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a b s t r a c t

In this paper, we present some reduced basis methods for elliptic PDEswith parameterized
inputs. In the framework of Galerkin projection, dimension reduction techniques are used
to construct a reduced order model. If the PDEs have multiscale structures, multiscale
finite element method (MsFEM) is one of the efficient approaches to numerically solve
the equations. When the inputs of the PDEs are parameterized by a few parameters, the
MsFE basis functions usually depend on the parameters. This impacts on the computation
efficiency. In order to get the multiscale basis functions independent of parameters, we
can build multiscale basis functions based on a set of samples in the parameter space. This
will result in a high dimensional MsFE space for approximation and bring great challenge
for simulation. To treat this difficulty, we use some optimal strategies to identify a set
of optimal reduced basis functions from the high dimensional MsFE space and obtain a
reduced ordermultiscalemodel.We consider three optimal strategies formodel reduction:
cross-validation method, greedy algorithm and proper orthogonal decomposition. The
dimension of the space spanned by the set of reduced basis functions is much smaller
than the dimension of the original full order model. An offline–online computational
decomposition is achieved in the reducedmultiscale basismethods to significantly improve
computation efficiency. Careful comparison is addressed for the reduced basis methods
using different optimization strategies. A few numerical results are presented to illustrate
the efficacy of the reduced basis methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The inputs in many fundamental models have a wide range of length scales. The typical examples include the subsurface
flowmodels in heterogeneous porous media and heat conduction models in composite materials. These model inputs often
contain some uncertainties because of no enough knowledge about the physical properties and measurement noise. To
get a computational model, the uncertainties in the model inputs are usually parameterized by a few random variables.
Thus, these models can be described by parameterized PDEs (PPDEs). It is crucial to efficiently and accurately solving the
associated PPDEs to predict themodel’s outputs and estimate themodel’s parameters. Both themultiple physical scales and
the random parameters have great influence on the model. It may be computationally expensive to simulate these models
in traditional methods. The interest in developing efficient multiscale methods and model reduction methods the PPDEs
have been gotten much attention in recent years (Refs. [1–5]).
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Fig. 1.1. Schema of reduced multiscale basis method.

There have many multiscale methods in the last decade (e.g., [6–9,2,10–13]). Multiscale Finite Element Method
(MsFEM) [12] is one of the pioneer multiscale methods and many other multiscale share its similarity. The basic idea of
MsFEM is to incorporate the small-scale information to multiscale basis functions and capture the impact of small-scale
features on the coarse-scale through a variational formulation. One of the most important features for MsFEM is that
the multiscale basis functions can be computed overhead and used repeatedly for the model with different source terms,
boundary conditions and the coefficients with similar multiscale structures [10].

In this work, we focus on the multiscale basis functions in MsFEM and present reduced multiscale basis methods to
solve parameterized elliptic PDEs with multiscale diffusion coefficients. Reduced basis (RB) method is one of model order
reduction methods and has been used to solve PPDEs in a low-dimensional manifold [14–16,4,17,5]. The main idea of the
RB method is to identify a small set of basis functions, which are constructed by a set of snapshots. The snapshots are the
solutions of PPDEs corresponding to a set of parameter samples judiciously selected by some sampling strategies. The RB
method depends on a projection onto the low-dimensional space, which is spanned by the small set of basis functions. It
uses an offline–online computational decomposition to improve efficiency. In offline stage, snapshots are computed and
reduced basis functions are generated. In online stage, a reduced model is solved for many instances of parameters, which
are required to estimate the influence of the uncertainty.

For the RB method, we can use traditional finite element methods in a fine grid to get accurate snapshots. For multiscale
models, the computation of the snapshots may be quite expensive because we have to use a very fine mesh to resolve all
scales of the model for many snapshots. To this end, we use MsFEM on a coarse grid to compute snapshots and develop
reduced multiscale basis methods. To get a set of optimal reduced basis functions from the snapshots, we use three
strategies: cross-validationmethod, greedy algorithm and proper orthogonal decomposition (POD). In both cross-validation
method and greedy algorithm, basis functions are generated by an incremental constructive manner. In cross-validation
method, we search optimal snapshots or samples for basis construction such that an average error is minimal. The greedy
algorithm shares the sophisticated concept from Kolmogorov n-width approximation [18]. It identifies the parameters for
basis by worst approximation error of the best n-dimensional subspace. POD is to find a low rank approximation to the
space spanned by snapshots. We use the three approaches to generate reduced basis. A reduced order model is constructed
by projecting the full order model to the space of reduced basis. Fig. 1.1 describes the schema to get the reduced order
model using the presented reduced basis method. A careful comparison is performed for the three approaches using FEM
and MsFEM. We find that the cross validation method is a straightforward approach and leads to best approximation in the
three approaches. In the RB methods, the offline–online computation decomposition is desirable when the model inputs
(e.g., coefficients and sources) affinely depend on parameter variables. If the inputs are not affine with respect to the
parameter variables, we utilize Empirical Interpolation Method (EIM) [19] to get an affine approximation for the inputs.
In the reduced multiscale basis methods, the multiscale basis equations are solved in each coarse block independently. To
improve the MsFEM approximation, we use some limited global information to construct MsFE basis functions, and this is
particularly useful for the multiscale models in highly heterogeneous porous media [11,13].

The paper is structured as follows. In the next section, we present some preliminaries and notations for the paper. In
Section 3, we present a general procedure for reduced basis methods and introduce a sampling strategy for RB methods:
cross-validation method. Section 4 is devoted to presenting the reduced multiscale basis methods. In Section 5, we
present three approaches used for constructing the optimal reduced basis: cross-validation, greedy algorithm and POD.
The Empirical Interpolation Method is also presented in Section 5. In Section 6, some numerical examples are provided to
illustrate the performance of the reduced multiscale basis methods. In the last section, we make some conclusions.
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2. Preliminaries and notations

In this section, we present some preliminaries and notations for the rest of paper. Let L2(D) be the space of square
integrable functions over D, and the usual Sobolev space H1

0 (D) = {v ∈ L2(D),∇v ∈ [L2(D)]d, v|∂D = 0}. For a simplicity
of notation, we denote H1

0 (D) by X . It is well-known that the L2(D) is an inner product space with the inner product (·, ·),
which induces the L2-norm ∥ · ∥. Let (·, ·)H be the inner product for H1

0 (D) and induce the norm ∥ · ∥
2
1,D = (·, ·)H .

In the paper, we consider parameterized elliptic PDEs. For simplicity of presentation, we assume that the parameterized
elliptic PDEs can be formulated as the following weak form: find u(µ) ∈ X such that

a

u(µ), v;µ


= l(v;µ), ∀v ∈ X, (2.1)

where a(·, ·;µ) : X ×X −→ R is a symmetric bilinear form for any parameterµ ∈ Ω ⊂ Rp, and l(·;µ) be a bounded linear
functional over X for any µ ∈ Ω . We define an energy inner product by

(w, v;µ)E := a(w, v;µ), ∀w, v ∈ X .

The energy norm by ∥w∥
2
E = (w,w;µ)E .

We consider the problem: givenµ ∈ Ω ⊂ Rp, evaluate the output G(µ) of the model (2.1), where G(µ) ∈ R and is given
by

G(µ) = L

u(µ)


, (2.2)

where L is a bounded linear functional over X . For well-posedness of (2.1), we assume that a(·, ·;µ) is continuous and
coercive over X for allµ ∈ Ω . Furthermore, we assume that both the parametric bilinear form a(·, ·;µ) and the parametric
linear form l(·;µ) are affine with respect to µ, i.e.,

a(w, v;µ) =

ma
i=1

ki(µ)ai(w, v), ∀w, v ∈ X, ∀µ ∈ Ω,

l(v;µ) =

ml
i=1

f i(µ)li(v), ∀v ∈ X, ∀µ ∈ Ω.

(2.3)

In the above, for i = 1, . . . ,ma, each ki : Ω −→ R is a µ-dependent function and each ai : X × X −→ R is a symmetric
bilinear form independent of µ. For i = 1, . . . ,ml, each f i : Ω −→ R is a µ-dependent function and each li : X −→ R
is continuous functional independent of µ. The affine assumption (2.3) is crucial to fulfill an offline–online computation
decomposition for a many-query to model’s outputs. When a(·, ·;µ) and l(·;µ) are not affine with regard to µ, we can use
an Empirical Interpolation Method (EIM) such that a(·, ·;µ) and l(·;µ) can be approximated by an affine representation.
The EIM will be discussed in Section 5.4.

LetΞtrain be a training set, which is a collection of a finite number of samples inΩ . Typically the training set is chosen by
Monte Carlo methods. We require that the samples in Ξtrain are sufficiently scattered in the domainΩ . |Ξtrain| denotes the
cardinality of the setΞtrain.

3. Reduced basis method

We follow the framework [20,17,5] to present a general reduced basis method in this section.
Let Xh be a given finite element (FE) space in a fine grid and dim(Xh) = Nf . Then the FE discretization of problem

(2.2)–(2.1) is as follows: given any µ ∈ Ω , evaluate

Gh(µ) = L

uh(µ)


,

where uh(µ) ∈ Xh satisfies

a

uh(µ), v;µ


= l(v;µ), ∀v ∈ Xh. (3.4)

We can now define an inner product and a norm for the space X , (refer to [5]) for a given µ̄ and a positive τ as follows,

(w, v)X := (w, v; µ̄)E + τ(w, v), ∀w, v ∈ X,

and

∥w∥
2
X := (w,w)X , ∀w ∈ X .

We can show the following norm equivalence between ∥ · ∥X and ∥ · ∥1,D, i.e., there exist α0 > 0 and γ0 > 0 such that

α0∥w∥1,D ≤ ∥w∥X ≤ γ0∥w∥1,D.
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Consequently, the bilinear form a(·, ·;µ) is continuous and coercive in space (X, ∥ · ∥X ) for allµ ∈ Ω , i.e., there exist γ > 0
and α > 0 such that for any µ ∈ Ω ,

a(w, v;µ) ≤ γ (µ)∥w∥X∥v∥X , ∀w, v ∈ X, ∀µ ∈ Ω,

a(v, v;µ) ≥ α(µ)∥v∥2
X , ∀v ∈ X, ∀µ ∈ Ω. (3.5)

Let {Xn
h }

N
n=1 be sequence of finite dimensional spaces satisfying

X1
h ⊂ X2

h ⊂ · · · ⊂ XN
h ⊂ Xh.

The RB method is devoted to approximating the solution u(µ) of the parameter dependent problem (2.1) by a few pre-
computed solutions u(µn) of (3.4) for some selected parameter values µn, n = 1, . . . ,N . Let

F = {u(µ) ∈ Xh : µ ∈ Ω}.

To assess the optimality of the approximation space Xn
h with dimension n (n = 1, . . . ,N), it is natural to compare this

space with the best n-dimensional subspace spanned by elements of F , which minimizes a projection error for F over all
n-dimensional subspaces spanned by some elements of F . The minimal error is given by the Kolmogorov width [14,18,21]

dn(Yn,F ) := inf{E(F ; Yn) : Yn is a n-dimensional subspace of X},

where E(F ; Yn) is the angle betweenF and Yn.We construct a finite dimensional space, which is spanned by some elements
of F with good approximation properties. The procedure is described as follows,

• X1
h = argmin Y1⊂X

dim Y1=1
dn(Y1,F ),

• Assume that XN−1
h have been constructed, XN

h = argmin XN−1
h ⊂YN⊂X
dim YN=N

dn(YN ,F ).

Thus we get a sequence of RB approximation spaces {Xn
h }

N
n=1 and a set of basis function {ϕn : 1 ≤ n ≤ N}. To obtain a set

of (·, ·)X -orthonormal basis functions, we apply POD to the set {ϕn : 1 ≤ n ≤ N} in the (·, ·)X inner product. We denote the
set of orthonormal basis functions by

{ψi : 1 ≤ i ≤ N},

which spans the same space as span{u(µn) ∈ Xh : 1 ≤ n ≤ N}. If the support of each basis functionψi (i = 1, . . . ,N) is the
whole spatial domain D̄, then we call the RB method to be reduced global basis method.

3.1. Galerkin projection and offline–online computation

Now we consider the reduced order model and evaluate its output. Given µ ∈ Ω , we evaluate

GN
h (µ) = L(uN

h (µ)),

where uN
h (µ) ∈ XN

h ⊂ Xh satisfies

a(uN
h (µ), v;µ) = l(v;µ), ∀v ∈ XN

h . (3.6)

Because {ψi}
N
i=1 is the set of basis functions for the reduced order model (3.6), the solution uN

h (µ) can be represented by

uN
h (µ) =

N
i=1

uN
i (µ)ψi.

By plugging v = ψj into (3.6), we have

N
i=1

a(ψi, ψj;µ)uN
i (µ) = l(ψj;µ), 1 ≤ i, j ≤ N. (3.7)

Then we can evaluate output of the reduced order model by

GN
h (µ) =

N
i=1

uN
i (µ)L(ψi;µ).

Eq. (3.7) implies a linear algebraic system with N unknowns. The stiffness matrix and the load vector from Eq. (3.7)
involve the computation of inner products with entities ψi, 1 ≤ i ≤ N , each of which is represented by Nf finite element
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basis functions of Xh. This will lead to substantial computation for uN
h (µ), and themarginal cost per input–output evaluation

µ −→ GN
h (µ) is expensive. If the assumption (2.3) of affine decomposition holds, then Eq. (3.7) can be rewritten by

N
i=1


ma
q=1

kq(µ)aq(ψi, ψj)uN
i (µ)


=

ml
q=1

f q(µ)lq(ψj), 1 ≤ j ≤ N. (3.8)

This gives rise to the matrix form
ma
q=1

kq(µ)Aq
Nh


uN(µ) =

mf
q=1

f q(µ)FqNh, (3.9)

where

(Aq
Nh)ij = aq(ψi, ψj), (FqNh)j = lq(ψj), 1 ≤ i, j ≤ N.

Let {ξk}
Nf
k=1 be the FE basis of Xh. Because basis function ψi belongs to the FE space Xh, it can be written as

ψi =

Nf
k=1

Zikξk, 1 ≤ i ≤ N.

Let (Z)ki = Zki, 1 ≤ i ≤ N . Thus Z ∈ RNf ×N , and we get

Aq
Nh = ZTA

q
Nf

Z, FqNh = ZTF
q
Nf
,

where (Aq
Nf
)ij = aq(ξj, ξi) and (F

q
Nf
)i = l(ξi). The matrixes Aq

Nh and the vectors FqNh are independent of parameter µ, and
their computation is once and in offline phase. The online computation is to solve Eq. (3.9) for any µ ∈ Ω . Because the
online computation only involves N unknowns (N ≪ Nf ), this is efficient.

3.2. Cross-validation for sampling reduced basis

Greedy algorithm and POD have been utilized to find a set of optimal reduced basis functions [20,17,5]. In this section,
we will introduce a cross-validation (CV) method to identify the samples from training set to construct reduced basis.

In the CVmethod,we use two of sample sets: training setΞtrain and validation setΞvalidate. The setΞtrain is used to train the
model, and the set Ξvalidate is used to evaluate the performance of the reduced order model. We choose |Ξvalidate| > |Ξtrain|

and Ξvalidate ⊃ Ξtrain. ε∗ is a chosen tolerance for the stopping criterion of the sampling. The CV method is described in
Algorithm 1 for the sampling reduced basis. The CV method is a straightforward approach. Our numerical experiments
show that CVmethod gives the reduced surrogate model more accurate than reduced order model by greedy algorithm and
POD.

If we use finite element methods in a fine grid to compute snapshots and use greedy algorithm, POD and CV method to
identify optimal reduced basis, the support of the reduced basis functions is the whole spatial domain. Thus the resultant
RB method is a reduced global basis method.

4. Reduced multiscale basis method

4.1. Multiscale FEM space

In the reduced basis method, we need to compute a set of snapshots {u(µn)}Nn=1 to construct reduced basis. These
snapshots can be computed by traditional finite element methods in a fine grid. If the snapshots have strong multiscale
features, then we have to use a very fine mesh to resolve the features in all scales. This computation may be very expensive.
To overcome the difficulty, we can usemultiscale finite element method (MsFEM) to compute the snapshots. In this section,
we briefly present MsFEM and the reduced MsFEM.

Let K be a coarse partition of D and the representative coarse element K ∈ K . Let {xi}
Nc
i=1 be the interior nodes of the

coarse mesh K . In each element K ∈ K , we define a set of nodal basis {φK
i }

d
i=1, where d is the number of nodes of the

coarse element. We usually use the leading order term of the differential operator to build multiscale basis equations. For
simplicity, we still use the notation a(·, ·;µ) to denote the bilinear functional associated with the leading order term of the
elliptic PDE. Then the multiscale basis function φK

i with support K solves the equation
a(φK

i (x, µ), v;µ) = l(v;µ), ∀v ∈ H1
0 (K),

φK
i (x, µ) = gi(x, µ̄) on ∂K ,

(4.10)

where µ̄ is themean of the randomparameterµ. In themultiscale basis equation,we use gi as limited global information [10,
11], which is obtained by linearly scaling the solution of (3.4) with parameter value µ̄. For the standard MsFEM introduced
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Input: A train setΞtrain ⊂ Ω , a validating setΞvalidate ⊂ Ω , a tolerance ε∗

Output: SN and XN
h

1: Initialization: for ∀µ ∈ Ξtrain, e1,µ(µv) = uh(µv)− u1,µ
h (µv),

-where u1,µ
h (µv) solves (3.6) ∀v ∈ X1,µ

h , and X1,µ
h = span{uh(µ)};

2: error1mean(µ) = meanµv∈Ξvalidate∥e
1,µ(µv)∥L2;

3: µ1
= argminµ∈Ξtrain error

1
mean(µ);

4: X1
h = span{uh(µ

1)}, S1 = {µ1
};

5: ε1 = maxµ∈Ξtrain error
1
mean(µ);

6: Ξtrain = Ξtrain \ µ1
;

7: N = 1;

8: while εN ≤ ε∗

9: N = N + 1;

10: for ∀µ ∈ Ξtrain, eN,µ(µv) = uh(µv)− uN,µ
h (µv);

-where uN,µ
h (µ) solves (3.6) ∀v ∈ XN,µ

h , and XN,µ
h = XN−1

h


span{uh(µ)};

11: errorNmean(µ) = meanµv∈Ξvalidate∥e
N,µ(µv)∥L2;

12: µN
= argminµ∈Ξtrain error

N
mean(µ);

13: XN
h = XN−1

h


span{uh(µ
N)}, SN = SN−1


{µN

};

14: εN = maxµ∈Ξtrain error
N
mean(µ);

15: Ξtrain = Ξtrain \ SN;

16: end while

Algorithm 1: The algorithm of cross-validation method for reduced global basis.

in [10], we take l(v;µ) = 0 in themultiscale basis Eq. (4.10).We can straightforwardly extend the local basis functions {φK
i }

to the whole domain D and denote them by {φi}
Nc
i=1, where ‘i’ is a global subscript. Here the superscript K will be suppressed

for simplicity of notation.
The reduced multiscale basis method is devoted to approximating the solution u(µ) of the problem (2.1) by a set of pre-

computed basis functions {φi(µ
n) : i = 1, . . . ,Nc, n = 1, . . . ,N} for some selected parameter values {µn

}
N
n=1. Let X

N
H be

an (N × Nc)-dimensional subspace of X . We define

M(D) := {φi(µ) ∈ Xh : 1 ≤ i ≤ Nc, µ ∈ Ω}.

To assess approximation property, it is natural to compare the subspace XN
H with the best N × Nc-dimensional subspace

spanned by some elements of M(D), which minimizes the projection error for the M(D) over all N × Nc-dimensional
subspaces of X. This minimal error is given by the Kolmogorov width

dN×Nc (YN×Nc ,F ) := inf{E(F ; YN×Nc ) : YN×Nc is an N × Nc-dimensional subspace of X},

where E(F ; YN×Nc ) is the angle between F and YN×Nc under a metric. For example, E(F ; YN×Nc ) := supu∈F ∥u− PYN×Nc
u∥X

for greedy algorithm. Here PYN×Nc
denotes a projection operator onto YN×Nc . We construct a finite dimensional space, which

is spanned by elements of M(D)with good approximation. The procedure is described as follows:

• X1
H = argmin Y1×Nc ⊂X

dim Y1×Nc =Nc
dn(Y1×Nc ,F ),

• Assume that XN−1
H have been constructed, XN

H = argmin XN−1
H ⊂YN×Nc ⊂X

dim YN×Nc =N×Nc

dn(YN×Nc ,F ).
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Thus we get a sequence of reduced multiscale approximation spaces:
X1
H ⊂ X2

H ⊂, . . . ,⊂ XN
H ⊂ Xh,

and a set of basis function {ϕi
n : 1 ≤ i ≤ Nc, 1 ≤ n ≤ N}. To obtain a set of (·, ·)X -orthonormal basis functions, we apply

POD to the set {ϕi
n : 1 ≤ i ≤ Nc, 1 ≤ n ≤ N} in the (·, ·)X inner product. We denote the set of orthonormal basis functions

by:
{ψi : 1 ≤ i ≤ Nc × N}, (4.11)

which spans the same space as span{φi
n : 1 ≤ i ≤ Nc, 1 ≤ n ≤ N}. We note that the support of each basis function ψi in

(4.11) is on a coarse block. So the reduced basis functions are local basis functions.
We can use the reduced multiscale basis method and Galerkin projection to get a reduced model. Let uN

H(µ) ∈ XN
H ⊂ Xh

solve

a(uN
H(µ), v;µ) = l(v;µ), ∀v ∈ XN

H . (4.12)
Given µ ∈ Ω , we evaluate

GN
H(µ) = L(uN

H(µ)).

Because {ψi}
Nc×N
i=1 is the set of basis functions for the reduced order model (4.12), the solution uN

H(µ) can be represented
by

uN
H(µ) =

Nc×N
i=1

uN
i (µ)ψi. (4.13)

By plugging v = ψj, 1 ≤ j ≤ Nc × N into (4.12), we have

Nc×N
i=1

a(ψi, ψj;µ)uN
i (µ) = l(ψj;µ), 1 ≤ i, j ≤ Nc × N. (4.14)

Then we can evaluate the output of the model by

GN
H(µ) =

Nc×N
i=1

uN
i (µ)L(ψi;µ).

4.2. Offline–online computation decomposition for reduced multiscale basis method

Eq. (4.14) implies a linear algebraic system with N × Nc unknowns. The stiffness matrix and the load vector from Eq.
(4.14) involve the computation of inner products with entities ψi, 1 ≤ i ≤ N × Nc , each of which is represented by Nf

finite element basis functions of Xh. This will lead to substantial computation for uN
h (µ), and the input–output evaluation

µ −→ GN
H(µ) is expensive. If the assumption (2.3) of affine decomposition holds, then Eq. (4.14) can be rewritten by

N×Nc
i=1


ma
q=1

kq(µ)aq(ψi, ψj)uN
i (µ)


=

ml
q=1

f q(µ)lq(ψj), 1 ≤ j ≤ N × Nc .

This gives rise to the matrix form
ma
q=1

kq(µ)Aq
N


uN(µ) =

ml
q=1

f q(µ)FqN , (4.15)

where
(Aq

N)ij = aq(ψi, ψj), (FqN)j = lq(ψj), 1 ≤ i, j ≤ N × Nc .

Because basis function ψi belongs to the FE space Xh, it can be written as

ψi =

Nf
k=1

Zikξk, 1 ≤ i ≤ N × Nc .

Let (Z)ki = Zki, 1 ≤ N ≤ N . Then Z ∈ RNf ×(N×Nc ) and we can get
Aq
N = ZTA

q
Nf

Z, FqN = ZTF
q
Nf
,

where (Aq
Nf
)ij = aq(ξj, ξi), (F

q
Nf
)i = l(ξi). The matrixes A

q
Nf

and the vectors F
q
Nf

are independent of parameter µ, and
their computation is once and in offline phase. The online computation is to solve Eq. (4.15) for any µ ∈ Ω . The online
computation only involves N × Nc unknowns, where N × Nc < Nf .

We will present details of the three sampling strategies used for constructing the reduced multiscale basis: cross-
validation, greedy algorithm and POD.
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5. Strategies for constructing optimal reduced multiscale basis

5.1. Cross-validation method for sampling reduced multiscale basis

We can similarly extend the cross-validation method in Section 3.2 to the reduced multiscale basis method. The cross-
validation is used to sample the parameters for construction of multiscale basis functions. We describe the details in
Algorithm 2. HereMC is the number of parameter samples selected for basis.

Input: A training setΞtrain ⊂ Ω , a validating setΞvalidate ⊂ Ω , a tolerance ε∗

Output: SN and XN,CV
H

1: Initialization: for ∀µ ∈ Ξtrain, e1,µ(µv) = uh(µv)− u1,µ
H (µv),

-where u1,µ
H (µv) solves (4.12) ∀v ∈ X1,µ

H , and X1,µ
H = span{φi(µ) : 1 ≤ i ≤ Nc};

2: error1mean(µ) = meanµv∈Ξvalidate∥e
1,µ(µv)∥L2 ;

3: µ1
= argminµ∈Ξtrain error

1
mean(µ);

4: X1,CV
H = span{φi(µ

1) : 1 ≤ i ≤ Nc}, S1 = {µ1
};

5: ε1 = maxµ∈Ξtrain error
1
mean(µ);

6: Ξtrain = Ξtrain \ µ1
;

7: N = 1;

8: while εN ≤ ε∗

9: N = N + 1;

10: for ∀µ ∈ Ξtrain, eN,µ(µv) = uh(µv)− uN,µ
H (µv);

-where uN,µ
H (µ) solves (4.12) ∀v ∈ XN,µ

H , and XN,µ
H = XN−1

H


span{φi(µ) : 1 ≤ i ≤ Nc};

11: errorNmean(µ) = meanµv∈Ξvalidate∥e
N,µ(µv)∥L2;

12: µN
= argminµ∈Ξtrain error

N
mean(µ);

13: XN,CV
H = XN−1

H


span{φi(µ
N) : 1 ≤ i ≤ Nc};

14: SN = SN−1


{µN
};

15: εN = maxµ∈Ξtrain error
N
mean(µ);

16: Ξtrain = Ξtrain \ SN;

17: end while

18: MC = N;

Algorithm 2: Cross-validation for reduced multiscale basis.

GivenΞtrain, according to Algorithm 2, we get the set of parameter samples

SMC = {µ1, . . . , µMC },

and the corresponding MsRB space

XMC ,CV
H = span{φi(µ

n) : 1 ≤ i ≤ Nc, 1 ≤ n ≤ MC }.

To get a set of (·, ·)X -orthonormal basis function, we apply POD to the set {φi(µ
n) ∈ Xh : 1 ≤ i ≤ Nc, 1 ≤ n ≤ MC } under

the (·, ·)X inner product. Then the set of orthogonal basis functions is denoted by

{ψi : 1 ≤ i ≤ Nc × MC }.
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5.2. Greedy algorithm for sampling reduced multiscale basis

In order to find a few optimal parameters for reduced basis and to assure the fidelity of the reduced multiscale model to
approximate the original model, we can use a greedy algorithm to obtain reduce multiscale basis functions. To this end, we
need to make the posteriori error bounds for MsFEM. This will involve two basic ingredients of the error bounds: MsFEM
residual error and stability information of the corresponding bilinear form [17,5].

First we consider the residual error for MsFEM. This is important for posteriori analysis. By Eq. (4.12), we get

a

uh(µ)− uN

H(µ)+ uN
H(µ), v;µ


= l(v;µ), ∀v ∈ Xh,

that is,

a

uh(µ)− uN

H(µ), v;µ


= l(v;µ)− a

uN
H(µ), v;µ


, ∀v ∈ Xh.

Let the error e(µ) := uh(µ)− uN
H(µ), and r(v;µ) ∈ X∗

h (the dual space of Xh) be the residual

r(v;µ) := l(v;µ)− a

uN
H(µ), v;µ


, ∀v ∈ Xh.

Then we get

a

e(µ), v;µ


= r(v;µ), ∀v ∈ Xh. (5.16)

By Riesz representation theory, there exists a function ê(µ) ∈ Xh such that
ê(µ), v


X = r(v;µ), ∀v ∈ Xh. (5.17)

Then we can rewrite the error residual equation (5.16) as

a

e(µ), v;µ


=

ê(µ), v


X , ∀v ∈ Xh.

Consequently, the dual norm of the residual r(v;µ) can be evaluated through the Riesz representation,

∥r(v;µ)∥X∗
h

:= sup
v∈Xh

r(v;µ)
∥v∥X

= ∥ê(µ)∥X . (5.18)

The computation of the residual is crucial to perform the offline–online computation decomposition.
Secondly, we need a positive, parametric lower bound function α

Nf
LB (µ) for αNf (µ) in (3.5), where αNf (µ) is the FE

coercivity constant and can be defined by

αNf (µ) := inf
w∈Xh

a(w,w;µ)

∥w∥
2
X

.

Here the function α
Nf
LB : Ω → R, possesses the two properties: (i) 0 < α

Nf
LB (µ) ≤ αNf (µ) for any µ ∈ Ω; (ii) the online

computation to evaluateα
Nf
LB (µ) is independent ofNf . An efficientmethod for computingα

Nf
LB (µ) is the Successive Constraint

Method (Refs. [20,5]).
We define an error estimator [22,5] for the solution of Eq. (5.16) in the energy norm as

∆N(µ) :=
∥ê(µ)∥X

(α
Nf
LB )

1/2
.

We define the error estimator by

ηN(µ) := ∆N(µ)/∥uh(µ)− uN
H(µ)∥E .

It measures the quality of the posteriori error. Following the proof in the Refs. [17,5], we can show that for any N =

1, . . . ,MG, the bound of the posteriori error satisfies

1 ≤ ηN(µ) ≤


γ (µ)

α
Nf
LB (µ)

, ∀µ ∈ Ω,

whereMG is the number of local basis functions at each coarse node.We note that the ê(µ) is related to r(v;µ) by Eq. (5.18).
By (4.13) and (2.3), the residual can be expressed by

r(v;µ) = l(v;µ)− a(uN
H(µ), v;µ)

= l(v;µ)−

N×Nc
i=1

uN
i (µ)a(ψi, v;µ)

=

ml
q=1

f q(µ)lq(v)−

N×Nc
i=1

uN
i (µ)

ma
p=1

kp(µ)ap(ψi, v). (5.19)
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By (5.19) and (5.17), we have

(ê(µ), v)X =

ml
q=1

f q(µ)lq(v)−

N×Nc
i=1

ma
p=1

uN
i (µ)k

p(µ)ap(ψi, v).

This implies that

ê(µ) =

ml
q=1

f q(µ)Cq +

N×Nc
i=1

ma
p=1

uN
i (µ)k

p(µ)L
p
i , (5.20)

where Cq is the Riesz representation of lq, i.e., (Cq, v)X = lq(v) for any v ∈ Xh, 1 ≤ q ≤ ml. Similarly, Lp
i is the Riesz

representation of ap(ψi, v), i.e., (L
p
i , v)X = −ap(ψi, v) for any v ∈ Xh, where 1 ≤ i ≤ N × Nc and 1 ≤ p ≤ ma. We note

that these Cq and L
p
i are the finite element solutions of elliptic equations. Eq. (5.20) gives rise to

∥ê(µ)∥2
X =

ml
q=1

ml
q′=1

f q(µ)f q
′

(µ)(Cq,Cq′)X +

N×Nc
i=1

ma
p=1

uN
i (µ)k

p(µ)

×


2

ml
q=1

f q(µ)(Cq,L
p
i )X +

N×Nc
i′=1

ma
p′=1

uN
i′ (µ)k

p′

(µ)(L
p
i ,L

p′

i′ )X


. (5.21)

Combining (5.21) and (5.18) gives the calculation of the dual norm of the residual ∥r(v;µ)∥X∗
h
.

To efficiently compute ∥ê(µ)∥X , we apply an offline–online procedure for the dual norm of the residual r(v;µ). In the
offline stage we compute and store the parameter-independent quantities. In particular, we compute Cq and L

p
i , where 1 ≤

i ≤ N×Nc , 1 ≤ q ≤ ml and 1 ≤ p ≤ ma. We store (Cq,Cq′)X , (Cq,L
p
i )X , (L

p
i ,L

p′

i′ ), where 1 ≤ i, i′ ≤ N×Nc, 1 ≤ q, q′
≤ ml,

1 ≤ p, p′
≤ ma. Thus the offline computation depends on N × Nc ,ml,ma and Nf . In the online stage, for any µ, we compute

uN
i (µ) (1 ≤ i ≤ N ×Nc) and use (5.21) to compute ∥ê(µ)∥X . The online computation is independent of the fine-scale degree

of freedom Nf .
Next we describe the greedy algorithm for the reduced multiscale basis method. LetΞtrain be a given training set, and ε∗

a tolerance for the stopping criterion for the greedy algorithm. Then the greedy algorithm is described in Algorithm 3.
In Algorithm 3, {ψi : 1 ≤ i ≤ NG

} are the first NG basis functions by performing POD for {φi(µ
n) ∈ Xh : 1 ≤ i ≤ Nc, 1 ≤

n ≤ N}. Here NG < Nc × N and its value is determined by the tolerance εPOD. Consequently, the reduced multiscale finite
element space by the greedy algorithm is defined by

XMG,Greedy
H = {ψi : 1 ≤ i ≤ Nc × MG}.

5.3. POD method for construction of reduced multiscale basis

POD is used to construct a low rank approximation for a Hilbert space (Ref. [23]). In the case of matrix approximation,
POD is the same as Singular Value Decomposition (SVD).

We firstly present a short review for POD. Let {y1, y2, . . . , ynt } ⊂ X be a given set of snapshots and Y0 :=

span{y1, y2, . . . , ynt } with r = dim(Y0). Suppose that {Υi}
r
i=1 is a set of orthonormal basis for Y0. Then each snapshot yj

can be written as

yj =

r
i=1

(yj,Υi)XΥi, j = 1, . . . , nt .

POD provides a way to find a set of orthonormal basis {Υi}
d
i=1 such that ỹj :=

d
i=1(yj,Υi)XΥi and ỹj is the optimal

approximation to yj for all j = 1, . . . , nt in the sense ofmean square error. The set {Υi}
d
i=1 is called a PODbasiswith dimension

d. The POD basis can be computed from a given set of snapshots.
Now we discuss using POD for reduced multiscale basis functions. For the POD method, the snapshots are the solutions

of (4.10) for a few samples. LetΞs be the set of samples for snapshots and |Ξs| = nt . We note that the setΞs plays the same
role as the training set in the cross-validation method and the greedy algorithm described as before.

For each 1 ≤ i ≤ Nc , we consider a set of snapshots: {φi(µ) : µ ∈ Ξs}, each of which can be written as

φi(µ
n) =

Nf
k=1

ynkiξk = ξ⃗ y⃗ni , 1 ≤ n ≤ nt ,

where ξ⃗ = [ξ1, . . . , ξNf ]1×Nf is the set of FE basis functions and y⃗ni = [yn1i, . . . , y
n
Nf i

]
′

∈ RNf . The matrix of the snapshot
coefficients is defined by

Yi = (ynki) = [y⃗1i · · · y⃗ni · · · y⃗nti ] ∈ RNf ×nt , 1 ≤ n ≤ nt , 1 ≤ k ≤ Nf .

Based on the snapshots, the POD basis functions can be constructed as follows.
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Input: A training setΞtrain ⊂ Ω , a tolerance ε∗

Output: SN and XN,Greedy
H

1: Initialization: µ1
= argmaxµ∈Ξtrain ∥uh(µ)∥1,D, S1 = {µ1

};

2: compute {φi(µ
1)}

Nc
i=1;

3: X1,Greedy
H = span{φi(µ

1) : 1 ≤ i ≤ Nc};

4: Ξtrain = Ξtrain \ µ1
;

5: ε1 = maxµ∈Ξtrain ∆1(µ);

6: N = 1;

7: while εN ≤ ε∗

8: N = N + 1;

9: µN
= argmaxµ∈Ξtrain ∆N−1(µ);

10: SN = SN−1


{µN
};

11: compute {φi(µ
N)}

Nc
i=1;

12: XN,Greedy
H = XN−1,Greedy

H


span{φi(µ
N) : 1 ≤ i ≤ Nc} = span{ψi : 1 ≤ i ≤ Ngreedy

};

13: Ξtrain = Ξtrain \ SN;

14: εN = maxµ∈Ξtrain ∆N(µ);

15: end while

16: MG = N;

Algorithm 3: Greedy algorithm for reduced multiscale basis.

• Construct a matrix ℵ using the inner product of the snapshots, i.e.,

ℵ = ((φi(µ
m), φi(µ

n))X )

=

 Nf
k,k′=1

ymkiy
n
k′i(ξk, ξk′)X


= ([ym1i, . . . , y

m
Nf i]Mh[yn1i, . . . , y

n
Nf i]

′)

= Y ′

i MhYi ∈ Rnt×nt ,

where Mh = [(ξk, ξk′)X ] ∈ RNf ×Nf is the Gram matrix of FE basis functions.
• Compute MP eigenvectors of ℵ corresponding the firstMP largest eigenvalues, i.e.,

ℵvj = vjλj, j = 1, . . . ,MP ,

where vj ∈ Rnt and λ1 ≥ λ2, . . . , λMP .
• Given any 1 ≤ i ≤ Nc , the POD basis functions ϕj

i are given by

ϕ
j
i(x) =

1
λj

nt
n=1

(vj)nφi(µ
n), j = 1, . . . ,MP .

• Write each POD basis function ϕj
i in terms of FE basis ξ⃗ = [ξ1, . . . , ξNf ]. Let ℵV = VΛ be the eigenvalue decomposition

of ℵ, where Λ = diag(λ1, . . . , λnt ) and λ1 ≥ · · · ≥ λnt ≥ 0. Define VMP
i = [v1 · · · vMP ] ∈ Rnt×MP to be the first MP

columns of V and ΛMP
i = diag(λ1, λ2, . . . , λMP ) ∈ RMP×MP . Then for given 1 ≤ i ≤ Nc , the set of POD basis functions

Φi(x) := [ϕ1
i , . . . , ϕ

MP
i ] can be written by

Φi(x) = ξ⃗YiV
MP
i (Λ

MP
i )−

1
2 .
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GivenMP andΞs, we use POD and get the reduced multiscale basis functions as follows

{ϕn
i : 1 ≤ i ≤ Nc, 1 ≤ n ≤ MP}.

They are mutually orthonormal under the inner product (·, ·)X . Then the multiscale finite element space is defined by

XMP ,POD
H := span{ϕn

i : 1 ≤ i ≤ Nc, 1 ≤ n ≤ MP}.

5.4. Empirical interpolation method

To achieve the offline–online computation decomposition, we need to use the affine assumption (2.3) for the parametric
bilinear form a(·, ·;µ) and the parametric linear form l(·;µ). If they are not affine with respect to the parameterµ, then we
can use Empirical Interpolation Method (EIM) to get an affine decomposition.

Now we use the function l : D × Ω̄ −→ R as an example to present EIM. When l is not an affine form, we use EIM
approximation lM ≈ l such that

lM(x, µ) =

M
m=1

ϕm(µ)qm(x),

where ϕm : Ω̄ −→ R, and qm : D −→ R. We define a parametrical manifold

Ml = {l(x, µ) : µ ∈ Ω}.

We want to choose suitable functions ϕm(µ) and qm(x) to approximate any element in Ml. The EIM approximation space
WM has the property

WM = span{l(x, µ1), . . . , l(x, µM)} = span{q1(x), . . . , qM(x)}.

Then for any µ ∈ Ω , the EIM approximation lM(x, µ) of l(x, µ) is given by

lM(x, µ) =

M
m=1

ϕm(µ)qm(x) ∈ WM . (5.22)

Let {x1, . . . , xM} be a set of interpolation nodes in D. Then for any given µ ∈ Ω , the coefficients ϕ1(µ), . . . , ϕM(µ) in (5.22)
are computed by solving the following algebraic system

lM(xn, µ) :=

M
m=1

ϕm(µ)qm(xn) = l(xn, µ), 1 ≤ n ≤ M.

By the procedure, it is crucial to choose suitable parameter valuesµ1, . . . , µM ∈ Ω and interpolation nodes x1, . . . , xM ∈ D.
We can use a greedy algorithm to find them.

Let the EIM approximation error eM(x, µ) = l(x, µ) − lM(x, µ). Following the Ref. [19], the EIM algorithm is described
in Algorithm 4. We note that the posteriori error estimation of EIM can be found in [24].

6. Numerical results

In this section, we present a few numerical examples to illustrate the applicability of the proposed reduced multiscale
basis methods for solving parameterized elliptic partial differential equations. In Section 6.1, we consider three examples
to illustrate performance of the different reduced basis methods for elliptic PDEs with one-dimensional parameters. In
Section 6.2, we consider an example with reduced multiscale basis methods for high dimensional parameters. We compare
the results of the presented reduced multiscale finite element basis methods and discuss advantages and disadvantages.

Let k(x, µ) : D × Ω −→ R be a diffusion coefficient function. We consider the following model elliptic equation for
numerical computation,

−div

k(x, µ)∇u(x, µ)


= f (x, µ) in D ×Ω,

u(x, µ) = 0 on ∂D. (6.23)

6.1. Numerical results for one-dimensional parameters

In this subsection, we will consider three numerical examples. Before presenting the individual examples, we describe
the computational domain, that is, spatial domain D = (1, 2)2, and parameterΩ = (1, 3).
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Input: A training setΞtrain ⊂ Ω , a tolerance ε∗ and a functional l(x, µ)

Output: SM , XM and WM

1: Initialization: pick µ1 ∈ Ξtrain;

2: x1 = arg supx∈D |l(x, µ1)|, q1 =
l(·,µ1)
l(x1,µ1)

, W1 = span{q1};

3: X1 = {x1}, S1 = µ1, W1 = span{q1};

4: Ξtrain = Ξtrain \ µ1
;

5: for M = 1 : Mmax − 1

6: µM+1 = argmaxµ∈Ξtrain ∥eM(x, µ)∥L∞(D);

7: xM+1 = arg supx∈D |eM(x, µM+1)|;

8: qM+1 =
eM (·;µM+1)

eM (xM+1;µM+1)
;

9: XM+1 = XM


{xM+1}, SM+1 = SM

µM+1;

10: WM+1 = WM


span{qM+1};

11: Ξtrain = Ξtrain \ SN;

12: εM+1 = ∥eM(x, µM+1)∥L∞(D);

13: if εM+1 < ε∗

14: Mmax = M;

15: end if

16: end for
Algorithm 4: Empirical interpolation method.

6.1.1. Numerical example I: reduced global basis model
In this example, we consider the elliptic equation (6.23), where the coefficient function k(x, µ) and source function

f (x, µ) are defined by

k(x, µ) = (sin(50µ)+ 1)x2 + exp(µ/1000)x1x2, f (x, µ) = x1 sin2(x2 + µ).

Here x := (x1, x2) ∈ D. The function k(x, µ) is affine with respect to the parameter µ, and f (x, µ) is not affine with respect
to the parameter µ. We apply EIM for f (x, µ) to achieve offline–online computation decomposition. For the discretization
of the spatial domain, we use 50 × 50 uniform grid, where the reference solution is computed. Thus the number of degree
of freedom Nf = 2401 for FEM. We choose 101 parameter values for offline computation, i.e., the number of snapshots
ntrain = 101.We use the bilinear finite elementmethod in finemesh to compute the snapshots. Thenwe use cross-validation
method, greedy algorithm and POD to find the reduced global basis functions. The resultant model is a reduced global basis
model.

To compare the approximation accuracy of the three reduced global basismethods, we randomly choose 50 samples from
Ω and compute the average of relative L2 error and average of relative H1 error for the three methods. In Fig. 6.2, we depict
the average of relative L2 error (left figure) and relative H1 error (right figure) versus the number of global basis functions
for the three methods. From this numerical result, we see that the approximation errors decays fast when the number of
basis functions increases at beginning.We also find that cross-validation reduced global basis method and PODmethod give
better approximation than greedy method when the number of basis functions is relatively small.

6.1.2. Numerical results comparison by reduced global basis model and reduced multiscale basis model
In this example, we compare the numerical results by using reduced global basis method and reduced multiscale basis

(local) method. To this end, we consider the elliptic equation (6.23) with the following oscillating coefficient and source
term,

k(x, µ) =


1 + 0.8 sin


12π(x1 − x2 + µ)


, f (x, µ) = x1 sin2(x2 + µ).
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Fig. 6.2. The average of relative errors versus number of global basis functions for cross-validation global RB model (RGB-CV), greedy global RB model
(RGB-Greedy) and POD-RB model (RGB–POD).

Table 1
Average relative L2 error for RGB-CV, RGB-Greedy, RMsB-CV and RMsB-Greedy, 40× 40 fine grid, 8× 8 coarse grid, Ns is the number of parameter samples
selected for basis.

Ns 1 2 3 4 5 6 7 8

RGB-CV 0.4731 0.3248 0.2086 0.1700 0.1336 0.1088 0.0747 0.0644
RGB-Greedy 0.5663 0.3610 0.2988 0.2779 0.2680 0.1255 0.1167 0.0879
RMsB-CV 0.3819 0.1853 0.1191 0.0786 0.0594 0.0527 0.0436 0.0358
RMsB-Greedy 0.4442 0.2212 0.1237 0.0953 0.0737 0.0549 0.0464 0.0414

Table 2
Average relative H1 error in L2 for RGB-CV, RGB-Greedy, RMsB-CV and RMsB-Greedy, 40 × 40 fine grid, 8 × 8 coarse grid, Ns is the number of parameter
samples selected for basis.

Ns 1 2 3 4 5 6 7 8

RGB-CV 0.5665 0.4502 0.2967 0.2537 0.1951 0.1680 0.1265 0.1100
RGB-Greedy 0.6286 0.4644 0.4159 0.3872 0.3793 0.1921 0.1767 0.1429
RMsB-CV 0.4204 0.2608 0.1905 0.1473 0.1307 0.1238 0.1165 0.1069
RMsB-Greedy 0.4690 0.2803 0.1916 0.1654 0.1448 0.1293 0.1220 0.1166

Here µ ∼ U(1, 3), i.e., uniform distribution in (1, 3). The coefficient function k(x, µ) is oscillating with respect to the
spatial variable x and the random parameter µ. This may give the implication that multiscale method may achieve better
approximation than the global basis method. Both functions k(x, µ) and f (x, µ) are not affine with respect to the parameter
µ, we utilize EIM to get affine approximations for k(x, µ) and f (x, µ). We make 40 × 40 fine grid for computing reference
solution. So the number of degrees of freedom Nf = 1521 for fine-scale FEM. The MsFEM computation is perform on the
coarse grid of 8×8. For offline computation, 51 parameter values are selected for snapshots, i.e.,ntrain = 51. For the numerical
example, we consider the four differentmodel reductionmethods: reduced global basismethod using CV (RGB-CV), reduced
global basis method using greedy algorithm (RGB-Greedy), reduced multiscale basis method using CV (RMsB-CV), reduced
multiscale basis method using greedy algorithm (RMsB-Greedy).

To assess the approximation, we randomly choose 40 samples from the parameter space, which are used to compute
the average relative errors. In Tables 1 and 2, we list the number of parameter samples for reduced basis versus the relative
errors in L2 and H1, respectively, for the four methods: RGB-CV, RGB-Greedy, RMsB-CV and RMsB-Greedy. Fig. 6.3 illustrates
the average relative L2 error (left) and H1 error (right) with respect to the sample number in SN for the four different model
reduction methods. From the figure, we have three observations: (1) multiscale model reduction approach gives better
accuracy than global model reduction approach in this example; (2) CV approach gives a little bit better approximation than
greedy algorithm approach in both global basis reduction and multiscale basis reduction; (3) the error of RGB-CV decays
more gradually than the error of RGB-Greedy as reduced basis functions enrich.

By the numerical example and our other numerical tests, we find that enriched local basis and global–local approachmay
achieve better accuracy than pure global basismethodwhen the diffusion coefficients and source terms of the parameterized
PDEs are highly oscillating with respect to both spatial variable and parameter variable, which are non-separable.
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Fig. 6.3. The average relative errors versus number of samples for SN for the four model reduction methods: RGB-CV, RGB-Greedy, RMsB-CV and RMsB-
Greedy. 40 × 40 fine grid and 8 × 8 coarse grid.

Table 3
The average relative L2 error for RMsB-CV, RMsB-Greedy and RMsB-POD.

♯ of local basis functions per node RMsB-CV RMsB-Greedy RMsB-POD
5 × 5 10 × 10 5 × 5 10 × 10 5 × 5 10× 10

2 0.0432 0.0132 0.0467 0.0254 0.0473 0.1270
4 0.0185 0.0058 0.0235 0.0125 0.0394 0.0114
6 0.0135 0.0037 0.0179 0.0044 0.0199 0.0070
8 0.0120 0.0025 0.0132 0.0038 0.0153 0.0043

6.1.3. Numerical result with reduced multiscale basis model
In this numerical example, we consider the elliptic equation (6.23), whose diffusion coefficient k(x, µ) and source term

f (x, µ) are defined, respectively, by

k(x, µ) = sin2(50µ)x21x2 +
1

3 + 2.8 sin

25π(x1 − x2)


(µ2 + 1)

, f (x, µ) =
1

µx1 + x22
.

Here the diffusion coefficient k(x, µ) is oscillating with respect to x, and is affine with respect to µ. Because f (x, µ) is not
affine about the parameter µ, we use EIM to get affine approximation for f (x, µ). For the partition of spatial domain, we
use 80 × 80 fine grid for reference solution. Hence, the number of degree of freedom Nf = 6241 for FEM in fine-scale. In
offline computation phase, we choose 41 parameter samples for snapshots, i.e., ntrain = 41, and use MsFEM to compute the
snapshots. Then we apply cross-validation method, greedy algorithm and POD to reduce the original model, and get the
three reduced order model: RMsB-CV, RMsB-Greedy and RMsB-POD.

To evaluate the approximation for the model reduction methods, we randomly choose 40 parameter samples and
compute the average relative L2 and H1 errors. To discuss the effect of coarse grids, we consider two different coarse grids
in the example: 5 × 5 and 10 × 10. The relative L2 error is listed in Table 3 and the relative H1 error is listed in Table 4.
From the two tables, we find that (1) the approximation is improved as the coarse grid is refined for the three multiscale
model reduction methods; (2) as the number of local basis functions increases, the errors become smaller; (3) RMsB-CV
usually gives better approximation than the other twomodel reduction approaches. To visualize the individual errors of the
40 samples, we plot the relative errors for the three multiscale model reduction methods in Fig. 6.4 (L2 error) and Fig. 6.5
(H1 error). The two figures show that the error of RMsB-CV is not sensitive to the parameter samples compared with RMsB-
Greedy and RMsB-POD. Fig. 6.6 shows the solution profile of the example for the four methods: FEM on fine grid (reference
solution), RMsB-CV, RMsB-Greedy and RMsB-POD, where MsFEM is performed on 5 × 5 coarse grid with 5 multiscale basis
functions on each coarse node. The figure shows all the solution profiles looks the same and the multiscale model reduction
methods provide accurate approximation to the original full order model. Fig. 6.7 depicts the average relative errors versus
the number of local basis functions for the three reduced multiscale method. From the figure, we see RMsB-CV achieves the
best approximation.

6.2. Numerical results for reduced multiscale basis model with a high-dimensional parameter

In this section, we consider the elliptic equation (6.23), whose source term f (x) = 150, and x ∈ (0, 1)2. The diffusion
coefficient k(x, µ) is a random field, which is characterized by a two point exponential covariance function cov[k], i.e.,
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Table 4
The average relative H1 error for RMsB-CV, RMsB-Greedy and RMsB-POD.

♯ of local basis functions per node RMsB-CV RMsB-Greedy RMsB-POD
5 × 5 10 × 10 5 × 5 10 × 10 5 × 5 10× 10

2 0.1855 0.0845 0.1629 0.0814 0.1836 0.1615
4 0.0671 0.0292 0.0777 0.0388 0.1704 0.0814
6 0.0501 0.0217 0.0640 0.0255 0.0794 0.0458
8 0.0444 0.0125 0.0464 0.0222 0.0594 0.0260

Fig. 6.4. The relative L2 error by RMsB-CV, RMsB-Greedy and RMsB-POD, 80 × 80 fine grid, and 5 × 5 coarse grid.

Fig. 6.5. The relative H1 error by RMsB-CV, RMsB-Greedy and RMsB-POD, 80 × 80 fine grid, 5 × 5 coarse grid.

cov[k](x1, y1; x2, y2) = σ 2 exp


−

|x1 − x2|2

2l2x
−

|y1 − y2|2

2l2y


,

where (xi, yi) (i = 1, 2) is the spatial coordinate in 2D. Here the variance σ 2
= 1, correlation length lx = ly = 0.2. The

random coefficient k(x, µ) is obtained by truncated by a Karhunen–Loève expansion, i.e.,

k(x, µ) := E[k] +

8
i=1

√
γibi(x)µi. (6.24)

Here E[k] = 8 and the random vector µ := (µ1, µ2, . . . , µ8) ∈ R8. Each µi (i = 1, . . . , 8) is uniformly distributed in the
interval (0, 1).

We use 60 × 60 fine grid to compute the reference solution to the example. For MsFEM, we use 6 × 6 coarse grid. 51
parameter samples are selected for snapshots to get multiscale basis functions, i.e., ntrain = 51. We apply RMsB-CV model,
RMsB-Greedy model and RMsB-POD model to simulate the numerical example.
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Fig. 6.6. Numerical solutions for the four methods (from left to right): FEM on fine grid, RMsB-CV, RMsB-Greedy and RMsB-POD, 80 × 80 fine grid, 5 × 5
coarse grid.

Fig. 6.7. The average relative error versus number of local basis functions for RMsB-CV, RMsB-Greedy and RMsB-POD, 5 × 5 coarse grid.

To compare the approximation, we randomly choose 50 samples and compute the average relative L2 error and H1 error
for the three reduced multiscale basis methods. Fig. 6.8 depicts the average relative errors versus the number of local basis
functions. The figure shows: (1) cross-validation gives the best approximation results; (2) as the number of local multiscale
basis functions increase, cross-validation method can more steadily enhance accuracy than other two approaches.

To visualize the statistics properties, we plot the mean profile of the solutions in Fig. 6.9 and the variance profile of the
solutions in Fig. 6.10, where we use 2 local multiscale basis functions at each node. From the two figures, we find that RMsB-
CV gives better approximation for mean and variance of reference solution than RMsB-Greedy and RMsB-PODwhen we use
a small number of nodal multiscale basis functions, and RMsB-Greedy shares the similar approximation to RMsB-POD.

7. Conclusions

In the paper, we have presented reduced basis methods for solving elliptic equations with parameterized inputs. If we
solve the equations directly for a many-query situation, the computation efficiency will be bad. In order to significantly
improve computation efficiency, we build a reduced order model by using reduced basis methods. To this end, we choose
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Fig. 6.8. The average relative errors for RMsB-CV, RMsB-Greedy and RMsB-POD, 6 × 6 coarse grid.

Fig. 6.9. The mean of solutions, 60 × 60 fine grid, 6 × 6 coarse grid, 2 local multiscale basis functions on each node.

a few snapshots sufficiently scattered in the manifold of the solutions. Then we use some optimization strategies to
obtain reduced basis functions and get a reduced order model. Three optimization strategies have been presented in the
paper: cross-validation method, greedy algorithm and POD. For the reduced basis methods, the whole computation admits
offline–online decomposition. Although the offline computationmay be expensive, the online computation is very efficient.
This is very desirable for predicting the model’s outputs for various parameter values and stochastic influence. We have
carefully compared the performance of the three strategies for reduced basis, and found that cross-validation method
may be more effective and stable to get a reduced model than greedy algorithm and POD when using a small number
optimal parameters to construct reduced basis functions. If the elliptic equations have multiscale structures in inputs, we
can use MsFEM to compute the snapshots in a coarse grid and get reduced multiscale basis model through the optimization
strategies. Because the number of snapshots is usually large, using MsFEM can substantially improve the computation of
snapshots. If the inputs (coefficients and source terms) of the elliptic equations are oscillating with respect to both spatial
variable and parameter variable which are non-separable, we have found that the reduced multiscale basis methods may
provide more accurate surrogate reduced order model than the reduced global basis methods. A few numerical results
showed that the reduced multiscale basis method using cross-validation is effective to reduce basis functions for multiscale
models.
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Fig. 6.10. The variance of solutions, 60 × 60 fine grid, 6 × 6 coarse grid, 2 multiscale basis functions on each node.
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