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1. Introduction

One of the most important assumptions in modern cryptography is the hardness of the discrete logarithm problem
(DLP). Many popular cryptosystems base their security on DLP. Such cryptosystems are, for example, the Diffie-Hellman key
agreement protocol [ 1], the EIGamal signature and encryption schemes [2], the US governments Digital Signature Algorithm
(DSA) [3], the Schnorr signature scheme [4]. Originally, they worked with multiplicative groups of finite prime fields. Once
elliptic curve cryptosystems were proposed in [5,6], analogous practical systems based on the DLP in groups of points of
elliptic curves over finite fields were designed [7]. Recall the following definition:

Definition 1 (Discrete Logarithm Problem (DLP)). Let G be a cyclic group of prime order g and let g € G be generator of G.
Given g, h € G, determine the integer 0 < k < q such that h = gk.

For DLP on a multiplicative subgroup G of prime order q of finite field F,m, the index calculus method [8] determines
the size of p™, which is a subexponential time algorithm, while the size of q is set by Pollard’s rho method [9]. Further, for
pairing-based cryptography, binary and ternary fields are widely used as the base field over which Tate or Weil pairings are
defined [10-12]. Due to the MOV reduction [13,14], the hard problems on which pairing-based cryptosystems are built can
be transformed into the DLP on extended binary or ternary fields. This increases the significance of the study of DLP on finite
extension fields.

For DLP on a subgroup of elliptic curve defined over finite field, Pollard’s rho method and its modifications in [15,16] are
to date known as the most efficient general algorithms. Oorschot and Wiener [17] showed that the modified Pollard’s rho
method can be parallelized with linear speedup.
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Pollard’s rho method is a randomized algorithm for computing discrete logarithms. Generally, an iteration function
F : G — G is used to define a pseudo-random sequence Y; by Y;;; = F(Y;) fori = 0, 1, 2, ..., with some initial value
Yo. The sequence Yy, Y, Yo, ... represents a walk in the group G. Because the order of the group is finite, the sequence will
ultimately reach an element that has occurred before. This is called a collision or a match. The advantage of this method is
that the space requirements are small if one uses a clever method of detecting a collision.

The basic assumption for the analysis of the expected run time of the rho method is that the walk Y; behaves as a random
walk. By this we mean that the iteration function F : G — G is a random mapping in the sense that for any Y; € G the
function F map Y; to each element in G with the same probability ﬁ However, in practice the iteration function F : G —> G
is not a truly random mapping, which always results in more iteration requirements. The problem of efficient simulation of
a random walk in the Pollard rho method is the central topic of this paper. Here, “efficient” means that the corresponding
iteration function should require essentially no more than one group operation and use only constant or polynomial storage.

It is clear that the distinctive feature of the normal basis representations, namely, the p-th power of an element is just
the cyclic shift of its normal basis representation where p is the characteristic of the underlying field, can be used to speed
up the computation of discrete logarithms over finite extension fields IF,m. We propose a variant of the Pollard rho method
by exploiting the distinctive feature of the normal basis representation, and achieve the speedup by a factor of /m, rather
than %\/ﬁ [18], which is the previous result reported in the literature.

For computational and communication efficiency reasons, there are many cryptosystems [11,12] that suggest the use of
bilinear maps over binary or ternary fields. For pairing-based cryptosystems, a bilinear map e : G; x G, — Gs is used. When
aTate or Weil pairing is in use, G is a subgroup of points on an elliptic curve E(F ) and Gs is a cyclic subgroup ofIE‘;,d, where
k is the embedding degree. The MOV attack [13] transforms the DLP on G; or G, into a DLP on G3. When our algorithm is
applied to Gs, which is a subgroup of F;,d, the complexity of the DLP on G; is reduced by a factor of v/kl.

Besides the theoretical analysis, we also compare the performances of the new method with the previous algorithm in
experiments, and the result confirms our analysis. The rest of this paper is structured as follows. In Section 2, we recall
Pollard’s rho method for discrete logarithm computation, and discuss the previous method for computing DLP over finite
extension fields. We describe and analyze the new method in Section 3, and discuss its applications and our experiments in
Section 4. Section 5 concludes this paper.

2. Preliminaries

In this section, we describe Pollard’s rho method for discrete logarithm computation, and then discuss the previous
method for computing DLP over finite extension fields, which takes advantage of the normal basis representation.

2.1. Pollard’s rho method

Pollard [9] proposed an elegant algorithm for the discrete logarithms based on a Monte Carlo idea and called it the rho
method. The rho method works by first defining a sequence of elements that will be periodically recurrent, then looking
for a match in the sequence. The match will lead to a solution of the discrete logarithm problem with high probability. The
two key ideas involved are the iteration function for generating the sequence and the cycle-finding algorithm for detecting
a match.

If D is any finite set and F : D — D is a mapping and the sequence (X;) in D is defined by the rule:

Xo €D, Xi+1 = F(Xl)
this sequence is ultimately periodic. Hence, there exist unique integers i > 0 and A > 1 such that X, ..., X,,4,—; are all

distinct, but X; = X1, foralli > w. A pair (X;, X;) of two elements of the sequence is called a match if X; = X; where i # j.
For the expected values of 1 and X, we have the following theorem:

Theorem 1 ([19]). Under the assumption that an iteration function F : D — D behaves like a truly random mapping and the
initial value X, is a randomly chosen group element, the expected values for p and A are /7 |D|/8. The expected number of
evaluations before a match appears is E(u + 1) = /7 |D|/2 =~ 1.25/|D|.

2.1.1. Iteration function

Now we explain how the rho method for computing discrete logarithms works. Let G be a cyclic group of prime order q
and letg € Gbe generator of Gand h € G. The discrete logarithm problem is to compute k satisfying g = h. Pollard defined
the iteration function F : G — G as follows:

gy Yie$§
Yipr =F(Y) = {¥? Y, €S, (M
hY, Yi 653.

Let the initial value Yy = 1.In each iteration of Y;;; = F(Y;), the function uses one of three rules depending on the value
of Y;. The group G is partitioned into three subsets Sy, S,, S3 of roughly equal size. Each Y; has the form g%h®. The sequence
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(a;) (and similarly for (b;)) can be computed as follows:

ag+1 (modq)Y;es
aip1 = {20; (mod @) Y; € S, (2)
a; (mod q) Y; € S5.

As soon as we have a match (Y;, Y;), we have the equation g% * hbi = g% s hbi.
Since h = g, this gives,

a; + bik = a; + bjk (mod q).

Now, if gcd(b; — bj, q) = 1, we get that k = (a; — a;)(b; — bj)‘1 mod g. Due to the method of Pohlig and Hellman [20], in
practice applications the group order q is prime, so that it is very unlikely that gcd(b; — b;, q) > 1if g is large.

Theorem 1 makes the assumption of true randomness. However, it has been shown empirically that this assumption
does not hold exactly for Pollard’s iteration function [21]. The actual performance is worse than the expected value given in
Theorem 1.

Teske [21] proposed better iteration functions by applying more arbitrary multipliers. Assume that we are using r
partitions (multipliers). We generate 2r random numbers,

m;, n; €g{0,1,...,q—1}, fori=1,2,...,r.

Then we precompute r multipliers M1, My, ..., M, where M; = g™ - h"i, fori =1, 2, ..., r. Define a hash function,
v:G—{1,2,...,r}L

Let Yo = ghbo, where ay and by are two random integers in [0, ¢ — 1]. Then the iteration function F : G — G is defined as,
Yie1 = F(Y) = Y;-M;, wherej = v(Yy).

The indices are updated by,
Qi1 = 0; + My, (mod q), bit1 = bi + nyy,) (mod q).

The difference in performance between Pollard’s original walk and Teske’s r-adding walk has been studied in [22,21].

We summarize the results as follows. In prime order subgroups of Z*, the value of E( + )) for Pollard’s original walk and

Teske’s r-adding walk is 1.554/|G| and 1.27./|G|, while in groups of points of elliptic curves over finite fields, the value is
1.60./]G| and 1.294/|G], respectively.

2.1.2. Collision detection

To find collisions in the pseudo-random walk, it always needs much storage. In order to minimize the storage
requirements, a collision detection algorithm can be applied with a small penalty in the running time.

The idea of the distinguished point method is to search for a match not among all terms of the sequence, but only among
a small subset of terms that satisfy a certain distinguishing property. It works as follows: One defines a set D, a subset of
G, that consists of all group elements that satisfy a certain distinguishing property. During the pseudo-random walk, points
that satisfy the distinguishing property are stored. Collision can be detected when a distinguished point is encountered a
second time.

Currently, the distinguished point method is the most efficient algorithm to detect collisions in pseudo-random walk
when |G| is large. A popular way of defining D is to fix an integer k and to define that w € D if and only if the k least
significant bits in the representation of w as a binary string are zero. Obviously, we have the following theorem.

Theorem 2 ([17]). Let 6 be the proportion of points in G which satisfy the distinguishing property, i.e., 8 = |D|/|G|. Under the
assumption that F : G — G is a random mapping and D is a uniform distribution in G, the expected number of iterations before

finding a match is \/7|G|/2 + 1/6.
2.2. Previous method with normal basis representation

Let p be a prime and consider Fpm, the finite field with p™ elements. In this subsection, we briefly describe how to
apply the previous Pollard rho method to cyclic subgroups of ]F;m to make use of the distinctive feature of the normal basis
representation, which was proposed by Kim et al. [18].

We fix a normal basis {«, o”, ..., ozpmfl} for Fym and write elements of Fym using the coordinates in the normal basis,
i.e,writex = bgox + -+ + bm,wﬂ’m_1 asx = (bo, ..., bpn_1). Then our objective is to solve for log, h in a cyclic group
G = (g) C Fjm of prime order .

There is a natural way to give F, an ordering, and once a basis for Fm is fixed, we can give F,m the dictionary order using
the ordering on F),. In particular, we have given an ordering to elements of G C ]F;m. We define the map ¢ : G — Gby

() =min{x"|i=0,...,m—1}. 3)
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When F,m is encoded using the normal basis, the function ¢ outputs the smallest of all cyclic shifts of its input. Notice that
in any realization of ¢ that uses the normal basis, the number i producing the minimum will be known, in which case ¢ is
naturally exponent traceable. The exponents are simply multiplied by p'.
Therefore, one can define a variant r-adding walk as follows. Let My, ..., M, be the precomputed multipliers the same
as the above. Let v be a hash function v : G — {1, 2, ..., r}. Then the iteration function F : G — G defined as,
Yipr = @(F(Y)) = ¢(Yi - M)), wherej = v(Y)).

It is clear that F is a well-defined iteration function, and it can achieve a significant speed up. However, for each iteration
one need to perform the function of ¢, which slow the whole performance of F. More precisely, we have the following
theorem.

Theorem 3 ([18]). For a cyclic subgroup G of ]F;m, by using ¢ as given by Eq. (3) and by working with the above variant of Pollard

rho method, we can obtain a speed up by a factor of approximately %\/ﬁ
3. New alternative algorithm

Iterative evaluations are the main operations of the Pollard rho method. We focus on how to design an efficient iteration
function in this section. For efficiency, generally we have the following criteria: (a) for each iteration, the corresponding
iteration function F : G — G should require essentially no more than one group operation, (b) the iteration function F
behaves like or close to a truly random mapping and (c) the method uses only constant or polynomial storage.

3.1. The basic algorithm

As we have seen, the above variant r-adding walk needs more than one group operation, that is to perform the additional
function ¢ in each iteration. In this subsection, we are expected to propose a more efficient variant random walk for the rho
method. Generally, we first introduce an equivalence relation ~ on the cyclic group G = (g) C ]F;‘m of prime order g, and
then define the random walk on the equivalence classes to reduce the search space, while keeping the iteration efficient.

More precisely, we set {«, o, ..., o } to be a normal basis of Fpm and write elements of F,m using the coordinates in
the normal basis. We define the equivalence relation ~ on G as follows.

X~y ifx:y”iforsomeie{0,1,...,m—1}.

This relation partitions G into equivalence classes, and each class contains m elements. We denote the set of equivalence
classes by G/ ~, and let [x] denote the equivalence class containing x. Therefore,

m—1

[x] = {xpo,xpl,...,x” }.
Let v be a conventional hash function defined on G/ ~,
v:G/~—{0,1,...,m— 1}.
Let the map ¢ : G — G be defined by,
P(x) =X
Then, computing ¢ is trivial on G C ]F;m, that is just the cyclic shift of its normal basis representation. Therefore, we can

define the new iteration function F on G/ ~, instead of on G. Let the initial value Y, = g%Ah®, where aq and by are two
random integers in {0, 1, ..., g — 1}. The new random mapping F : G/ ~— G/ ~ is defined by,

Yis1 = F(Y) = Y; - ¢'(Y}), wherel = v([Y;]). (4)
Then, each Y; has the form g%h”, and the indices a; and b; can be updated correspondingly. Now, we explain why the
new map is a well-defined map on G/ ~. More precisely, we have the following theorem.
Theorem 4. Let ~ be the equivalence relation defined as above, and let F be the random mapping on G/ ~ defined by Eq. (4). If
Y; ~ Y; for certain integers i and j, then Yiy1 ~ Yj1. Moreover, if Y; = ¢’(Yj)for certain integers i, j and I, then Y11 = ¢>’(Yj+1).
Proof. If Y; ~ Y}, then according to the definition of the equivalence relation, there exist certain integers i, j and [, such that
Y; = ¢'(Y)). Let k = v([Yi]) = v([Y;]). Then we have
Yier = Y- ¢4(Y)
k
=YY

¢'(Y) - (8 (1))

Ypl+p(l+k)
f .
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On the other hand, we know
Y1 = Y- 6" (Y)
k
=Y yjp
then,

@' (Yis1)

kI
;- Y/ )P
_ P
¢ .
Thatis, Yiy1 = ¢'(Yj41) and Yiy1 ~ Y. O

Theorem 4 shows that once the random walk defined by Eq. (4) falls into the same equivalence class with certain previous
value, from that value on, the current walk and the previous walk will always fall into the same equivalence class for each
step. This feature is the key point for the variant Pollard rho works. Then we can combine this feature with the distinguished
point method to detect the collision. Therefore, the new iteration function is a well-defined map on G/ ~.

To make the new iteration function work, we need a partition function v defined on G/ ~. That is, for values coming
from the same equivalence class, v outputs the same value. For x = (by, ..., by_1) € G, let the Hamming weight wt(x) of
x be the number of its non-zero entries. One typical method is to define v(x) as the function of its Hamming weight, that is
f(wt(x)).Since in the normal basis representation, values from certain equivalence classes have the same Hamming weight.
Then the partition function v is also a well-defined map on G/ ~.

Moreover, to make use of the distinguished point method to detect collisions, we can define the Hamming weight of x
(also [x]) in a certain range as the distinguishing property. Once we find a distinguished point, generally we can normalize
it by the function ¢, and store the normalized distinguished point, and expect to find a collision among these stored values.
Therefore, rather than the previous method, we only need to compute the Hamming weight of the current value and the
iteration function, avoiding computing the function ¢ defined by Eq. (3) in each step. Thus, the new method is expected to
achieve a speedup by a factor of 4/m, rather than iz%ﬂ, the previous result reported in the literature.

3.2. Heuristic analysis of non-randomness

The new iteration function is defined via the Hamming weight of the normal basis representation of the group element.
This reduces the randomness of the walk since the weight is not uniformly distributed. Certain heuristics for analyzing the
randomness in the iteration function of the Pollard rho method have been discussed in [23,24]. Our analysis is a refinement
of their heuristics.

Our iteration function is a multiplicative iteration function: every step maps an intermediate value Y; to Y;;1 = Y; -

k
oK) = Yi’J *1 where k € {0,1,...,m — 1}. Let s, = p* + 1, assume that m different exponents s are used to define the
random walk, and let pr, be the probability that exponent sy is used, and pro +pr; + - - -+ prp,_; = 1.

Let g be the cyclic group order, Z be a group element, Y and Y’ be two independent uniform random group elements.
Consider the event that Y and Y’ both map to Z but Y # Y/, First, there is chance qiz thatZ = Y5 = Y™ withi # j;
second, Y maps to Z with probability pr;; third, Y’ maps to Z with probability pr;. Therefore, overall the probability is
(i priprp)/q* = (O pripry — X pri)/q* = (1= 3, pr})/q*. This means that the probability of an immediate collision
fromYandY'is (1 -, priz)/q, where we add over the g choices of Z.

Therefore, after t iterations there are t(t — 1)/2 pairs of group elements. The inputs are not uniform distributed random

group elements, and the pairs are not independent, however one might nevertheless expect that the overall success
probability is approximately 1 — (1 — (1 — Y_;pr?)/q)"“~"/2, and the average number of iterations before success is

approximately \/nq/(2(1 - priz)).
That is, for the multiplicative walk that maps Y to Y* with probability pr;, the reductions of randomness increase the

expected number of iterations by a factorof 1/,/1 — >, pr,-z, which is very close to 1 in most cases.

3.3. Application to pairing based cryptosystems

For pairing-based cryptosystems, a bilinear map e : G; x G, — Gs is used, and bases its security on the intractability
of the DLP over G;. When a Tate or Weil pairing is in use, G, is a subgroup of points on an elliptic curve E(F,) and Gs is a
cyclic subgroup of ]F;‘,(,, where k is the embedding degree of G, and is usually chosen so that it is difficult to solve DLP over
IF‘;k, through the index calculus method. The MOV attack [13] transforms the DLP on G; or G, into the DLP on a subgroup of

Gs. Therefore, it is expected that the best way to break the pairing-based cryptosystem is to solve the DLP with the Pollard
rho method on G, or on the corresponding subgroup of Gs.
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Table 1
Speed up factors for short signature compared to the previous method.
Curve I Speed up factor under Speed up factor under
Kim’s approach our approach
E- 79 1451 21.77
E* 97 16.08 2412
E*t 121 17.96 26.94
E* 149 1993 29.90
E* 163 2085 31.27
E- 163 20.85 31.27
E*t 167  21.10 31.65

Here we illustrate the effect of our method when it is applied to the subgroup of G by a specific instance. Boneh et al. [11]
proposed using supersingular curves E* (Fy) : y> = x> ++2x+1and E~ (F3) : y* = x>+2x— 1. These curves have embedding
degree 6 and we have G3 = ]F;Gl. Thus, when our method is applied to Gs, the complexity of the DLP on Gs is reduced by

a factor of +/61, rather than %J@ the previous result [18] reported in the literature. Therefore, one should expect to use a
larger cyclic subgroup of the elliptic curve than was previously used to achieve the same security level.

For the supersingular curves with different [ proposed in [ 11], when computing DLP over G5 with the Pollard rho method,
we list in Table 1 the speed up factors one can achieve using Kim’s approach [18] and our approach, respectively.

Moreover, the ID-based encryption proposed in [10] is another example. Originally, these systems were built on elliptic
curves over a larger prime field F, with embedding degree 2. However, for efficiency reasons Galbraith [12] suggested the
use of elliptic curves over characteristic 2 or 3 fields with Tate pairing of embedding degrees 4 and 6, respectively. These
curves are y> +y = x> + xand y> +y = x> + x + 1in characteristic 2 and y*> = x> 4 2x & 1 in characteristic 3. In each
of these cases, our approach can be applied to reduce the complexity by a factor of /4l and /61, respectively. In practice, if
one chooses | = 283 or 397 with the curve y> +y = x> 4+ x + 1, we can speed up the Pollard rho method by a factor of 33.65
or 39.85, respectively, a further speed up compared to the method used in [18].

4. Experiments

To evaluate the efficiency of the new method, we implemented discrete logarithm computations with the variant Pollard
rho method over finite extension fields F,m, where m in certain range. In this section, we describe these experiments and
analysis the results.

The purpose of our experiments is to examine the impact of the new iteration function on the randomness of the rho
method. In more detail, we evaluate the number of iterations until a collision is found for the Pollard rho method with the
r-adding walk and the new random mapping, respectively.

Algorithm 1 Experiments for the r-adding walk and the new method

Require: Different iteration functionsF : G — G
Ensure: The average ratio (number of steps)/,/q: R,
1: for m=31, 37 and 41 do
2:  q < the largest prime factor of 2™ — 1.

Set {a, &2, ...,a>" '} be a normal basis of Fm.

3:
4:  Choose a random element w € F5, such that the order of w =2™ — 1.
5. g <« (w@"=Y/9) (the generator of G).
6: fori= 1to 100000 do
7: Choose a random number c € [0, q — 1], h < g°.
8: Choose a random element in G be the initial point Yy.
9: j<« 1
10: repeat
11: Y; < F(Yj—1).
12: Check whether the Hamming weight of Y; less than certain value.
13: until there is a match among distinguished points
14: Ri < j//a

15:  end for
16: Ry < (3 R;)/100000
17: end for

Generally, we set an integer m, such that the order of group F3, has a large prime factor g in a certain range. We set

{a, a2, ..., aszl} to be a normal basis of F,m and write elements of F,m using the coordinates in the normal basis. Then
we set the generator g of G and choose a random element h of G. When using Pollard’s rho method to compute this discrete
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Table 2
Different performances for the r-adding walk and the new
method.

Bits of #DLPs Ratio for Ratio for the

m r-adding walk new method

31 100000 1.286 1.325

37 100000  1.291 1314

41 100000  1.282 1.317

Average 300000 1.286 1.319

logarithm, we count the number of steps we performed until a collision is found with different iteration functions on the
same g and h. Then we determine the ratio R of the number of steps and ,/q. We repeat this a couple of times with the same
g but several randomly chosen h. We have the Algorithm 1.

For simplicity, let I be the Hamming weight wt(Y;) of Y;, we define the distinguishing property as wt(Y;) less than certain
value. To search for collisions it is necessary to have a unique representative per class. We choose the lexicographically

smallest value of Yizo, Yizl, e Yizm_l. In normal basis representation this is easily done by inspecting all cyclic shifts of Y;.

More precisely, for each m € {31, 37, 41}, we set a multiplicative group I, which has a subgroup G of prime order
q € [2%7, 23"]. Then for each group G, we generate 100000 DLPs with the same generator g but randomly generated h. For
each DLP, we use the r-adding walk and the new iteration function, respectively. Once we reach a collision, we compute the
ratio R; as (the number of steps until match is found)/./q. Finally, we count the average ratio R; of all 100 000 DLPs with the
same m and q.

The experiment results are given in Table 2. It shows that on average the new method indeed reduces the randomness of
the rho method, which gives a total increase in the number of iterations by a factor of about 1.0251 compared to the r-adding
walk. It confirms our theoretic analysis that the impact on the randomness by the new method is very small. Therefore,
experimentally the new approach can speed up the computation of discrete logarithms over finite extension fields F,m by a
factor of extremely close to /m.

5. Conclusion

In this paper, we proposed a variant of the Pollard rho method by make use of the distinctive feature of the normal basis
representations, namely, the p-th power of an element is just the cyclic shift of its normal basis representation where p
is the characteristic of the underlying field. The new approach can speed up the computation of discrete logarithms over
finite extension fields IF,m by a factor of +/m. Besides the theoretical analysis, we also compare the performances of the new
method with the previous algorithm in experiments, and the result confirms our analysis. Due to the MOV reduction, our
method can be applied to paring-based cryptosystems over binary or ternary fields.
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