=0

(H−1)
(n)
k 1x =

N−1
k=0

(H−1)
(0)
k 1x, n = 1, 2, . . . ,

N−1
k=0

(H0)
(n)
k 1x =

N−1
k=0

(H0)
(0)
k 1x, n = 1, 2, . . . .

Proof. We first prove the discrete H−1 conservation law.

1
1t


N−1
k=0

(H−1)
(n+1)
k 1x −

N−1
k=0

(H−1)
(n)
k 1x


=

N−1
k=0


δH−1

δ(U (n+1),U (n))k

U (n+1)
k − U (n)

k

1t


1x

=

N−1
k=0


δH−1

δ(U (n+1),U (n))k


×


1 − δ

⟨2⟩
k

−1
δ

⟨1⟩
k


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n))k


1x

= 0.

The first equality is from (9), the second is from (10), and the third is from the skew-symmetry of the operator
1 − δ

⟨2⟩
k

−1
δ

⟨1⟩
k


4 − δ

⟨2⟩
k


(Lemma 2.1). Next we prove the discrete H0 conservation law.

1
1t


N−1
k=0

(H0)
(n+1)
k 1x −

N−1
k=0

(H0)
(n)
k 1x


= −

9
2

N−1
k=0


1 − δ

⟨2⟩
k

 U (n+1)
k − U (n)

k

1t
1x

= −
9
2

N−1
k=0

δ
⟨1⟩
k


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n))k
1x

= −
9
4


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n))k
+


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n))k−1

N
k=0

= 0.

The second equality is from (10). By substituting V = (1, 1, . . . , 1)⊤ into (5), we obtain the third equality. The final is from
the discrete periodic boundary condition. �

Since Scheme 1 is nonlinear, it requires nonlinear solvers in each time step. The next theorem states that if we set time
step 1t adequately based on U (n), unique existence of the solution is guaranteed. Note that even if the time mesh size 1t is
changed, Theorem 3.1 still holds.

Theorem 3.2 (Unique Solvability of Scheme 1). Let U (n) be given. If 1t satisfies

21t
31x3/2

<
2
√
3 − 3

3∥U (n)∥
.

Scheme 1 has a unique numerical solution U (n+1).

To prove this theorem, we make some preparations. First we transform (10) into

U (n+1)
k = U (n)

k −
1t
6


1 − δ

⟨2⟩
k

−1
δ

⟨1⟩
k


4 − δ

⟨2⟩
k


U (n+1)
k

2
+ U (n+1)

k U (n)
k +


U (n)
k

2
. (11)
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Then for a, v ∈ R(N), we define φa : R(N)
→ R(N) as

φa(v) := a −
1t
6


I − D⟨2⟩−1

D⟨1⟩ 4 − D⟨2⟩ (v ∗ v + v ∗ a + a ∗ a). (12)

If we substitute a = U (n), v = U (n+1) into (12), (12) is equivalent to (11). Therefore, in order to prove the unique solvability
of Scheme 1, it is sufficient to prove the existence of a fixed point of the map φa.

Proof of Theorem 3.2. We first define a ball Ka := {v ∈ R(N)
| ∥v∥ ≤ pra}, where ra := ∥a∥, p = 1 +

√
3. The proof

will be done in the following two steps. (i) φa is a map from Ka to Ka if 1t is sufficiently small. (ii) Then φa is a contraction
mapping.

(i) We will use following inequality:I − D(2)
k

−1 
4 − D(2)

k

 =

I + 3

I − D(2)

k

−1
 ≤ ∥I∥ + 3

I − D(2)
k

−1
 ≤ 4.

Then for every v ∈ Ka,

∥φa(v)∥ ≤ ∥a∥ +
1t
6

I − D(2)
k

−1 
4 − D(2)

k

 ∥D(1)
k ∥ (∥v ∗ v∥ + ∥v ∗ a∥ + ∥a ∗ a∥)

≤ ∥a∥ +
1t
6

· 4 ·
1

1x
·


∥v∥2

+ ∥v∥ ∥a∥ + ∥a∥2

√
1x


≤ ra +

21t
31x3/2

(p2 + p + 1)r2a .

Thus if 1t satisfies

ra +
21t

31x3/2
(p2 + p + 1)r2a ≤ pra ⇔

21t
31x3/2

≤
p − 1

ra(p2 + p + 1)
=

2
√
3 − 3
3ra

,

φa is a map from Ka to Ka.
(ii) If 1t satisfy the above condition, for every v1, v2 ∈ Ka,

∥φa(v1) − φa(v2)∥ ≤
1t
6

I − D(2)
k

−1 
4 − D(2)

k

 ∥D(1)
k ∥


∥v1 + v2∥ ∥v1 − v2∥ + ∥a∥ ∥v1 − v2∥

√
1x


≤

21t
31x3/2

(∥v1 + v2∥ + ∥a∥)∥v1 − v2∥

≤
21t

31x3/2
(2p + 1)ra∥v1 − v2∥

holds. Thus if 1t satisfies

21t
31x3/2

(2p + 1)ra < 1 ⇔
21t

31x3/2
<

1
(2p + 1)ra

=
2
√
3 − 3

3∥U (n)∥
,

φa is a contraction mapping from Ka to Ka, and hence φa has a unique fixed point on Ka by the contraction mapping
theorem. �

3.3. A H−1,H0-conserving linear finite difference scheme

Next we propose a H−1,H0-conserving linear finite difference scheme. We define (H−1)
(n+ 1

2 )

k and δH−1/δ(U
(n+1)
k ,U (n)

k ,

U (n−1)
k ) that approximate H−1 = −u3/6 and δH−1/δu = −u2/2 as

(H−1)


n+ 1

2


k := −

U (n+1)
k U (n)

k (U (n+1)
k + U (n)

k )

12
,

δH−1

δ(U (n+1),U (n),U (n−1))k
:= −

U (n)
k (U (n+1)

k + U (n)
k + U (n−1)

k )

6
.

Here, we utilized the linearization technique in [24] (again we skip the details of this). We can easily check the following
key equality:

N−1
k=0

(H−1)
(n+ 1

2 )

k 1x −

N−1
k=0

(H−1)


n− 1

2


k 1x =

N−1
k=0


δH−1

δ(U (n+1),U (n),U (n−1))k

U (n+1)
k − U (n−1)

k

2


1x. (13)

Using the above discrete variational derivative, we define the linear finite difference scheme as follows.
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Scheme 2 (H−1,H0-Conserving Linear Finite Difference Scheme). We define the initial approximate solution by U (0)
k =

u(0, k1x) (k = 0, . . . ,N − 1), and compute a starting value U (1) by Scheme 1. Then, for n = 1, 2, . . . ,


1 − δ

⟨2⟩
k

 U (n+1)
k − U (n−1)

k

21t
= δ

⟨1⟩
k


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n),U (n−1))k
, k = 0, . . . ,N − 1. (14)

Obviously (14) corresponds to (7). We note that since Scheme 2 is a multistep scheme, we need not only the initial value
U (0) but also a starting value U (1). In Scheme 2 we set U (1) by Scheme 1, but also other schemes can be used if 1t is chosen
appropriately small such that the invariants are kept with enough accuracy. The numerical solution by Scheme 2 satisfies

(H−1)
(n+ 1

2 )

k , (H0)
(n)
k conservation laws under the discrete periodic boundary condition.

Theorem 3.3 (Scheme 2: Conservation Laws). Under the discrete periodic boundary condition, the numerical solution by
Scheme 2 conserves H−1 and H0:

N−1
k=0

(H−1)


n+ 1

2


k 1x =

N−1
k=0

(H−1)


1
2


k 1x, n = 1, 2, . . . ,

N−1
k=0

(H0)
(n)
k 1x =

N−1
k=0

(H0)
(0)
k 1x, n = 1, 2, . . . .

Proof. We first prove the discrete H−1 conservation law.

1
1t


N−1
k=0

(H−1)


n+ 1

2


k 1x −

N−1
k=0

(H−1)


n− 1

2


k 1x


=

N−1
k=0

δH−1

δ(U (n+1),U (n),U (n−1))k

U (n+1)
k − U (n−1)

k

21t
1x

=

N−1
k=0

δH−1

δ(U (n+1),U (n),U (n−1))k

×


1 − δ

⟨2⟩
k

−1
δ

⟨1⟩
k


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n),U (n−1))k


1x

= 0.

The first equality is from (13), the second is from (14), and the third is from the skew-symmetry of the operator
1 − δ

⟨2⟩
k

−1
δ

⟨1⟩
k


4 − δ

⟨2⟩
k


(Lemma2.1). Nextwe prove the discreteH0 conservation law. To this end,we note the following

identity:

1
1t


N−1
k=0

(H0)
(n+1)
k 1x −

N−1
k=0

(H0)
(n−1)
k 1x


= −9

N−1
k=0


1 − δ

⟨2⟩
k

 U (n+1)
k − U (n−1)

k

21t
1x

= −9
N−1
k=0

δ
⟨1⟩
k


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n),U (n−1))k
1x

= −
9
2


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n),U (n−1))k

+


4 − δ

⟨2⟩
k

 δH−1

δ(U (n+1),U (n),U (n−1))k−1

N
k=0

= 0.

The second equality is from (14). By substituting V = (1, 1, . . . , 1)⊤ into (5), we obtain the third equality. The final is from
the discrete periodic boundary condition. From the identity,


k(H0)

(n+2)
k 1x =


k(H0)

(n)
k 1x (n = 0, 1, 2, . . .). Since in the

scheme we demanded the first time step to be conservative:


k(H0)
(1)
k 1x =


k(H0)

(0)
k 1x,


k(H0)

(n)
k 1x =


k(H0)

(0)
k 1x

holds for every n. �

As for Scheme 2, the unique existence of the solution is guaranteed if the time mesh size is sufficiently small as the next
theorem states.



Y. Miyatake, T. Matsuo / Journal of Computational and Applied Mathematics 236 (2012) 3728–3740 3735

Theorem 3.4 (Unique Solvability of Scheme 2). For n ≥ 1, let U (n−1),U (n) be given. Then if 1t > 0 is sufficiently small,
Scheme 2 has a unique numerical solution U (n+1). For example, a sufficient condition is

1t <
31x3

4∥U (n)∥(1 + 1x2)
. (15)

Proof. Scheme 2 can be rewritten as follows:
I − D⟨2⟩

2
+ 1t


D⟨1⟩(4I − D⟨2⟩)

U (n)

6


U (n+1)

= F(U (n),U (n−1))

where U (n)
= diag(U (n)

0 , . . . ,U (n)
N−1), and F denotes the remaining terms with U (n),U (n−1). Let us consider the coefficient

matrix of the left hand side. Since I − D⟨2⟩ is nonsingular, the coefficient matrix should be nonsingular for sufficiently small
1t by the continuity of the determinant. The sufficient condition can be checked by noting that if


I − D⟨2⟩

2

−1
 ·

1t

D⟨1⟩(4I − D⟨2⟩)

U (n)

6

 < 1, (16)

then the coefficient matrix is nonsingular [30, Theorem 2.3.4]. With the estimates:

I − D⟨2⟩

2

−1
 = 2

I − D⟨2⟩−1
 = 2,1t


D⟨1⟩(4I − D⟨2⟩)

U (n)

6

 ≤
1t
6

∥D⟨1⟩
∥ ·
4I − D⟨2⟩

 · ∥U (n)
∥

≤
1t
6

1
1x


4 +

4
1x2


∥U (n)

∥

=
21t(1 + 1x2)∥U (n)

∥

31x3
,

we get (15). �

The conditions on 1t in Theorems 3.2 and 3.4 are sufficient, but necessary. We checked numerically that the schemes
practically work well even if the parameters do not satisfy the conditions in the theorems.

3.4. Crank–Nicolson scheme

For comparison, we employ the standard Crank–Nicolson Scheme constructed based on the
1 − ∂x

2 ut = ∂x(−2u2
+ ux

2
+ uuxx). (17)

We can also easily check that the Crank–Nicolson scheme preservesH0. This scheme is a nonlinear scheme, like as Scheme 1.

Scheme 3 (H0 Conservative Crank–Nicolson Scheme). We define the initial solution by U (0) as U (0)
k = u(0, k1x) (k =

0, . . . ,N − 1). Then, for n = 0, 1, . . . ,
1 − δ

⟨2⟩
k

U (n+1)
k − U (n)

k

1t


= δ

⟨1⟩
k

−2


U (n+1)
k + U (n)

k

2

2

+


δ

⟨1⟩
k


U (n+1)
k + U (n)

k

2

2

+


U (n+1)
k + U (n)

k

2


δ

⟨2⟩
k


U (n+1)
k + U (n)

k

2


, k = 0, . . . ,N − 1.

The numerical solution by Scheme 3 conserves H0 (but not H−1).

Theorem 3.5 (Scheme 3: Conservation Law). Under the discrete periodic boundary condition, the numerical solution by
Scheme 3 conserves H0.

N−1
k=0

(H0)
(n)
k 1x =

N−1
k=0

(H0)
(0)
k 1x, n = 0, 1, . . . .

Proof. As noted in Remark 1, it is obvious from the summation-by-parts formula (6) and the periodic boundary
condition. �
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Fig. 1. Evolution of H−1 .

Fig. 2. The numerical solution obtained by Scheme 1 (H−1,H0-conserving nonlinear scheme) with 1x = 40/28 and 1t = 0.05.

4. Numerical examples

In this section, we test Schemes 1 and 2 numerically. For comparison, we also show the results by Scheme 3. Computation
environment is CPU Xeon (3.00 GHz), 16 GB memory, Linux OS. We used MATLAB (R2007b), and nonlinear equations in
Schemes 1 and 3 are solved by ‘‘fsolve’’ in MATLAB with tolerance TolX = 10−16 and TolFun = 10−16.

First we compare Schemes 1–3 for 2-peakon interaction. It is known that the DP has a solution called ‘‘multi-peakon’’
solutions [8]:

u(t, x) =

n
i=1

pi(t)e−|x−qi(t)|.

The parameters are set as follows: n = 2, x ∈ [0, 40], t ∈ [0, 100], 1x = 40/28
= 0.15625, 1t = 0.05, and the initial

value is u(0, x) = exp(−|x − 10.43|) + 0.5 exp(−|x − 20.66|).
Fig. 1 shows the evolutions of H−1. According to Theorems 3.1, 3.3 and 3.5, Schemes 1 and 2 conserve both H−1 and H0,

but Scheme 3 conserves only H0. We confirmed that the three schemes preserve the value of H0, 13.49730 up to at least 5
significant digits. On the other hand, Fig. 1 shows that Scheme 3 actually does not conserve H−1, and the deviation (10% or
more) is observed.

Figs. 2 and 3 show the numerical solutions by Schemes 1 and 3.We here omit the numerical solution by Scheme 2 because
Schemes 1 and 2 produce visually identical results. We observe that, compared to the conservative Schemes 1 and 2, the
numerical solution by Scheme 3 (Crank–Nicolson) is oscillating and unstable. Thus proposed schemes (Schemes 1 and 2) are
better in the sense of qualitative behavior. We also note that Scheme 1 and the Crank–Nicolson scheme are both nonlinear
schemes, and requires almost the same computational cost. This implies that Scheme 1 is preferred over the Crank–Nicolson
scheme.

Next we compare Schemes 1 and 2 in detail. Here we set the space mesh size 1x = 40/29
= 0.078125, and tried three

time mesh sizes: 1t = 4/56 ≃ 0.109, 1t = 0.1, and 1t = 0.01. Initial value was set to u(0, x) = 1.5 exp(−|x − 20.1|).
Figs. 4 and 5 are the numerical solutions by Schemes 1 and 2 at t = 50. In case of 1t = 0.01, the numerical solution by
Schemes 1 and 2 are both fine. But as 1t gets large, the results by Scheme 2 become slightly worse. In fact, when 1t = 0.1,
unstable oscillations appear in the result of Scheme 2 in the whole spatial interval (Fig. 5). We also find tiny oscillation in
Scheme 1 (Fig. 4), but that is limited to the initial peak position. (The small oscillation seems to be caused by the singular
initial solution; this phenomena is often observed in other peakon simulations.) For1t = 0.109, oscillations in Scheme 2 get
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Fig. 3. The numerical solution obtained by Scheme 3 (H0-conserving Crank–Nicolson scheme) with 1x = 40/28 and 1t = 0.05.

Fig. 4. The numerical solution of 1-peakon solution obtained by Scheme 1: (left) 1t = 0.109, (center) 1t = 0.1, (right) 1t = 0.01.

Fig. 5. The numerical solution of 1-peakon solution obtained by Scheme 2: (left) 1t = 0.109, (center) 1t = 0.1, (right) 1t = 0.01.

Table 1
Computation time in Schemes 1 and 2.

1x 40/25 (s) 40/26 (s) 40/27 (s) 40/28 (s) 40/29 (s) 40/210 (s)

Scheme 1 0.14498 0.37947 1.18499 6.36891 67.4376 1144.05
Scheme 2 0.01262 0.02674 0.07658 0.42090 4.07037 64.9714

even worse. We observed that these oscillations grew bigger with time. Therefore we conclude that, from the perspective
of numerical stability, Scheme 1 is the best among the three schemes.

Next we compare the computation time. Table 1 shows the computation times of Schemes 1 and 2 required to proceed
for 20 time steps for various 1x. Here we set the time mesh size 1t = 0.05. Initial value was set to u(0, x) =

1.5 exp(−|x − 20.1|). In contrast to Scheme 2, Scheme 1 costs much more when the space mesh size 1x is small. The
increase of computation time in Scheme 2 is much more moderate. Furthermore, the increase is mainly due to the first step
where we used Scheme 1; this can be relaxed by replacing Scheme 1 with other cheap integrators.

The above two experiments suggest that there is a trade-off between stability and computation time, as is often observed.
In the present case, then, how can we decide which one should be used? In order to answer this question, we carried out
many numerical experiments under various conditions, and came to a conclusion that in most practical cases Scheme 2 is
more efficient.

Let us demonstrate this fact in the following experiment. In this experiment, we first prepared two settings by which
Scheme 2 could obtain reasonable soliton evolutions: in Fig. 6, one soliton solution was integrated for 0 ≤ t ≤ 40 with
1x = 40/28, 1t = 0.05; in Fig. 7, it was integrated for longer period 0 ≤ t ≤ 100 with the same meshes. Then we tested
Scheme 1with various1x and1t under the condition that the computation timewas equal to or less than the corresponding
one by Scheme 2. Let us first see Fig. 6. The results show that in all cases Scheme 1 yielded worse results. This in other words
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Fig. 6. The numerical solutions of 1-peakon solution at t = 40 obtained by: (left-top) Scheme 2, 1x = 40/28, 1t = 0.05, (right-top) Scheme 1,
1x = 40/27, 1t = 0.5, (left-bottom) Scheme 1, 1x = 40/27, 1t = 0.33, (right-bottom) Scheme 1, 1x = 40/192, 1t = 2.

Fig. 7. The numerical solutions of 1-peakon solution at t = 100 obtained by: (left-top) Scheme 2, 1x = 40/28, 1t = 0.05, (right-top) Scheme 1,
1x = 40/27, 1t = 0.5, (left-bottom) Scheme 1, 1x = 40/27, 1t = 0.33, (right-bottom) Scheme 1, 1x = 40/192, 1t = 2.

means Scheme 1 is more expensive, for this problem, in order to obtain a solution of the same quality. Fig. 7 shows the same
tendency in a longer integration. It should be noted, however, these results strongly depend on howwe solve the nonlinear
scheme and also on the computation environment.
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5. Concluding remarks

We have proposed two finite difference schemes for the DP equation preserving both H−1 and H0. We also proved the
unique existence of the numerical solutions for the schemes. Numerical examples on 2-peakon solution indicated that
proposed schemes are more stable than the standard Crank–Nicolson scheme. The last numerical experiment showed that
Scheme 2 is better than Scheme 1 from a practical point of view.

Our future works include the followings.

• In this paper, we proved the unique solvability of the proposed schemes, but we did not mention the theoretical stability
in terms of ∥U (n)

∥∞, nor the convergence of the schemes. This is partly because of the restriction of space, and more
essentially due to the fact that the DP can develop discontinuous entropy solutions, and even in the original continuous
DP equation, it is not easy to bound ∥u∥∞. Now we are trying to establish such estimates for sufficiently smooth global
solutions, and the result will be presented in the near future elsewhere.

• In this paper, we derived conservative schemes in the finite-difference context using the general framework (the discrete
variational derivative method) [15]. However, it is difficult to do the same thing based on the Galerkin version [18]. As
mentioned in the introduction, this is caused by the substantial difference in the bi-Hamiltonian structures between the
CH and DP (it is much more complicated in the DP). Whether conservative Galerkin schemes can be constructed for the
DP or not is an interesting research topic, and we are now working on this as well.

• In this paper, we focused on sufficiently smooth (at least continuous) solutions, for which H−1 and H0 conservation laws
hold without any problems. But generally for these integrable equations, conservation laws can become meaningless as
the solution loses smoothness. In the CH case, the two invariants (out of infinitely many invariants) that derive the bi-
Hamiltonian structure is proved to be conserved even for peakon solutions [31], but to the best of the author’s knowledge,
it is not yet knownwhether the other invariants are also kept or not. For theDP,H−1 and


u dxwere proved tomake sense

and in fact remain constant for peakon solutions, but other invariants are yet to be investigated (note that the latter is not
H0). Even worse, the DP has entropy solutions; for instance, when peakon and antipeakon solutions collide, the solution
inevitably becomes an entropy solution, and in such a circumstance, invariants of the DP are no longer preserved [11].
Whether under such circumstances conservative schemes make any sense or not is still an open question. In this sense,
in the DP case, there seems to be another trade-off between conservative schemes like Schemes 1 and 2 (which should
work better for smooth solutions) and those focusing on entropy solutions (better for singular solutions). Whether we
can construct a ‘‘hybrid’’ scheme that inherits both of the advantages or not is also an interesting point.
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