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Partially linear model is useful in statistical model as a multivariate nonparametric fitting
method. This paper dealswith statistical inference for the partially linearmodel in the pres-
ence ofmulticollinearity.When some additional linear restrictions are assumed to hold, the
corresponding restricted difference-based Liu estimator for the parametric component is
constructed. The asymptotically properties of the proposed estimators are discussed. Fi-
nally, a simulation study is presented to explain the performance of the estimators.
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1. Introduction

Let us consider the following partially linear model

yi = X ′

iβ + f (ti) + εi, i = 1, . . . , n (1)
with yi denotes a scalar response, Xi = (Xi1, . . . , Xip)

′ denotes a p × 1 independent vectors with a non-singular covariance
matrix ΣX , β = (β1, . . . , βp)

′ denotes a p-vector of unknown parameters, f (·) is the unknown function, the model error εi
is an independent random error with zero mean and variance σ 2.

Rewrite model (1) in matrix notation as
y = Xβ + f (t) + ε (2)

where y = (y1, . . . , yn)′, f (t) = (f (t1), . . . , f (tn))′ , ε = (ε1, . . . , εn)
′ and X = (X1, . . . , Xn)

′ is the n × p matrix.
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Partial linear models are more flexible than standard linear models since they have a parametric and a nonparametric
component. They can be a suitable choice when one suspects that the response y linearly depends on X , but that it is
nonlinearly related to X .

The condition number is a measure of the presence of multicollinearity. The condition number of the matrix X
presents some information about the existence of multicollinearity, however it does not illustrate the structure of the
linear dependency among the column vectors X1, X2, . . . , Xn. The best way of illustrating the existence and structure of
multicollinearity is to see the eigenvalues of X ′X . If X ′X is ill-conditioned with a large condition number a Liu regression
estimator can be used to estimate β (see e.g. [1–7]). In this paper, we will examine a biased estimation techniques to be
followed when the matrix X ′X appears to be ill-conditioned in the partial linear model. We suppose that the condition
number of the parametric component is large explains that a biased estimation procedure is desirable.

In this paper, a restricted difference-based estimator is presented for the vector parameter β in the partially linearmodel
when the linear nonstochastic constraint is assumed to hold. We also examine the properties of the proposed estimator.

The rest of the paper is organized as follows: the restricted difference-based Liu estimator is defined in Section 2 and
the properties of the proposed estimator are discussed in Section 3. The performance of the new estimator is evaluated by
a simulation study in Section 4 and some conclusions are given in Section 5.

2. Profile least-squares estimator

In this section we will propose the restricted difference-based Liu estimator in partially linear model.

2.1. Difference-based estimator

Let d = (d0, . . . , dm) be a m + 1 vector, where m is the order of differencing and d0, . . . , dm are differencing weights
satisfying the conditions

m
j=0

dj = 0,
m
j=0

d2j = 1. (3)

Moreover, for k = 1, . . . ,m let ck =
m+1−k

i=1 didi+k. Now, we denote the (n−m)×n differencing matrix Dwhose elements
satisfy Eq. (3) as follows:

D =



d0 d1 · · · dm 0 0 · · · 0
0 d0 d1 · · · dm 0 · · · 0
· · · · · ·

· · · · · ·

· · · · · ·

0 0 · · · d1 · · · dm 0 0
0 0 · · · d0 d1 · · · dm 0
0 0 · · · 0 d0 d1 · · · dm


. (4)

This and related matrices are given, for example, in [8]. Then we can use the differencing matrix to model (2), and this leads
to direct estimation of the parametric effect. In particular, take

Dy = DXβ + Df (t) + Dϵ. (5)

Since the data have been reordered so that the X ′s are close, the application of the differencing matrix D in model (3) can
remove the nonparametric effect in large samples [8]. This ignores the presence of Df (t). Thus, we may write Eq. (7) as

Dy .
= DXβ + Dε (6)

or y .
= Xβ +ε (7)

wherey = Dy,X = DX andε = Dε.
For arbitrary differencing coefficients satisfying Eq. (6), Yatchew [9] defines a simple differencing estimator of the

parameter β in a partial linear model

β̂ = (X ′X)−1X ′y. (8)

In order to account for the parameter β in Eq. (3), we propose the modified estimator of σ 2, defined as

σ̂ 2
=

y′(I − P)y
tr(D′(I − P)D)

(9)

where P is the projection matrix and defined as

P = X(X ′X)−1X ′. (10)
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2.2. Restricted difference-based Liu estimator

In this subsection, we will propose the restricted difference-based Liu estimator when the matrix X ′X appears to be
ill-conditioned.

In order to overcome this problem, one method is to consider biased estimator, such as, Duran et al. [4] proposed a
difference-based Liu estimator which is defined as

β̂(d) = (X ′X + I)−1(X ′y + dβ̂), 0 < d < 1. (11)

Alternativemethod to combat themulticollinearity is to consider restrictions for the parametric components. As pointed
by Rao et al. [10], some prior informationmay improve the efficiency of the estimator, nowwe consider the linear restriction

Hβ = h. (12)

For a given k× pmatrix H and a given k× 1 known vector h. Combining the method of the Liu [1], models (2) and (7), using
the Lagrange method, we can propose a restricted difference-based Liu estimator which is defined as

β̂H(d) = β̂(d) − (X̃ ′X̃ + I)−1H ′


H(X̃ ′X̃ + I)−1H ′

−1 
Hβ̂(d) − h


. (13)

The estimator β̂H(d) is called restricted difference-based Liu estimator. When the errors are correlated, Akdeniz et al. [5]
proposed this estimator (13) and they also discuss the small sample of this estimator (13). In this paper we mainly discuss
the asymptotic properties of this estimator. When d = 1, then the restricted difference-based Liu estimator becomes the
restricted difference-based estimator

β̂H = β̂ − (X̃ ′X̃)−1H ′


H(X̃ ′X̃)−1H ′

−1 
Hβ̂ − h


. (14)

In the next section we will give the asymptotic normality of the new estimator β̂H(d).

3. Properties of the new estimator

In order to present the properties of the new estimator we firstly present some assumptions and lemmas.

Definition 1. Define the Lipschitz ball Λα(M) in the usual way

Λα(M) = {g : for all 0 ≤ x, y ≤ 1, k = 0, . . . , ⌊α⌋ − 1,

|g(k)(x)| ≤ M, and |g(⌊α⌋)(x) − g(⌊α⌋)(y)| ≤ M|X − Y |
α′

} (15)

where ⌊α⌋ is the largest integer less than α and α′
= α − ⌊α⌋.

Assumptions 1. In this paper, we always assume that f ∈ Λα(M).

Assumptions 2. Let ck =
m+1−k

i=1 didi+k, k = 1, . . . ,m, then we have c2k = O(m−1) as m → ∞.

Lemma 1. Suppose that α > 0, m → ∞, m/n → 0 and Assumptions 1–2 are satisfied, then the estimator β̂ given in (8) is
asymptotically normal, i.e.

√
n(β̂ − β) −→

L N

0, σ 2Σ−1

X


(16)

where Σ−1
X is the non-singular covariance matrix of X ′X, −→

L denotes convergence in distribution.

Proof. See [11].

Theorem 1. Suppose that α > 0, m → ∞, m/n → 0 and Assumptions 1–2 are satisfied, then the estimator β̂(d) given in (11) is
asymptotically normal, i.e.

√
n


β̂(d) − β


−→

L N

0, σ 2Σ−1

X


. (17)

Proof. By (11), we obtain

β̂(d) − β = (X̃ ′X̃ + I)−1(X̃ ′Ỹ + dβ̂) − β

= (X̃ ′X̃ + I)−1(X̃ ′X̃ + dI)(β̂ − β) + (d − 1)(X̃ ′X̃ + I)−1β. (18)

Then
√
n


β̂(d) − β


= (X̃ ′X̃ + I)−1(X̃ ′X̃ + dI)

√
n(β̂ − β) + (d − 1)

√
n(X̃ ′X̃ + I)−1β. (19)
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It is easy to prove that

1
n
(X̃ ′X̃ + I)−1

−→
p Σ−1

X (20)

1
n
(X̃ ′X̃ + dI) −→

p ΣX (21)

(1 − d)
√
n(X̃ ′X̃ + I)β = Op(n−1/2) (22)

where −→
p denotes convergence in probability. By Lemma 1 and (19)–(22), we have

(X̃ ′X̃ + I)−1(X̃ ′X̃ + dI)Σ−1
X (X̃ ′X̃ + dI)(X̃ ′X̃ + I)−1

= Σ−1
X . (23)

Then by the Slutsky theorem, (19) and (23), we obtain
√
n


β̂(d) − β


−→

L N

0, σ 2Σ−1

X


. (24)

Theorem 2. Suppose that α > 0, m → ∞, m/n → 0 and Assumptions 1–2 are satisfied, then the estimator β̂H(d) given
in (13) is asymptotically normal, i.e.

√
n


β̂H(d) − β


−→

L N(0, σ 2Ω) (25)

where Ω = Σ−1
X − Σ−1

X H ′

HΣ−1

X H ′
−1

HΣ−1
X .

Proof. By (13), we obtain

β̂H(d) − β = β̂(d) − (X̃ ′X̃ + I)−1H ′


H(X̃ ′X̃ + I)−1H ′

−1 
Hβ̂(d) − h


− β

=


β̂(d) − β


− (X̃ ′X̃ + I)−1H ′


H(X̃ ′X̃ + I)−1H ′

−1 
Hβ̂(d) − Hβ + Hβ − h


=


I − (X̃ ′X̃ + I)−1H ′


H(X̃ ′X̃ + I)−1H ′

−1
H

 
β̂(d) − β


. (26)

By (24)–(26) we have

(X̃ ′X̃ + I)−1H ′


H(X̃ ′X̃ + I)−1H ′

−1
H −→

p Σ−1
X H ′


HΣ−1

X H ′
−1

H. (27)

Thus by Theorem 1 and (27), we have
I − Σ−1

X H ′

HΣ−1

X H ′
−1

H

Σ−1

X


I − Σ−1

X H ′

HΣ−1

X H ′
−1

H
′

= Ω (28)

where Ω = Σ−1
X − Σ−1

X H ′

HΣ−1

X H ′
−1

HΣ−1
X . Then by (26)–(28) and the Slutsky theorem, we obtain

√
n


β̂H(d) − β


−→

L N(0, σ 2Ω). (29)

Remark 1. Compared the asymptotic covariancematrices of β̂H(d) and β̂(d), we note that:Σ−1
X −Ω = Σ−1

X H ′

HΣ−1

X H ′
−1

HΣ−1
X is a positive definite matrix. That is to say when the linear restrictions (12) are assumed to hold, the restricted

difference-based Liu estimator β̂H(d) is more efficient than the difference-based Liu estimator β̂(d).

4. Simulation study

In order to show the performance of the proposed estimator. Following McDonald and Galarneau [12], the explanatory
variables are generated using the following device:

xij = (1 − γ 2)zij + γ zi(p+1), i = 1, . . . , n, j = 1, . . . , p

where zij and zi(p+1) present independent standard normal pseudo-randomnumbers and γ is specified so that the correlation
between any two explanatory variables is given by γ 2.

And observations on the dependent variable are then produced by

yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + f (ti) + εi, εi ∼ N(0, σ 2)
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Table 1
The estimated SMSE of the estimators when γ = 0.9 andm = 4.

n β̂ β̂(d) β̂H β̂H (d)

n = 100 0.0718 0.0712 0.0235 0.0233
n = 200 0.0444 0.0443 0.0138 0.0137
n = 400 0.0212 0.0211 0.0072 0.0071

Table 2
The estimated SMSE of the estimators when γ = 0.99 andm = 4.

n β̂ β̂(d) β̂H β̂H (d)

n = 100 0.9138 0.8320 0.3477 0.3203
n = 200 0.4110 0.3923 0.1517 0.1443
n = 400 0.2012 0.1966 0.0635 0.0622

Table 3
The estimated SMSE of the estimators when γ = 0.999 andm = 4.

n β̂ β̂(d) β̂H β̂H (d)

n = 100 8.1494 5.7412 2.4472 1.7466
n = 200 4.1384 3.2039 1.3038 1.0336
n = 400 2.0152 1.6964 0.6942 0.5789

where

f (ti) = 1 + 4

e−550(ti−0.2)2

+ e−200(ti−0.5)2
+ e−950(ti−0.8)2


is called the Doppler function for ti = (i − 0.5)/n, i = 1, . . . , n.

In this paper we consider n = 100, 200, 400, m = 4, 6, 25, 50, p = 4, σ 2
= 0.5, γ = 0.9, 0.99, 0.999. And we consider

the following linear restrictions

H =


1 −1 0 0
0 1 −1 0


(30)

and

h =


0
0


. (31)

In this section, we use the method that proposed in this paper to estimate β , that is using differencing procedure
to estimate β . For example, a fourth-order differencing coefficients, d0 = 0.8873, d1 = −0.3099, d2 = −0.2464,
d3 = −0.1901, d4 = −0.1409 in which case m = 4. Now we denote a (n − 4) × n differencing matrix as

D =


0.8873 −0.3099 · · · −0.1409 0 · · · 0

0 0.8873 −0.3099 · · · 0 · · · 0
. .
. .
. .
0 0 · · · 0 0 · · · −0.1409

 (32)

whenm = 6, 25, 50, the differencing coefficients we can see [8]. The simulation is replicated 2000 times by generating new
random numbers and the simulated scalar mean squared error (SMSE) values of the estimator are calculated respectively
as follows

SMSE(β̃r) =

2000
r=1

(β̃r − β)′(β̃r − β)

2000
(33)

where β̃r is any estimator considered in the study in the ith replication.
From Tables 1 to 4, we summarize our findings as follows. As the sample size increases, the SMSE of all the estimators

decreases. For all the cases, the SMSEs increase with the increase in γ . The difference-based estimator β̂ performs the worst
among all estimators in terms of SMSE, and the new estimator β̂H(d) performs better than the β̂ , β̂(d) and β̂H .
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Table 4
The estimated SMSE of the estimators when γ = 0.999 and n = 400.

n β̂ β̂(d) β̂H β̂H (d)

m = 6 1.9755 1.6669 0.6679 0.5631
m = 25 2.0114 1.6330 0.6798 0.5572
m = 50 2.2151 1.7685 0.7624 0.6256

5. Conclusions

In this paper, we proposed a restricted difference-based Liu estimator when some additional linear restrictions are
supposed to hold on the parametric component. And then we discuss the asymptotic properties of the new estimator.

Acknowledgments

The authors would like to thank the anonymous referee and the Associate Editor for their constructed suggestions which
significantly improved the presentation of the article. This work was supported by the National Natural Science Foundation
of China (No. 11501072), the Scientific and Technological Research Program of ChongqingMunicipal Education Commission
(No. KJ1501114), and the Natural Science Foundation Project of CQ CSTC (cstc2015jcyjA00001).

References

[1] K.J. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory Methods 22 (2) (1993) 393–402.
[2] F. Akdeniz, E. Akdeniz Duran, Liu-type estimator in semiparametric regression model, J. Stat. Comput. Simul. 80 (2010) 853–871.
[3] E.A. Duran, F. Akdeniz, H.C. Hu, Efficiency a Liu-type estimator in semiparametic regression models, J. Comput. Appl. Math. 235 (2011) 1418–1428.
[4] E.A. Duran, W.K. Hardle, M. Osipenko, Difference based ridge and Liu type estimators in semiparametric regression models, J. Multivariate Anal. 105

(2012) 164–175.
[5] F. Akdeniz, Akdeniz Duran, M. Roozbeh, M. Arshi, Efficiency of the generalized differencebased Liu estimators in semiparametric regression models

with correlated errors, J. Stat. Comput. Simul. 85 (2015) 147–165.
[6] J.B. Wu, The relative efficiency of Liu-type estimator in a partially linear model, Appl. Math. Comput. 243 (2014) 349–357.
[7] J.B. Wu, Improved Liu-type estimator in partial linear model, Int. J. Comput. Math. (2015) 1–13.
[8] A. Yatchew, Semiparametric Regression for the Applied Econometrican, Cambridge University Press, Cambridge, 2003, p. 123.
[9] A. Yatchew, An elemantary estimator of the partial linear model, Econom. Lett. 57 (1997) 135–143. Additional examples contained in Econom. Lett.

59 (1998) 403–405.
[10] C.R. Rao, H. Toutenburg, Shalabh, C. Heumann, Linear Models: Least Squares and Alternatives, Springer, Berlin, 2008.
[11] L. Wang, L.D. Brown, T.T. Cai, A difference-based approach to the semiparametric partial linear model, Electron. J. Stat. 5 (2011) 619–641.
[12] G.C. McDonald, D.I. Galarneau, A Monte Carlo evaluation of ridge-type estimators, J. Amer. Statist. Assoc. 70 (1975) 407–416.

http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref1
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref2
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref3
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref4
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref5
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref6
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref7
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref8
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref9
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref10
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref11
http://refhub.elsevier.com/S0377-0427(15)00635-4/sbref12

	Restricted difference-based Liu estimator in partially linear model
	Introduction
	Profile least-squares estimator
	Difference-based estimator
	Restricted difference-based Liu estimator

	Properties of the new estimator
	Simulation study
	Conclusions
	Acknowledgments
	References


