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Markov chain acteristics of the elitist genetic algorithm, this paper proposed a modified DE to overcome
the disadvantage. The proposed algorithm employs two operators that assist it in escaping
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cal analyses on the convergence performances of the classical and modified DE algorithm.
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1. Introduction

Theoretical analyses of the convergence properties of differential evolution (DE) benefit understanding their search
behaviors and developing more efficient algorithms. However, few studies focused on theoretical analyses of guiding to
modify the DE. Inspired by Markov chain performance in the theoretical analyses of genetic algorithm (GA), this paper gives
the convergence analyses of the classical DE, as well as present a modified DE, which converges to the global optimum with
probability 1.

1.1. Background

DE, proposed by Storn and Price in 1995 [1], is a population-based stochastic parallel evolutionary algorithm. The first
book on DE was published in 2005 [2]. Das and Suganthan [3] surveyed DE in detail in 2011, which includes basic concepts,
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major variants, application and theoretical studies. Das et al. [4] identified the four main directions of DE research, which
include the basic DE research, the application-general research, the application-specific research and the computational
environment specific research.

DE [1-7] emerged as a powerful stochastic real-parameter optimization algorithm. And DE takes few control parameters,
which makes it easy to implement. Perhaps these advantages triggered the popularity of DE among researchers within a
short time. In recent years, DE has also got many real-world applications [8-10] and a lot of improved DE algorithms have
been proposed. Ref. [11] subdivided these modified versions of DE into two classes:

e DE integrating an extra component. This class includes those algorithms [12-16] which use DE as an evolutionary
framework which is assisted by additional algorithmic components.

e DE with modified structures. This class includes those algorithms [17-23] which make a substantial modification within
the DE structure, in the search logic or the selection etc.

No matter DE integrating an extra component or DE with modified structures, the motivations of these improved DE
algorithms are either based on a certain complementarity of the biological mechanism or based on the exploiting and
exploring capability of the classical DE. Few motivations improving DE algorithms are based on theoretical analyses on
the convergence properties of the classical DE. Perhaps the main reason is that little theoretical research has been presented
on investigating the convergence properties of DE so far.

In 2005, Xu et al. [24] performed the mathematical modeling and convergence analysis of continuous multi-objective
differential evolution (MODE) under certain simplifying assumptions. The authors assumed that the DE-population is
initialized by sampling from a Gaussian distribution with given mean and standard deviation. They then proved that the
initial population is Gaussian distributed and contains the Pareto optimal set, and the subsequent populations generated by
the MODE without the selection operator are also Gaussian distributed and the population mean converges to the center of
the Pareto optimal set. This work was extended in [25].

In 2006, Ter Braak CJ.F. [26] proposed the Differential Evolution Markov Chain algorithm (DE-MC). Its reproduction op-
erator was defined by adding a uniformly random number to the mutation operator of the classical DE. DE-MC abandons
crossover operator and uses Metropolis selection operator instead of the greedy one used in the classical DE. This paper also
proved DE-MC yields a unique joint stationary distribution. However, it has not been theoretically proven whether DE-MC
holds certain asymptotic convergence. In fact, it does not seem difficult to prove that DE-MC holds with convergence in dis-
tribution. However, only if its selection operator meets certain conditions, DE-MC can converge to the global optimum with
probability 1. For example, the selection pressure [27,28] of Metropolis selection operator satisfies certain conditions and
the probability of selecting bad individuals approaches 0 when iteration times tends to infinity. DE-MC'’s selection operator
does not seem to meet the condition.

Whether the classical DE holds certain asymptotic convergence or not, these papers do not analyzed. The area on
theoretical analyses, especially for guiding to modify the DE, remains largely open. Some improved DE algorithms, which
are based on theoretical analyses on the convergence properties, will need to be further research.

1.2. Motivation and contribution

Like GA, DE uses the similar computational steps (mutation, crossover, and selection operators) at each generation to
move its population toward the global optimum. DE and GA are both typical evolutionary algorithm. Through analyzing the
reproduction operators of two algorithms, we can get that there are several differences between GA and DE as follows.

(1) DEis usually used to dealing with the continuous optimization problem. The search space of the continuous optimization
problem is a continuous closed region (or a union of countable continuous closed regions). Therefore, the solution space
of the classical DE with real code is generally continuous, which is opposite to the canonical GA with binary code. In
contrast with a discrete solution space, the numbers of individuals in a continuous space is infinite.

(2) Using the mutation operator of the canonical GA, the GA’s mutation probability from an individual to another which
is an arbitrary point in a search space is greater than 0. However, the DE’s mutation probability from an individual to
another may equal to 0. In fact, the DE’s mutation probability from an individual to another equals to O if the distance
of the two individuals is enough great.

(3) Compared with the canonical GA which eliminates the best solution with a little-probability, the selection operator of
the classical DE always maintains the best solution(s) in the population.

Inspired by Markov chain performance in the theoretical analyses of GA [29-31], this paper will employ the Markov chain
as main tool. According to 1st difference, we must discretize the search space. Considering the limitations of the calculation
accuracy in computer, this paper maps the continuous search space to a finite discrete set. A Markov chain model is then
developed to investigate the classical DE. The theoretical analyses show that the classical DE cannot escape from a local
optimal set in case of trapping in. This makes the classical DE not converge in probability to the global optimum of a continue
optimization problem.

According to the 2nd difference, the classical DE’s populations are not always accessible to each other in population space.
And DE, like the elitist GA, always remains the best solution(s) in the current population according to the 3rd difference.
Taking these two points above into account, this paper presents two operators, called uniform mutation and diversity selection
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operator. The uniform mutation operator generates uniformly distributed solutions with a little probability, while the
diversity selection operator accepts poor solutions with a little probability. A modified DE with uniform mutation and
diversity selection, called msDE, is then proposed. These two operators make the population space of the msDE have only
one positive recurrent, irreducible, aperiodic and closed set, which assists the msDE in escaping from a local optima and
premature solutions set. By developing a Markov chain model of the msDE, this paper proves that the msDE can converge
in probability to the global optimum. Finally, an empirical comparison between the classical DE and the msDE is presented.
The experimental results on the test functions further verify the theoretical conclusions, as well as indicate that the msDE
has better robustness.

The rest of the paper is organized as follows: Section 2 introduces the classical DE. Section 3 analyze convergence
property of the classical DE. Section 4 proposes two reproduction operators and the proposed msDE. In Section 5, the
convergence in probability of the msDE are proved. Experimental design and comparisons are presented in Section 6. Finally,
the conclusions, concluding remarks and future works are given in Section 7.

2. Classical differential evolution

DE is used for dealing with the continuous optimization problem. We suppose in this paper that the objective function
to be minimized is f (X), X = (xq, ..., X,) € R", and the feasible solution space is ¥ = ]_[j-j[Lj, U;]. The classical DE [1-6,
18,32] works through a simple cycle of operators including mutation, crossover and selection operator after initialization.
The classical DE procedures are described in detail as follows.

2.1. Initialization

The first step of DE is the initialization of a population of m, n-dimensional potential solutions (individuals) over the
optimization search space. We shall symbolize each individual by ¥ = (x;,x,,..., %), fori = 1,...,m, where
g2=0,1,..., gnaisthe current generation and gy is the maximum number of generations. At the first generation (g = 0)
the population should be sufficiently scaled to cover as much as possible of the optimization search space. Initialization is
implemented by using a random number distribution to generate the potential individuals in the optimization search space.

We can initialize the jth dimension of the ith individual according to
X, =L+ rand(0, 1) - (Uj — L).
Unless otherwise mentioned, rand(0, 1) is a uniformly distributed random number confined in the [0, 1] range.
2.2. Mutation operators
After initialization, DE creates a donor vector U‘f corresponding to each individual )_élg in the gth generation through the

mutation operator. Several most frequently referred mutation strategies [32] are presented as follows:
DE/rand/1:

=R 4 FRE —R); (1)
DE/best/1:
1—)’1‘.% = )_é‘lg;est + F(_)r1 _5&?2); (2)
DE/current-to-best/1:
DE/best/2:
1_};“3 = )_éiest + F(}gj - }fz) + F(_'r3 - ;(‘%4); (4)
DE/rand/2:
B =R+ FGE - ) +F(E, —R): (5)
where ?cﬁest denotes the best individual of the current generation, the indices ry, 1y, 13, 14,15 € S, = {1, 2, ..., m}\{i} are

uniformly random integers mutually different and distinct from the running index i, and F € (0, 1] is a real parameter,
called mutation factor or scaling factor.

If the element values of the donor vector, v;, exceed the pre-specified upper bound or lower bound, we can change the
element values by the periodic mode rule as follow:

S U] - (Lj - v,',j)%|Uj — Lj| ifvi,j < Lj
” Lj + (U,',j — Uj)%|U] — Lj| ifv,‘,j > U]
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X = initial._population (m), F,Cr = initial._parameters
while ! termination_condition do
for g=0tom
v =27, + F(&], — £7,) //mutation operator
@ = binomial_crossover(Z?,0Y) //crossover operator
if f(@?) < f(&7) then //selection operator
7 =
end if
g=g+1

end for

=9
Uy

end while

Fig. 1. Pseudocode of classical DE (DE/rand/1).
2.3. Crossover operator

Following mutation, the crossoveroperator is applied to further increase the diversity of the population. In crossover, the
target vectors, X; , are combined with elements from the donor vector, vf, to produce the trial vector, if, using the binomial
crossover,

g _
L

(6)

u

X

ij

vf; ifrand(0, 1) < Cr o1 j = jrana
otherwise

where Cr € (0, 1) is the probability of crossover, jqq is a random integer in [1, n]. Let
uf = binomial_crossover (X}, Uf)

denote the crossover operator.

2.4. Selection operator

Finally, the selection operator is employed to maintain the most promising trial individuals in the next generation. The
classical DE adopts a simple selection scheme. It compares the objective values of the target?c,.g and trial ﬁ‘? individuals. If the
trial individual reduces the value of the objective function then it is accepted for the next generation; otherwise the target
individual is retained in the population. The selection operator is defined as
i) < f&)

i

i { )

X', otherwise.

The pseudocode of the classical DE algorithm (DE/rand/1) is illustrated in Fig. 1.

3. Convergence analysis of classical differential evolution

Unlike other evolutionary algorithms, DE modifies individuals by using differences of randomly sampled pairs of indi-
vidual vectors from the population. If the population traps in a local optimum set, then differences of any pairs are equal to
0. So DE cannot escape from local optima. This is one of reasons resulting in the fact that the classical DE does not converge
to the global optimum with probability 1. In turn, this section will theoretically prove that the classical DE cannot converge
in probability to the global optimum.

There are different definitions of convergence in probability. The following one is used in this paper.

Definition 1 (Convergence in Probability [27,28]). Let {x(t),t = 0,1, 2,...} be a population sequence generated by a
population-based stochastic algorithm, the stochastic sequence {x(t)} weakly converges in probability to the global op-
timum, if and only if:

Jim pix(t) NB" # ¢} =1,

where B* is the set of the global optima of an optimization problem. That is, the algorithm holds with convergence in prob-
ability. Otherwise, the sequence {x(t)} or the algorithm is called no-convergence in probability.
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A population sequence {x(t)} holds with convergence in probability, that is to say, the probability that the best individual
sequence of the population sequence {x(t)} converges to the global optimum approaches 1 as the iteration time t increases
indefinitely. No-convergence in probability implies that the limitation (if exists) of the convergent probability is less than
1, which does not imply that the algorithm must not converge to the global optimum. In fact, the algorithm with no-
convergence in probability may hold with a high convergence ratio. However, an algorithm with convergence in probability
is generally more robust than one with no-convergence in probability.

We can map the continuous search space ¥ to a finite discrete set @ due to the limitations of the numerical calculation
accuracy in computer. So we consider a stochastic process {x(t),t = 0, 1, 2, ...} that takes on a finite number of possible
values. And define the state space of the stochastic process be the population space of the classical DE. If the population
scale is m, then the state space of the stochastic process is

PT=PXDxX---xPD.
m

Let x(t) denote the tth generation population of the classical DE, then evolutionary process of the classical DE can be
described as a stochastic process {x(t), t = 0, 1, 2, ...} that takes on a finite number of possible values. Unless otherwise
mentioned, Let X, Y, Z, U, V denote the states of @™, p{x(t + 1) = V | x(t) = X} denote the probability that the process
will, when in state X at time t, next make a transition into state V.

Let M°, C°, S° denote the mutation operator, the crossover operator and the selection operator of the classical DE,
respectively. Then p{M°(X) = Y} is the probability that X changes into Y at t generation by the mutation operator of
the classical DE. Similarly, the probabilities p{C°(X, Y) = Z}, p{S°(X, Z) = V} are not difficult to understand. Hence,

plx(t+1) =V |x(t) =X} = Z pIM°X) =Y} p{C°(X,Y) = Z} - p{S°(X, Z) = V}}. (8)
Y.Zep™

Let £2 denote a local optima or premature solutions set. That is, §2 is a subset of the state space @™, every vector (indi-
vidual) of the population of £2 is equal and is not the global optimum. The mathematical description of §2 will be given at
the following Lemma 1.

Lemma 1. Let {x(t),t = 0, 1, 2, ...} be the population sequence generated by the classical DE. The classical DE, if an arbitrary
population x(t) traps in a local optimum or premature set, cannot escape. That is, suppose that there exists a time t; such that the
population x(ty) € 2, then

[lim p{x(t) = x(ty) | x(te) € 2} =1,
—00
where
2={X=(®,Db,....b): be ¢ andb & B*}.

———
m

Proof. All the vectors of the population x(t;) is equal when the state x(t;) € £2 at time t, so the difference of two arbitrary
vectors is 0. By the formula (1)-(5), we can get that

pM°(x(ty)) = x(t)} = 1, Vx(t) € 2.
Obviously, by the formula (6), we can get that
p{C(x(tw), x(t)) = x(t)} =1, V(&) € 2.
So, by the formula (8), for an arbitrary positive integer t, we can get that
plx(t+ 1) =X [x(t) =X € 2}
= Z PM°X) =Y |Xe R} -plC°X,Y)=Z|X e 2} p{S°X,Z) =X | X € 2}}
Y.Zedm
=p{M°X) =X |X € 2} -p{C°X,X) =X |X € 2} -p{S°X,X) =X | X € 2}
=1
Hence, for a given positive integer t, if the population x(t;) € £2, then

Jim p{x(6) = x(t) | x(t) € 2} = 1.

Theorem 1. The population sequence generated by the class DE, {x(t),t = 1, 2, ...}, cannot converge in probability to the global
optima set B*. That is,

tlim p{x(t) NB* #£ ¢} < 1.

Proof. Let x(0) denote the initial population of the classical DE. The individuals of the x(0) are uniformly distributed random
vectors lying the discrete space @. The probability generating every individual of x(0) is equal. So, according to classical
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model of probability, the probability that the initial population of the classical DE traps into a local optima or premature
solutions set is obviously greater than 0. That is p{x(0) € 2} > 0.
From the Lemma 1, when the x(0) € §2, we have

[lim p{x(t) = x(0) | x(0) € 2} =1,
— 00
implying that
[lim p{x(t) NB* = ¢ | x(0) € 2} = 1.
—00
Hence, we can get

Jim p{x() N B* # ¢}

1= lim p{x(t) N B" = ¢}
1— [llrglop{x(r) NB* = ¢, x(0) € 2}

IA

IA

1= lim p{x(t) NB" = ¢ | x(0) € 2} - p{x(0) € 2}
1—p{x(0) € 2} <1,

implying that
lim p{x(t) N B* # ¢} < 1.
t—o00

According to Definition 1, the sequence x(t) generated by the classical DE holds no-convergence in probability.

4. A modified differential evolution algorithm with convergence in probability

The Section 3 proved that the classical DE cannot converge in probability to the global optimum. From the process of the
proof, the key reason resulting in no-convergence in probability of the classical DE is that it may trap into and cannot escape
from a local optimum solution set. In order to overcome the disadvantages, a modified DE algorithm, called msDE, is pro-
posed. The msDE algorithm employs two proposed operators, called uniform mutation and diversity selection operator. The
uniform mutation generates uniformly distributed solutions, while the diversity selection accepts poor solutions with a little
probability. Both operators improve the capacity of the msDE to avoid trapping into a local optimum or premature solution
set, as well as assist the msDE in escaping from it. This makes the msDE converge in probability to the global optimum. The
convergence proof of the msDE will be given in the following Section 5. The msDE works through a cycle of four operators
including mutation, crossover, uniform mutation and diversity selection operator after an initialization. The mutation and the
crossover are the same as the classical DE. The uniform mutation, diversity selection operators and the msDE’s pseudocode
are described in detail as follows.

4.1. Uniform mutation operator

After the classical DE’s crossover operator, the msDE creates a variation vector i)f corresponding to each trial vector ﬁ‘? by
the uniform mutation operator. The uniform mutation runs independently on each trial vector by perturbing each element
of the trial vector. Each trial vector is replaced with probability Um by a feasible solution randomly generated, where Um is
a control parameter. The description of the uniform mutation is given as follow.

For each trial vector ﬁ‘ig , generate a uniformly random number A between 0 and 1. Then, forallj =1,2,...,n

(9)

Wij = 1ué. otherwise (b)

g {Lj +rand(0,1) - (Ui — L) A <Um (a)
LJ

Let ﬁ)ig = uniform_mutation(ﬁf) denote the uniform mutation operator.

From the formula of the uniform mutation, the variation vector 17)15 equals to the trail vector ﬁ;‘; with probability 1—Um, or
a uniformly distributed random vector in the feasible region with Um. Obviously, the variation vector ﬁ)‘ig equals to ﬁf when
Um = 0. When Um is a smaller number in (0, 1), the variation vector J)fr is regenerated with a smaller probability Um. This
makes the population of the msDE can escape from a local optimum and premature solution set. Meanwhile, the variation
vector 17)‘? equals to ﬁ,fg with a larger probability. This makes the msDE maintain the search capability of the classical DE. And
in order to keep the advantage of the classical DE, Um is generally set to a smaller number in (0, 1).

4.2. Diversity selection operator

To further enhance the potential diversity of the population, a selection operator, called diversity selection, is employed
after the uniform mutation operator by the msDE. The diversity selection determines whether the target or the variation
vector survives to the next generation. Unlike the selection operator of the classical DE, the diversity selection operator
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X = initial._population (m), F, CR = initial._parameters
while ! termination_condition do
for g=0tom

0 =29, + F(&, — &7,) //mutation operator

4 = binomial_crossover(&7,07) //crossover operator

I’
W) = uniform_mutation(d?)  //uniform mutation

T = diversity_selection(Z?,w?) //diversity selection
g=g+1
end for

end while

Fig. 2. Pseudocode of msDE (msDE/rand/1).

retains a best individual to the next generation as well as accepts some poor solutions with a little-probability Ds. Ds is a
control parameter and generally set to a smaller number in (0, 1). The diversity selection enhance the population diversity
of the msDE. Thus the capacity of the msDE to avoid trapping into a local optimum or premature solutions set is improved.
The diversity selection is described as follow.

Firstly, randomly choose one of the best individuals from all the target vectors ¥ and all the variation vectors W, and

retain the best individual to the next generation. Suppose that the best individual chosen is b%, then ?i“ = Ef. Subsequently,

k
at each variation vector ﬁ)ig, ie{1,2,...,m}\{k}, a operator generating its next individual is run as the following rule.

wf  f(X) > f(WF) Arand(0, 1) > Ds
E or f(x}) < f(w¥) Arand(0, 1) < Ds
LT fR) < f@WF) Arand(0,1) > Ds

or f(&) > f(w§) A rand(0, 1) < Ds,
where the control parameter Ds is the probability that the diversity selection accepts poor solutions. Generally, Ds is set to a

smaller value in (0, 1). Let ?(f“ = diversity_selection(?c?, ﬁ)?) denote the diversity selection operator.
The pseudocode of the msDE algorithm (msDE/rand/1) is illustrated in Fig. 2.

(10)

5. Convergence analysis of a modified differential evolution algorithm

There are the two classical convergence framework about the evolutionary algorithms. The one is represented by the
elitist genetic algorithm [30,33] whose probability of generating any individuals, for each generation population, is always
larger than 0. This means the probability getting a optimum in each generation during evolution process is always larger
than O for arbitrary function as well as initialization. In addition, this type of algorithms also maintains the best solution to
the next generation population, which can force the algorithm to converge in probability to the global optima.

The other can often be distinguished with their two characteristics. The main one is that bad individuals can be accepted
with a small probability, and the other characteristic is that new individuals may only be generated over a size-fixed open
set around the parent individual, such as DE-MC algorithm [26] which uses Metropolis selection operate and Rand walk
strategy. This type of algorithms can achieve to certain asymptotic convergence when the probability and size satisfy some
conditions. However, the theoretical analyses of Refs. [28,34] show that more parameters are involved in the convergence
conditions. This means steady convergence of those algorithms is sensitive to more parameters, which is not conducive to
their application.

In msDE algorithm proposed, the uniform mutation operator can generate new individuals over the whole space. Mean-
while the diversity selection operator maintains the best solution to the next population and accepts bad individuals with a
small probability. The simultaneous use of these two operations can reduce the sensitivity of algorithm to the parameters.!
The greedy acceptance of the best solution is important to the algorithm'’s convergence in probability.

Analogously to Section 3, a finite homogeneous Markov chain model with a positive recurrent set is developed to
prove that the msDE can converge in probability to the global optimum. Define the state space of the stochastic process
{x(t),t = 0,1,2,...} be the population space of msDE. Let M¢, M°, and 8° denote the operators of Eq. (9), the uniform
mutation and the diversity selection, respectively. The meaning of other symbols is the same as before.

State Y is said to be accessible from state X if for some integer | > 0, p{x(t + 1) = Y | x(t) = X} > 0. Two states X and Y
accessible to each other are said to communicate [35]. In turn, we will prove the conclusion that all states of the state space
generated by the msDE without the diversity selection operate communicate.

1 Theoretically, msDE can also converge to the global optimum in probability if only the new individual generated by uniform mutation is over a size-fixed
open set around certain center. However, this brings a size parameter to msDE, and the algorithm is more sensitive to the other parameters, such as Um, Ds.
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Property 1. For the msDE without the diversity selection operator, all states (populations) of its population space @™ communi-
cate. And for all states X, Y € @™, the one-step transition probabilities from X to Y is greater than 0. That is,

p{M°-C°-M°(X) =Y} > 0.

Proof. For the msDE without the diversity selection operator, only three operators, the mutation M?, the crossover C° and
the uniform mutation operator M°, are used. Suppose @™ denote the population space of the msDE without the diversity
selection operator, VX, Y,Z € @™, according to the Egs. (9)(a) and (b), we can get that

p{M®-C°-M°(X) =Y} = p{C" - M°(X) = Y} - (1 — Um) + Um - Z {p{C° - M°(X) = Z} - p{M](2) = Y}},
Zeom
and from the Eq. (9), we can get that
p{Mi(Z) =Y} >0, forallZ.
So we have
Um- > {p{C° M°(X) = Z} - p(M3(Z) = Y}} > 0,
Zepm
hence,
p{M°-C°-M°(X) =Y} > 0.

That is to say, the one-step transition probability from arbitrary state X to arbitrary state Y is greater than 0 by using the
uniform mutation. So, for the msDE without the diversity selection operator, all states communicate.

Let f(X*) denote the minimum function value of a population X. In turn, a statistic property of the diversity selection
operator will be proved.

Property 2. Given states (populations) X, Y, Z of the state space @™, and Z C X U'Y, the diversity selection operator belongs to
one of the following two classes:
(i) If f(Z*) # min{f (X™), f(Y*)}, then X, Y cannot generate Z by using the diversity selection. That is
p{8°(X,Y)=2Z}=0.
(ii) If f(Z*) = min{f (X*), f(Y*)}, then X, Y can generate Z by using the diversity selection. That is
p{8°(X,Y) =2} > 0.

Proof. This is practically obvious according to the operator’s definition.

Theorem 2. Suppose that {x(t),t = 0, 1, 2, ...} is the population sequence generated by the msDE, then
(i) {x(t),t = 0,1, 2,...}is afinite homogeneous Markov chain on the state space ®™;
(ii) {x(t),t =0, 1, 2, ...} converges in probability to the global optimum.

Proof. (i) Like the above Section 3, the continuous search space ¥ is mapped to a finite discrete set @. So the state space of
{x(t),t =0,1,2,...}is finite. The reproduction operators of the msDE are independent of iteration times t and dependent
only on the present state. So we obtain that the stochastic sequence {x(t),t = 0, 1, 2, ...} is a finite homogeneous Markov
chain.
(ii) Define §° = 8° - M° - C° - M°,VX,Y,Z € @™, then the transition probability
plx(t + 1) =Z[x(t) =X} = p{§°X) = Z}
= p{8°- (M°-C°-M°)(X) = Z}
= D plM° - MOX) =Y} p{8°X. V) = 2. (11)
Yepm

Define By be a population set consist of some populations in which at least one individual is optimum. That is By C &™:
Bo=1{X=@®,%X,....%n) € @™ |x; € B*,Ji e {1,2,...,m}}.
Subsequently, we divided into two classes to discuss the transition probability.

(1) Suppose X € By, Z & By
In this case,

fZ*) > min{f (X*), f(Y")},
implying that
f@*) # min{f (X), f(Y)}.
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According to the Property 2, we can get
p8°(X,Y) =Z} =0,
From the formula (11), we can get
plx(t + 1) =Z|x(t) =X} =0. (12)

(2) Suppose X € By, Z € By
In this case,

f(Z*) = min{f(X"), f(Y")},
according to the Property 2, we can get
p{8°(X,Y) =2} > 0,
and from the Property 1, we have
p{M°-C° - M°(X) =Y} >0 forallX,Y € d™.

So, from the formula (11)

pix(t+1) =Z|x(t) =X} > 0. (13)
Similarly, we can get
pix(t +1) =X |x(t) =Z} > 0. (14)

That is, all stats of B, communicate.

From the formulas (12)-(14), we can obtain that By is a positive recurrent, irreducible, aperiodic and closed set, and
@™\By is a non-recurrent state set. Where ¢™\B, denotes the cutset of the @™ to the By.

In addition, according to the properties of the aperiodic, homogeneous Markov chain [35,28], we can get that the sequence
{x(t),t =0,1,2,...}exists a limiting distribution 7 (Y), such that

Jim pix(t) =Y} = {g(Y) Zttfef\?vise.
So

Jlim p{x(t) € Bo} = 1.
We have

Jim p{x(©) NB" # ¢} = 1.

From the Definition 1, msDE converges in probability to the global optimum.
6. Experimental verification

The competitiveness of an overall convergent algorithm should be in two aspects, that is, capability of escaping from the
local optimum set, and the performance of solving higher dimensional complex problems. So two experiments are designed
to study the performance of the proposed msDE. One is conducted on DE’s deceptive function [36]. As shown in Fig. 3, the
function has many local optima and is strong deceptive to DE algorithm. This experiment presents several convergence
figures visualizing the process that msDE escapes from the local optimum set. In order to measure the msDE’s performance
of solving higher dimensional complex problems, the other is conducted on a test suite from the literature [37], which
includes 6 well-known benchmark functions with differential characterizations. And we employ the most common method
for comparing algorithm’s performance in IEEE World Congress on Evolutionary Computation (IEEE-CEC).

All the above algorithms are coded in Visual C++ and the experiments were executed on a ACER 4750G laptop with a
2.30 GHz Intel(R) Core(TM)i5 2410 M CPU and 2 GB RAM.

6.1. On deceptive function

The deceptive function are defined as following:
Fx) = —3sinc2x+10) if —10<x <0
X =1 —xsin(xr) ifo<x<10
where the function sinc(t) is given by:

N b ift=0
SINC() =\ in(re)/(et) ift £ 0.
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Table 1

Number of FEs to achieve the Ter_Err for the DE deceptive function using DE/best/1 and msDE/best/1.
RandSeed 20634 827 16 665 17 648 1290 5645 4735 25706 22480 17754
msDE FEs 99050 2497230 186380 43430 310 4302800 3800 37810 270 178610
DE FEs - - - - 200 - 220 - 210 -
RandSeed 23547 5897 21242 23048 19888 27637 10848 21662 20946 8475
msDE FEs 958 100 5380 34810 1204340 1339880 2330350 8487780 621590 1373070 240
DE FEs - - - - - - - - 260 -
RandSeed 28295 25759 30384 29988 26309 27 159 14833 21927 22182 13683
msDE FEs 175380 310 280 230 230 180 174010 180 46410 270
DE FEs - - 180 230 240 160 - 200 - -
RandSeed 6429 15773 12943 31125 2912 22550 1953 9256 18571 15147
msDE FEs 2287910 260 1902 460 380 876700 819320 230 27200 330 390
DE FEs 210 - - - - 230 240 - - 280
RandSeed 6880 4145 348 20276 917 18151 27903 13883 17 649 17093
msDE FEs 260 250 150370 1410 240 3019380 70240 317930 137810 709330
DE FEs 240 - - - - - - - - -

‘FEs’ denotes function evaluations.
‘-’ indicates that the algorithm cannot find the optimum within Max_FEs.

4 T T T

— DE'’s deceptive function

DE’s deceptive function values

_3 . .
-5 0 5 10

individual values

Fig. 3. DE'’s deceptive function.

The landscape of DE deceptive function is shown in Fig. 3. It can lead the classical DE to trap in the local optimum. The global
optimum of the function is x = —5.0 with the function value f (x) = —3. There is a deceptive local minimum x = 8.5060
with function value f (x) = —2.9160 in this test function.

Experiments are conducted to compare the two versions of the classic DE with the msDE algorithm (DE/best/1 vs.
msDE/best/1, DE/rand/1 vs. msDE/rand/1). From the Ref. [38], the same initialization benefits the comparison. So experi-
ments generate 50 uniformly distributed random integers as the random seeds for initializing population. The 50 integers
are listed in Tables 1 and 2. Using the 50 seeds, all experiments were run 50 times.

We set the parameters: Population size Np = 10, Mutation factor F = 0.5 [18,39], Crossover probability Cr = 0.9
[18,39], and the maximum number of function evaluations (Max_FEs) is set to 5,000,000, Uniform mutation probability is
equal to Diversity selection probability Um = Ds = 0.01.

Table 1 presents the FEs of 50 runs of the classical DE/best/1 and the msDE/best/1 on the deceptive function when
algorithm achieves the Ter_Err, while Table 2 reports the FEs of 50 runs of the classical DE/rand/1 and the msDE rand/1
on the deceptive function. Table 3 analyzes the data of Tables 1 and 2. From the statistics of Table 3, the robustness of the
msDE holding uniform mutation and diversity selection operators is better than the classical DE’s. Figs. 4 and 5 present the
convergence characteristics in terms of unreached global optimum for the classical DE. All of these curves show that the
msDE can escape from the local optimum on the test functions while the classical DE traps in.

Of course, we have to note that convergence in probability is a property when the iteration times approaches infinity.
The previous theorem and experimental results cannot imply that the msDE can solve all function optimization problems
within a finite FEs.

6.2. On a set of benchmark functions

A comparative study of DE and msDE is performed by using a test function set including 6 benchmark functions [37]. These
are the Sphere function (f1), the Schwefel’s problem 1.2 (f2), the generalized Rosenbrock’s function (f3), the Ackley’s function
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Table 2

Number of FEs to achieve the Ter_Err for the DE deceptive function using DE/rand/1 and msDE/rand/1.
RandSeed 20634 827 16 665 17 648 1290 5645 4735 25706 22480 17754
msDE FEs 3390 700 710 5250 810 820 12970 33360 380 500
DE FEs - - 320 460 350 340 280 450 260 -
RandSeed 23547 5897 21242 23048 19888 27637 10848 21662 20946 8475
msDE FEs 700 460 1360 450 430 830 978 960 400 380 370
DE FEs - 400 - 410 - 380 380 - 420 330
RandSeed 28295 25759 30384 29988 26309 27 159 14833 21927 22182 13683
msDE FEs 310 1540 940 430 2390 470 29860 380 520 590
DE FEs - 360 450 340 400 300 530 480 - -
RandSeed 6429 15773 12943 31125 2912 22550 1953 9256 18571 15147
msDE FEs 5190 390 33330 238290 8980 610 920 2860 1910 410
DE FEs - 330 - - - 380 - 450 450 -
RandSeed 6880 4145 348 20276 917 18151 27903 13883 17649 17093
msDE FEs 1010 470 3643110 4150 1060 46070 430 360 27 040 610
DE FEs - 490 - 420 370 400 - 310 310 -

‘FEs’ denotes function evaluations.
‘~’ indicates that the algorithm cannot find the optimum within Max_FEs.

-1.5
——DE/best/1
W ——msDE/best/1 ——DE/best/1
» ——msDE/best/1
kS g -15
S -2 g
= 5 2
'% 5 escape from local optimum
S find global optimum S
p trap in local opi 5 25 in local optimum
g 25 rap in local optimum E
£ c
S escape from local optimum £ 3 . .
10 find global optimum <«
150
3 X 100
0 50 100 150 50
iteration times individuals (vectors) -1 o iteration times
(a) 2-dimension. (b) 3-dimension.
Fig. 4. Convergence figure of deceptive function (DE/best/1 vs. msDE/best/1 seed = 20276).
-1.6
18 E/rand/1 E/rand/1
- sDE/rand/1 sDE/rand/1
1%
@ o -1.5
ER] g
g K]
< > [
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= 24 =]
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281 - 150
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iteration times individuals(vectors) ~10 0 iteration times
(a) 2-dimension. (b) 3-dimension.

Fig. 5. Convergence figure of deceptive function (DE/rand/1 vs. msDE/rand/1 seed = 6880).

Table 3

Statistical analysis of Tables 1 and 2.
Function Deceptive function
Algorithm */*/1 DE/best msDE/best DE/rand  msDE/rand
Running times 50 50 50 50
Convergence times 14 50 29 50
Convergence ratio 28% 100% 58% 100%

(f4), the generalized Rastrigin’s function (f5) and the Salomon’s function (f6). Those hold differential characterizations. The
Sphere and the Schwefel’s functions are continuous, unimodal and separable. The generalized Rosenbrock’s optimum, which
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Table 4
The function values achieved via msDE/rand/1 for test problems.
FEs F1/le—4 F2/1e—4 F3/1e—3 F4/1e—3 F5/2e—4 F6/1e—3
Best 3.722569e—5 1.052869e+3 2.363611e+1 1.454127e—2 1.825215e+2 1.998767e—1
Median 1.317602e—4 2.024659e+3 2.547796e+1 2.720807e—2 2.057561e+2 2.009906e—1
5e+4 Worst 3.354363e—4 2.951507e+3 2.625652e+1 4.375287e—2 2.252633e+2 2.998733e—1
Mean 1.457969e—4 1.921639%e+3 2.531318e+1 2.711668e—2 2.054805e+2 2.138486e—1
std 7.101361e—5 5.704156e-+2 5.775845e—1 7.652828e—3 1.005519e+1 2.811292e—-2
Best 2.909400e—11 2.108018e+1 1.775913e+1 1.273556e—5 1.460694e+-2 1.823816e—1
Median 1.414555e—10 5.033402e+1 1.945910e+1 2.279657e—5 1.914524e+-2 1.998733e—1
le+5 Worst 6.147642e—10 1.188379e+2 2.095030e+1 4.414247e—5 2.049187e+2 1.998831e—1
Mean 1.757349e—10 5.530790e+1 1.960726e+1 2.556075e—5 1.884414e+-2 1.991369e—1
std 1.309825e—10 2.706403e+1 8.134248e—1 9.227977e—6 1.357429e+1 3.425007e—3
Best 0.000000e+0 4.049995e—1 1.102680e+1 1.017461e—8 1.286904e+2 1.005215e—1
Median 1.000000e—16 1.421101e+0 1.428152e+1 2.687541e—8 1.780161e+2 1.998733e—1
1.5e+5 Worst 7.000000e—16 8.546607e+0 1.640271e+1 6.500403e—8 1.954177e+-2 1.998733e—1
Mean 2.000000e—16 1.911737e+0 1.404771e+1 2.959854e—8 1.747391e+2 1.886040e—1
St.d 2.000000e—16 1.624867e+0 1.087064e+0 1.263306e—8 1.701901e+1 2.857414e—-2

‘FEs’ denotes function evaluations.

Table 5
The function values achieved via DE/rand/1 for test problems.
FEs F1 F2 F3 F4 F5 F6
Best 3.981338e—5 1.120324e+3 2.466296e+1 1.682092e—2 1.778458e+-2 1.998739¢e—1
Median 1.460035e—4 1.904931e+3 2.558842e+1 2.378208e—2 2.024265e+2 2.000300e—1
5e+4 Worst 4.687370e—4 2.874036e+3 2.675050e+1 3.950343e—2 2.239820e+-2 2.998734e—1
Mean 1.606499e—4 1.938913e+3 2.560035e+1 2.366505e—2 2.025327e+-2 2.110259e—1
Std 9.388241e—5 5.005268e+2 5.312136e—1 4.722956e—3 1.280519e+1 2.698877e—2
Best 3.961620e—11 2.656309e+1 1.812013e+1 1.556676e—5 1.559871e+2 1.399475e—1
Median 1.225084e—10 5.554179e+1 2.020160e+1 2.401075e—5 1.858864e+-2 1.998733e—1
le+5 Worst 6.044953e—10 1.376549e+-2 2.223397e+1 4.564242e—5 2.043446e+-2 1.998739%e—1
Mean 1.768590e—10 5.532780e+1 2.010210e+1 2.558901e—5 1.854608e+2 1.974763e—1
Std 1.486436e—10 2.549677e+1 9.339488e—1 6.595276e—6 1.238314e+1 1.174301e—2
Best 0.000000e+-0 7.171423e—1 1.253526e+1 1.137130e—8 1.559871e+2 1.030063e—1
Median 1.000000e—16 1.500765e+-0 1.505183e+1 2.241535e—8 1.759913e+-2 1.998733e—1
1.5e+5 Worst 7.000000e—16 4.038457e+0 1.689306e+1 4.104023e—8 1.925887e+2 1.998734e—1
Mean 2.000000e—16 1.650912e+0 1.476824e+1 2.432976e—8 1.773232e+2 1.902609e—1
St.d 2.000000e—16 8.560127e—1 1.013068e+-0 6.618557e—9 1.048620e+1 2.656269e—2

‘FEs’ denotes function evaluations.

is multimodal and non-separable, lies inside a parabolic shaped flat valley. The Ackley’s function is a multimodal non-
separable problem and has many local optima and a narrow global optimum. The generalized Rastrigin function is a complex
multimodal separable problem with many local optima. The Salomon’s function is a highly multimodal and non-separable
function.

According to the criterion of IEEE-CEC, 25 independent runs were performed for each test function, and the stop criterion
was to run up to 15,000 fitness evaluations. The detailed results (best, median, worst, mean, St.d), for 50,000, 1000,000 and
150,000 FEs, are presented in Tables 4 and 5.

We set the parameters: Dimension D = 30, Population size Np = 100, Mutation factor F = 0.5, Crossover probability
Cr = 0.9, Uniform mutation probability is equal to Diversity selection probability Um = Ds, whose values are shown the
1st row of in Table 4.

Tables 4 and 5 show the results for the conducted experiments on msDE and DE, respectively. By comparing these two
table, it can be seen that in the simplest Sphere function msDE’s convergence rate is similar to the classical DE, and is faster
in the other problems. That is to say, msDE which employed uniform mutation and diversity selection operators is effective
for all problems of the benchmark set.

7. Conclusion and future work

DE algorithm is a stochastic search algorithm. The theoretical research field of DE’s global convergence still remains large
space. Generally speaking, the global convergence in probability of a stochastic search algorithm is that it can converge
in probability to the global optima set for any initialization and any optimization problem. This paper proved that the
classical DE does not hold convergence in probability by using the property that it cannot escape from a local optimal set.
The theoretical analysis also indicated that we can improve DE algorithm by the following two facts: (1) enhancing the
capability of escaping from a local optimal set, (2) reducing the probability trapping into a local optimal set. In this way, this
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paper proposed a msDE algorithm and proved it’s global convergence in probability by developing a Markov chain with only
one positive recurrent. A numerical experiment on deceptive function visualized the process that msDE escaped from the
local optimum set. The other comparative experiments of msDE and the classical algorithm are conducted on a benchmark
function set. The results indicated the superiority of msDE.

Several possible directions for future work can be summarized below:

e Develop rapid DE algorithms with convergence in probability by using strategies enhancing the DE’s capability of
escaping from a local optimal set. For example, let those strategies which can make populations communicate integrate
into some outstanding variants of modified DE algorithms, such as the representative modified DE of Ref. [11] as well as
the 2-opt DE algorithm [18]. Of course, whether the algorithms can converge in probability to the global optimum need
to be proved. And their convergence rate also needs to be further investigated.

e Analyze the asymptotic convergence and the convergence in distribution of the classical DE. In fact, that the classical
DE holds with no-convergence in probability does not mean that the algorithm does not holds with convergence in
distribution.

e Develop modified DE algorithms which are almost certainly convergent.
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