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a b s t r a c t

In this paper we consider old and new operators of Szász type involving Sheffer polyno-
mials. We present an asymptotic expansion formula for operators of Ismail type. Then,
in order to improve the accuracy of the approximation of a function f in a fixed point,
we apply a well-known extrapolation algorithm. We also introduce some new special
sequences of Appell and Sheffer polynomials and construct new generalized Szász-type
operators. By using classical techniques we investigate approximation properties and rate
of convergence for these operators and compare the results with other existing operators.
Finally, we present numerical examples which confirm the validity of the theoretical
analysis and the effectiveness of the presented operators.
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1. Introduction

In the approximation theory one of the fundamental problems is to approximate a function f by functions having better
properties of integration, differentiation and efficient calculations than f . After the famous Theorems of Weierstrass and
Korovkin [1], positive linear polynomial operators have been widely used for approximating regular functions.

In this paper we are dealing with the approximation of real functions f defined in the semi-infinite interval [0, +∞)
which have a suitable rate of growth as x → ∞. In this case, one of the well-known examples of sequences of positive linear
operators is Szász operators, introduced by Szász in 1950 [2]:

Sn(f ; x) = e−nx
∞∑
k=0

(nx)k

k!
f
(
k
n

)
. (1)

Sn converges to f (as n → ∞) at each point t = x ≥ 0 where f is continuous. In [2] Szász investigated the detailed
approximation properties of the operators (1). Particularly, if f is bounded in every finite interval and f (x) = O

(
xk
)
for some

k > 0 as x → ∞, then there hold:
– if f is continuous at a point ξ , then Sn converges uniformly to f at ξ ;
– if f is differentiable at a point ξ > 0, then n

1
2 [Sn (f ; ξ) − f (ξ)] → 0, n → ∞.

Later, in 1969, Jakimovski and Leviatan [3] gave a generalization of Szász operators by means of Appell polynomials:

Pn(f ; x) =
e−nx

A(1)

∞∑
k=0

pk(nx)f
(
k
n

)
, (2)
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where {pk}k∈N is the Appell polynomial sequence [4] defined from the holomorphic function A(t) in the disk |z| < R, (R > 1)
with A(1) ̸= 0.

Under the assumption pk(x) ≥ 0, for x ∈ [0, ∞) and k ≥ 0, for each function f defined in [0, ∞), Jakimovski and
Leviatan [3] gave several approximation properties of these operators in view of Szász’s method [2].

If A(t) = 1, pk(x) =
xk
k! , then Pn(f ; x) reduces to the Szász operators (1).

Let E = E[0, ∞) denote the class of all functions of exponential type defined on the semi-axis and such that |f (t)| <

ceαt (t ≥ 0) for some c and α finite positive constants and let CE[0, ∞) = C[0, ∞)∩E. Observe that, if n > α log R, the series
in (2) is convergent. Hence the operators Pn(f ; x) are well-defined for all sufficiently great n.

In [3] the authors proved that, if f ∈ CE[0, ∞), then Pn(f ; x) converges to f (x) as n → ∞. The convergence is uniform in
each compact subset [0, a], a > 0.

In 1996 Ciupa [5] studied the rate of convergence of these operators.
If f admits derivatives of sufficiently high order at x ≥ 0, a complete asymptotic expansion for Pn(f ; x) has been derived

by Abel and Ivan [6]:

Pn(f ; x) ∼ f (x) +

∞∑
k=1

ck(f ; x)n−k, (3)

where the coefficients ck(f ; x) do not depend on n. From (3) it follows that for allm ≥ 1

Pn(f ; x) = f (x) +

m∑
k=1

hkck(f ; x) + o
(
hm) , (4)

with h = 1/n.
Operators of Jakimovski and Leviatan type have been generalized by substituting the Appell sequence by a more general

Sheffer sequence [7]. In particular, in [8] Ismail considered the polynomial operators

Fn(f ; x) =
e−nxH(1)

A(1)

∞∑
k=0

pk(nx)f
(
k
n

)
, (5)

where {pk}k∈N is the Sheffer polynomial sequence related to the analytic functions A(t) and H(t) with A(0) ̸= 0, H(0) = 0
and H ′(0) ̸= 0. Moreover, in (5), A(1) ̸= 0, H(1) ̸= 0. Under the assumptions H ′(1) = 1, pk(x) ≥ 0 for x ≥ 0, Ismail showed
that the same type of results obtained by Jakimovski and Leviatan are still valid for operators Fn(f ; x).

Observe that for H(t) = t , operators Fn(f ; x) reduce to operators Pn(f ; x).
Further generalizations of Szász-type operators have been studied in [9–12].
To the knowledge of the authors, an explicit asymptotic expansion for operators (5) does not exist in the literature.

Therefore, in this paper, with the same technique used in [6], a complete asymptotic expansion formula for the Ismail-type
operators Fn(f ; x) is given, provided f admits derivatives of sufficiently high order at x ≥ 0. Asymptotic expansions of type
(4) are very important, since a well-known extrapolation algorithm can be applied, in order to improve the approximation
results. This algorithm provides new sequences of operators having a faster rate of convergence than Fn(f ; x).

Thepaper is structured as follows. In Section2necessary background anddefinitions are given; in Section3 the asymptotic
expansion for Fn(f ; x) is presented and Richardson extrapolation technique is applied for any fixed x ∈ [0, +∞). Then, in
Section 4 some known and new special operators of Jakimovski and Leviatan type and of Ismail type are considered. Rates
of convergence of the above operators are compared by using classical techniques. Numerical experiments are given in
Section 5 which provide favorable comparisons with other existing operators and show the effectiveness of the considered
extrapolation algorithm. Finally, conclusions are reported in Section 6.

2. Preliminaries

In this section we recall some well-known definitions and properties on Appell and Sheffer polynomials which will be
useful hereafter. Moreover the estimation of the rate of convergence for Pn(f , x) and Fn(f , x) operators by means of modulus
of continuity is examined.

Appell sequences [4,13–15] and Sheffer sequences [7,13,15–17] can be introduced inmany equivalent ways. Here we use
the method of generating functions.

If A(t) is an invertible power series, the polynomial sequence {pk}k∈N defined by

A(t)ext =

∞∑
k=0

pk(x)
tk

k!
(6)

is called Appell polynomial sequence for A(t). If

A(z) =

∞∑
i=0

ai
z i

i!
, (7)
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with a0 ̸= 0, it is easy to prove, from (6), that

pk(x) =

k∑
ν=0

(
k
ν

)
ak−νxν, k ≥ 0 . (8)

Moreover [13], the sequence {pk} is positive ∀x ≥ 0 if and only if

∀i ≥ 0, ai ≥ 0.

Observe that for A(t) = 1, we get pk(x) = xk, k ≥ 0, that is, the sequence {pk} is the well-known monomial sequence.
In 1939 Sheffer [7] introduced the polynomial sequences, called of type-zero, which include Appell and binomial

sequences.
Let H(t) be a δ-series, that is

H(t) =

∞∑
i=0

bi
t i

i!
, b0 = 0, b1 ̸= 0,

and A(t) an invertible power series as in (7).
Sheffer polynomial sequences are defined by the generating function A(t)exH(t). That is, for the Sheffer sequence {sk}k∈N we

get

A(t)exH(t)
=

∞∑
k=0

sk(x)
tk

k!
. (9)

Observe that for H(t) = t the sequence {sk} coincides with the Appell sequence {pk}.
For A(t) = 1 the Sheffer sequence {sk} defined by

exH(t)
=

∞∑
k=0

sk(x)
tk

k!
,

is called polynomial sequence of binomial-type (see [13,15,18] and references therein).
In this paper Sheffer polynomial sequences such that sk(x) ≥ 0, ∀x ≥ 0 will be considered. For this kind of sequences

the following proposition holds.

Proposition 1. Let sk(x) be the Sheffer sequence defined in (9). If ai ≥ 0, bi ≥ 0, i = 0, 1, . . ., then, ∀k ∈ N, we get sk(x) ≥ 0 for
x ∈ [0, +∞).

Proof. The decomposition of sk(x) in the basic monomials is

sk(x) =

k∑
i=0

sk,ixi.

In [13] it is proved that

sk,0 = ak, sk,k = a0bk1, (10)

and, for i = 0, . . . , k − 1,

sk,i+1 =
1

k + 1

k∑
j=i

(
k
j

)
bk−j sj,i . (11)

From (10) and (11) the result follows.

Proposition 2. If sk(x) ≥ 0 for x ∈ [0, +∞), then ak ≥ 0 and b1 > 0.

Proof. Since sk(0) = sk0 and [13] sk0 = ak, we get sk(0) = ak ≥ 0.
For x → +∞, sk(x) → +∞. It follows that skk > 0. But skk = a0bk1, hence b1 > 0.

In [13] the conjugate sequence of a polynomial sequence is defined. Sheffer polynomial sequences form a group with
respect to the umbral composition [15]. It can be shown [13] that the conjugate sequences are the inverse elements in the
group. That is, if sk(x) is a Sheffer sequence, the conjugate sequence ŝk(x) satisfies

sk
(
ŝk(x)

)
= ŝk (sk(x)) = xk, k ≥ 0.

In [13] it is proved that if

A(t) exH(t)
=

∞∑
k=0

sk(x)
tk

k!
,
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then

1

A
(
H(t)

) exH(t)
=

∞∑
k=0

ŝk(x)
tk

k!
,

where H(t) is the compositional inverse of H(t) [15]:

H
(
H(t)

)
= H (H(t)) = t,

that is H ◦ H = I , where ‘‘◦’’ is the umbral composition.
For the Appell sequence, since H(t) = t , we get

A(t)ext =

∞∑
k=0

pk(x)
tk

k!

and

1
A(t)

ext =

∞∑
k=0

p̂k(x)
tk

k!
,

where p̂k(x) is the conjugate sequence of pk(x).
In order to consider some estimation of the error for operators Pn(f ; x) and Fn(f ; x), let

C2
E [0, ∞) := {g ∈ CE[0, ∞) : g ′, g ′′

∈ CE[0, ∞)}

with the norm ∥f ∥C2
E

= ∥f ∥CE + ∥f ′
∥CE + ∥f ′′

∥CE [5,19].

Theorem 1 ([5]). If f ∈ C2
E [0, ∞), then

|Pn(f ; x) − f (x)| ≤ λn(x)∥f ∥C2
E
, (12)

where λn(x) =
1
n

(
x +

A′′(1)+A′(1)
A(1)

)
.

Now, let C̃[0, ∞) be the space of uniformly continuous functions defined on [0, ∞) and let C̃E[0, ∞) = C̃[0, ∞) ∩ E.
The next theorem gives the rate of convergence of the sequence Fn by means of the modulus of continuity ω of f , very

much used in the approximations by Szász-type operators (see [20–23] and the references therein).

Theorem 2 ([24,25]). Let f ∈ C̃E[0, ∞), then Fn operators satisfy the following estimation

|Fn(f ; x) − f (x)| ≤ βn(x) ω

(
f ,

1
√
n

)
, (13)

where βn(x) = 1 +

√
(H ′′(1) + 1) x +

A′(1)+A′′(1)
nA(1) .

Corollary 1. If f is Lipschitzian with Lipschitz constant L, then

|Fn(f ; x) − f (x)| ≤
L

√
n

(
1 +

√
(H ′′(1) + 1) x +

A′(1) + A′′(1)
nA(1)

)
.

3. Asymptotic expansion and extrapolation for operators Fn

For a fixed x ∈ [0, ∞), let us denote by K [q]
x , with q ∈ N, the class of all functions f : E → R which admit a derivative of

order q at x.

Theorem 3. Let f ∈ K [2q]
x , with x ≥ 0 and q ∈ N. There exist coefficients ck(f ; x) which depend on A, H, f , x and not on n such

that the operators Fn defined in (5) possess the following complete asymptotic expansion

F (l)
n (f ; x) = f (l)(x) +

q∑
k=1

ck(f ; x)n−k
+ o

(
n−q) , l = 0, . . . , q . (14)

The theorem can be proved, after some straightforward calculations, by the same techniques used by Abel and Ivan in [6]
for operators Pn(f , x).
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The asymptotic expansions (4) and (14) in powers of h = 1/n, n > 0, for a fixed x > 0, with coefficients independent on
n, allow to apply the classical Richardson extrapolation process [26], in order to obtain faster convergent approximations.
In [27,28] for the first time this idea has been applied in the approximation theory.

Let f ∈ K [2q]
x and let {ni}i≥0 be an increasing sequence of positive integers. We define a new sequence of polynomials{

G(i)
k

}
k∈N

such that⎧⎪⎨⎪⎩
G(i)
0 := G(i)

0 (f , x) = Fni (f ; x), i = 0, . . . , q,

G(i)
k := G(i)

k (f , x) =
hi+kG

(i)
k−1 − hiG

(i+1)
k−1

hi+k − hi
,

k = 1, . . . , q,

i = 0, . . . , q − k,

(15)

where hi = n−1
i .

The following classical result holds [26,28].

Theorem 4. For i fixed positive number

lim
hi→0

G(i)
k = f (x), k = 1, 2, . . ., q − 1.

Moreover, the following representation of the error holds

G(i)
k − f (x) = (−1)khi hi+1 · · · hi+k (ck(f ; x) + O (hi)) .

Several common choices of the sequence ni can be considered. For example:

(1) ni = ρ i, ρ ≥ 2 positive integer (Romberg sequence)
(2) ni = bi or ni = n bi, where bi are the Bulirsch numbers bi = 2, 3, 4, 6, 8, 12, 16, . . .
(3) ni = 2i, double harmonic sequence (Deuflhard sequence)
(4) ni = n + i, n ∈ N
(5) ni =

n
m (m + i), withm fixed constant as n/m is integer.

As we know, the numerical stability of extrapolation algorithm depends on the stability factorM(q), which is the sum of
the absolute value of extrapolation coefficients [29]M(q) =

∑q
j=0|Cqj| where Cqj are such that G(0)

q =
∑q

j=0CqjG
(j)
0 .

Particularly, the smallerM(q), the more stable the extrapolation algorithm.
Let us denote byMk(q), k = 1, . . . , 5, the stability factor related to the kth considered sequence ni in the above list.
By comparing the five analyzed sequences, we can observe that, at least for q ≤ 300, the stability factor of Richardson

extrapolation with ni = ρ i is very small. In fact, for example, M1(q) < 8.26 for ρ = 2, M1(q) < 1.97 if ρ = 4, and
M1(q) < 1.33 when ρ = 8. While for M2(q) we have M2(q) < 221. The stability of the other sequences is poor. In fact M4(q)
andM5(q) increase rapidly with q for each choice of n andm. Nevertheless, we observe that the grid points of the refinement
related to sequence (1) increases rapidly, especially for high values of ρ and, consequently, the amount of work increases.

4. Special cases: examples of operators

In this section, in order to provide the reader with a complete view of particular sequences of positive operators of Szász
type, for the approximation of real regular functions on the semi infinite interval, we consider some known operators of
Jakimovski and Leviatan type (Table 1) and of Ismail-type (Table 2). Then we present new operators of Jakimovski and
Leviatan type and of Ismail type, respectively, and compare the rates of convergence.

4.1. New operators of Jakimovski and Leviatan type

In order to present new operators of Jakimovski and Leviatan type, we introduce new sequences of Appell polynomials
which are positive for x ≥ 0.

• The conjugate Bernoulli polynomials [13]:

pk(x) =
(x + 1)k+1

− xk+1

(k + 1)!
, (16)

related to the invertible power series

A(t) =
et − 1

t
. (17)

• The conjugate Euler polynomials [13]:

p̃k(x) =
(x + 1)k + xk

2k!
, (18)
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Table 1
Operators of Jakimovski and Leviatan type.

Sequence of polynomials Operators

(1) Gould–Hopper d-orthogonal polynomials [19,30]

gk(x, h, d) =
∑⌊

k
d+1 ⌋

s=0
k!

s!(k−(d+1)s)! h
sxk−(d+1)s, h ≥ 0 LGHn (f , d; x) = e−nx−h∑∞

k=0
gk(nx,h,d)

k! f
( k
n

)
A (t) = eht

d+1

(2) Hermite polynomials of variance ν [30]

Hk (x, ν) =
∑⌊

k
2 ⌋

i=0

(
−

ν
2

)i k!
i!(k−2i)! x

k−2i , ν ≤ 0a LHPn (f , ν; x) = e−nx+ ν
2
∑

∞

k=0
Hk(nx,ν)

k! f
( k
n

)
A (t) = e−

νt2
2

(3) Miller–Lee polynomials [30]
Gk(x,m) =

∑k
i=0

(m+1)i
i!(k−i)! x

k−i, m > −1 LML
n (f ,m; x) = e−nx∑∞

k=0
Gk(2nx,m)
2m+k+1 f

( k
n

)
(α)i is the Pochhammer’s symbol
(α)0 = 1, (α)i = α(α + 1) · · · (α + i − 1), i ≥ 1
A (t) =

(
1 −

t
2

)−m−1

a For ν = −
1
4 we get the Hermite–Appell conjugate sequences [13] with generating function ext+

t2
4 .

Table 2
Operators of Ismail type.

Sequence of polynomials Operators

(i) Modified Laguerre polynomials [31–34]

L̃k(x, α) =
L(α)k (− x

2 )
2k

LLGn (f , α; x) = e−
nx
2
∑

∞

k=0
L̃k(nx,α)

2α+1 f
( k
n

)
where L(α)k (x) =

∑k
m=0

(α+k)!
(k−m)!(α+m)!m!

(−x)m

is the Laguerre polynomial, α > −1
A (t) =

(
1 −

t
2

)−α−1
, H (t) =

t
2(2−t)

(ii) Modified 2-orthogonal Laguerre polynomials [25]
L̂k(x, α) =

1
2k
∑k

m=0
1

(k−m)! L
(α)
m
(
−

x
2

)
LLG2n (f , α; x) = e−

nx+1
2
∑

∞

k=0
L̂k(nx,α)

2α+1 f
( k
n

)
L(α)m (x) the Laguerre polynomials, α > −1
A (t) = e

t
2
(
1 −

t
2

)−α−1
, H (t) =

t
2(2−t)

(iii) Modified Charlier polynomials [31,32,34,35]

C̃k(x, a) =
C (a)
k ((1−a)x)

k! LMC
n (f , a; x) = e−1

(
1 −

1
a

)(a−1)nx∑∞

k=0C̃k (nx; a) f
( k
n

)
where C (a)

k (x) =
∑k

r=0

(k
r

)( 1
a

)r
(−x)r , x ≤ 0

is the Charlier polynomial, a > 0
A (t) = et , H (t) = (1 − a) ln

(
1 −

t
a

)
(iv) Modified Reverse Bessel polynomials [24]

B̃k(x) =
Bk
(
2
√
2x
)

4kk!
LRBn (f , d; x) = e−2

(√
2−1

)
nx∑∞

k=0̃B
(a)
k (nx; a) f

( k
n

)
where Bk(x) =

∑k
j=1

(2k−j−1)!
(j−1)!(k−j)!2k−j xj

is the Reverse Bessel polynomial

A (t) = 1, H (t) = 2
√
2
(
1 −

√
1 −

t
2

)
(v) Modified Meixner polynomials [25]

M̃k(x; γ , c) =
(γ )k

2γ+kk!
Mk

(
(2c−1)x
2(c−1) ; γ , c

)
LMM
n (f , γ , c; x) =

(
2 −

1
c

) nx(1−2c)
2(c−1)

∑
∞

k=0M̃k(nx; γ , c)f
( k
n

)
whereMk(x; γ , c) =

∑k
r=0

(k
r

)( 1
c − 1

)r (−x)r
(γ )r

is the Meixner polynomial, γ > 0, 1
2 < c < 1, x ≥ 0

A (t) =
(
1 −

t
2

)−γ
, H (t) =

2c−1
2(c−1) ln

(
2c−t
c(2−t)

)

related to

A(t) =
et + 1

2
.

In this case we obtain, respectively, the two operators Tn(f ; x) and T̃n(f ; x) defined as follows:

Tn(f ; x) =
e−nx

e − 1

∞∑
k=0

pk(nx)f
(
k
n

)
, (19)

T̃n(f ; x) =
2e−nx

e + 1

∞∑
k=0

p̃k(nx)f
(
k
n

)
. (20)



250 F.A. Costabile et al. / Journal of Computational and Applied Mathematics 337 (2018) 244–255

For the rate of convergence of Tn and T̃n operators, from Theorem 2 we get

|Tn(f ; x) − f (x)| ≤

(
x +

1
n

)
ω

(
f ,

1
√
n

)
,

and

|̃Tn(f ; x) − f (x)| ≤

(
x +

1
n

)
ω

(
f ,

1
√
n

)
.

Moreover the following theorem holds.

Theorem 5. If f ∈ C2
E [0, ∞), then

|Tn(f ; x) − f (x)| ≤ λn(x)∥f ∥C2
E
, (21)

where λn(x) =
1
2n

(
x +

1
n +

2
e−1

)
;

|̃Tn(f ; x) − f (x)| ≤ λ̃n(x)∥f ∥C2
E
, (22)

where λ̃n(x) =
e

n(e+1) +
x
2n +

e
n2(e+1)

.

Proof. The results follow by the same technique used by Ciupa in [5], taking into account that Tn (s − x; x) =
1

n(e−1) and
Tn
(
(s − x)2; x

)
=

x
n +

1
n2
.

Remark 1. In the special case where A(t) is defined as in (17), from the upper bound (12) λn(x) =
1
n (x + 1) and ∀n, x,

λn(x) > λn(x).

4.2. New operators of Ismail-type

In order to present new operators of Ismail type, we introduce new positive sequences of Sheffer polynomials satisfying
A(1) ̸= 0 and H ′(1) = 1.

• The conjugate generalized Boole polynomials

bk(x) =

k∑
j=0

sk,j xj,

where

sk,j = b̂k,j +
j + 1
2

b̂k,j+1

with b̂k,j defined by

b̂k,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b̂k,j = δk,j

b̂k,0 = 0, b̂k,1 = 1

b̂k,j =
1
k

k−j+1∑
i=1

(
k
i

)
b̂k−i,j−1 .

(23)

The generating function is

1 + et

2
ex(e

t
−1) =

∞∑
k=0

bk(x)
k!

tk. (24)

Now, let be qk(x) =
1
k! bk

( x
e

)
. Then, by virtue of (24), A(t) =

1+et
2 and H(t) =

et−1
e , so that A(1) ̸= 0 and H ′(1) = 1.

• The conjugate Poisson–Charlier polynomials

ck(x) =

k∑
j=0

s̃k,j xj,

where

s̃k,j =

k∑
i=j

(
i
j

)
b̂k,i,
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Table 3
Rate of convergence of some operators.

Operators Rate of convergence

(1) LGHn (f , d; x) [19,30] x +
h(h+1)(1+d)2

n

(2) LHPn (f , ν; x) [30] x +
ν(ν−2)

n

(3) LML
n (f ,m; x) [30] x +

(m+1)(m+3)
n

(i) LLGn (f , α; x) [31–34] 3x +
α(α+4)+3

n

(ii) LLG2n (f , α; x) [25] 3x +
4α(α+5)+19

n

(iii) LMC
n (f , a; x) [31,32,34,35] ax +

2
n

(iv) LRBn (f , d; x) [24] 3
2 x +

1
n

(v) LMM
n (f , γ , c; x) [25] 1−4c

1−2c x +
γ (γ+2)

n

(a) Tn(f ; x) [13] x +
1
n

(b) T̃n(f ; x) [13] x +
1
n

(c) Qn(f ; x) 2x +
2e

n(e+1)

(d) Q̃n(f ; x) 2x +
2e

n(e+1)

with b̂k,j defined as in (23). The generating function is

e(e
t
−1)ex(e

t
−1) =

∞∑
k=0

ck(x)
k!

tk.

If q̃k(x) =
1
k! ck

( x
e

)
, then A(t) = ee

t
+1 and H(t) =

et−1
e so that A(1) ̸= 0 and H ′(1) = 1.

We get, respectively, the two operators Qn(f ; x) and Q̃n(f ; x):

Qn(f ; x) =
2e−nx e−1

e

1 + e

∞∑
k=0

qk (nx) f
(
k
n

)
, (25)

Q̃n(f ; x) =
e−nx(e−1)

ee−1

∞∑
k=0

q̃k (nx) f
(
k
n

)
. (26)

For the rate of convergence of Qn and Q̃n operators, from Theorem 2 we have

|Qn(f ; x) − f (x)| ≤

(
2x +

2e
n(e + 1)

)
ω

(
f ,

1
√
n

)
,

and

|Q̃n(f ; x) − f (x)| ≤

(
2x +

2e
n(e + 1)

)
ω

(
f ,

1
√
n

)
.

The following theorem can be proved analogously to Theorem 5.

Theorem 6. If f ∈ C2
E [0, ∞), then

|Qn(f ; x) − f (x)| ≤ λn(x)∥f ∥C2
E
, (27)

where λn(x) =
1
n

(
x +

e(1+n)
n(1+e)

)
;

|Q̃n(f ; x) − f (x)| ≤ λ̃n(x)∥f ∥C2
E
, (28)

where λ̃n(x) =
1
n

(
x +

e(2+e+2n)
2n

)
.

4.3. Comparison of rate of convergence

In order to compare the rates of convergence of the operators considered in Tables 1 and 2, we give Table 3.
Observe that in the case of operators Tn(f ; x) and T̃n(f ; x) the asymptotic error constant is 1. For the other operators this

does not always happen.
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Fig. 1. (a) Convergence of Tn(f ; x) to f (x) in [0, 1]. (b) Absolute errors in [0, 1].

Fig. 2. (a) Convergence of Tn(f ; x) to f (x) in [0, 1]. (b) Absolute errors in [0, 1].

Table 4
Error bound by using modulus of continuity—Example 1.

n ErrTn Err̃Tn ErrQn ErrQ̃n Error in [36]

10 0.33809900 0.34169700 0.40677900 0.4640070 0.89388445
103 0.03423310 0.03423710 0.04132160 0.04132902 0.84099669
105 0.003423750 0.003423750 0.00413282 0.00413288 0.38033509
107 0.000342374 0.000342374 0.00041328 0.00041329 0.13488244
109 0.0000342374 0.0000342374 0.00004132 0.00004132 0.04423507
1011 3.42374e−06 3.42374e−06 4.1328e−06 4.1328e−06 0.01415055
1013 3.42374e−07 3.42374e−07 4.1328e−07 4.1328e−07 0.00449115
1015 3.42374e−08 3.42374e−08 4.1328e−08 4.1328e−08 0.00142186
1017 3.42374e−09 3.42374e−09 4.1328e−09 4.1328e−09 4.497971e−04
1019 3.42374e−10 3.42374e−10 4.1328e−10 4.1328e−10 1.422548e−04

5. Numerical examples

In the following examples we determine error estimations in the approximation by Tn, T̃n, Qn and Q̃n operators for some
functions, by using modulus of continuity. We denote by ErrWn , with Wn = Tn, T̃n,Qn, Q̃n, the computed error bound,
respectively, for operators Tn, T̃n, Qn and Q̃n. We compare the obtained results to those achieved with other operators in
the literature.

Then, we apply the extrapolation algorithm by considering several choices of the sequence ni and compute the error

GWn = max
0≤x≤1

|G(1)
q−1(f ; x) − f (x)| ,

whereWn is as above and indicates the specific operators utilized for the computation of G(i)
0 in (15).

All calculations have been carried out using Mathematica 10.0 and Matlab R2015b.

Example 1 ([36]). Consider the following function f (x) = −4xe−3x, x ∈ [0, 1].
Fig. 1(a) and (b) show, respectively, the plots of f (x) and the approximating operators Tn(f ; x), and the plots of the absolute

errors |Tn(f ; x) − f (x)| for n = 10, 20, 50 in the interval [0, 1].
Fig. 2(a) and (b) show, respectively, the plots of f (x) and the approximating operators T̃n(f ; x), and the plots of the absolute

errors |̃Tn(f ; x) − f (x)| for n = 10, 20, 50 in [0, 1].
In Table 4 we give the computed error estimations ErrWn for several values of n. They are compared with the ones in [36].
Table 5 shows the true errors

EWn = max
a≤x≤b

|Wn(f ; x) − f (x)|.
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Table 5
Maximum absolute error—Example 1.

n ETn ET̃n EQn EQ̃n

10 0.1433940 0.1671720 0.1671716 0.3341707
50 0.0420539 0.0519629 0.0519629 0.1656723
100 0.0221170 0.0275517 0.0750055 0.0946478
103 0.00231595 0.0029067 0.4878836 0.4878836
105 0.00002328 0.0000294 2.9241e−05 1.0871e−04
107 2.3279e−07 2.9242e−07 2.9242e−07 1.0873e−06
109 4.6216e−08 4.5056e−08 2.9242e−09 1.0874e−08

Table 6
Extrapolation error—Example 1.

ni i GTn i GT̃n

2i 1, 2, 3 8.959338e−05 1, 2, . . . , 4 9.525916e−01
1, 2, . . . , 14 3.737659e−10 1, 2, . . . , 6 4.671524e−05

4i 1, 2, 3 5.130503e−05 1, 2, 3 8.900901e−05
1, 2, . . . , 7 2.280971e−10 1, 2, . . . , 5 8.676678e−10

10 + i 1, 2, 3 8.360350e−05 1, 2, . . . , 4 7.251635e−05
1, 2, . . . , 11 1.422075e−08 1, 2, . . . , 11 2.872629e−08

2i 1, 2, . . . , 5 9.515105e−05 1, 2, . . . , 5 3.024622e−05
1, 2, . . . , 10 6.537760e−10 1, 2, . . . , 10 6.973742e−10

Table 7
Extrapolation error—Example 1.

ni i GQn ni i GQ̃n

2i 1, 2, . . . , 4 7.027857e−05 2i 1, 2, . . . , 4 1.085701e−01
1, 2, . . . , 7 5.005474e−07 1, 2, . . . , 6 2.862507e−03

10 + i 1, 2, . . . , 5 8.404059e−05 30 + i 1, 2, . . . , 5 3.554468e−04
1, 2, . . . , 11 8.432076e−08 1, 2, . . . , 7 6.819058e−06

2i 1, 2, . . . , 7 9.049401e−05 2i 1, 2, . . . , 10 2.337181e−04
1, 2, . . . , 12 7.990505e−10 1, 2, . . . , 12 7.432047e−06

Table 8
Error bound by using modulus of continuity—Example 2.

n ErrTn Err̃Tn ErrQn ErrQ̃n Error in [24]

10 0.644675 0.651536 0.406779 0.884751 0.70003463
102 0.200489 0.200718 0.130482 0.245873 0.22246336
103 0.0632613 0.0632686 0.0413216 0.0764873 0.07035257
104 0.0200005 0.0200007 0.0130689 0.0241467 0.02224744
105 0.00632457 0.00632458 0.00413282 0.00763456 0.00703526
106 0.00200000 0.00200000 0.00130691 0.00241422 0.00222474
107 0.00063246 0.00063246 0.000413282 0.000763442 0.00070352
108 0.00020000 0.00020000 0.000130691 0.000241421 0.00022247
109 0.00006324 0.00006324 0.000041328 0.000076344 0.00007035
1010 0.00002000 0.00002000 0.000013069 0.000024142 0.00002224
1011 6.3246e−06 6.3246e−06 4.13282e−06 7.63441e−06 7.03526e−06
1012 2.0000e−06 2.0000e−06 1.30691e−06 2.41421e−06 2.22474e−06
1013 6.3246e−07 6.3246e−07 4.13282e−07 7.63441e−06 7.03526e−07

Since ourmachines have not enough speed and power to compute the infinite series in (25) and (26), we had to approximate
the series with finite sums in order to evaluate Qn and Q̃n in Table 5.

The absolute errors obtained by the extrapolation process, for several choices of the sequence ni are displayed in Tables 6
and 7.

Example 2 ([24]). Consider now f (x) =
x√
1+x4

, x ∈ [0, 1]. The error estimations ErrWn are displayed in Table 8 and compared

with the estimations in [24].
Table 9 shows the true errors in the approximation by means of the considered operators.
The absolute errors obtained by extrapolation, for several choices of the sequence ni are displayed in Tables 10 and 11.
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Table 9
Maximum absolute error—Example 2.

n ETn ET̃n EQn EQ̃n

10 0.0581096 0.0727902 0.0983694 0.2565774
20 0.0329087 0.0365364 0.0580220 0.1351967
50 0.0137139 0.0146206 0.0265477 0.0543578

100 0.00704207 0.00731051 0.0140616 0.0288311

Table 10
Extrapolation error—Example 2.

ni i GTn i GT̃n

2i 1, 2, . . . , 4 8.509047e−05 1, 2, . . . , 6 4.966732e−05
1, 2, . . . , 8 1.596833e−07 1, 2, . . . , 9 7.389635e−10

4i 1, 2, 3 5.087599e−05 1, 2, . . . , 4 1.893475e−05
1, 2, . . . , 4 2.032594e−05 1, 2, . . . , 5 9.944473e−08

10 + i 1, 2, . . . , 4 8.210283e−05 1, 2, . . . , 5 8.727032e−05
1, 2, . . . , 13 2.289737e−07 1, 2, . . . , 9 7.859487e−07

2i 1, 2, . . . , 8 8.905467e−05 1, 2, . . . , 7 8.941022e−05
1, 2, . . . , 16 3.743760e−08 1, 2, . . . , 21 6.585855e−07

Table 11
Extrapolation error—Example 2.

ni i GQn ni i GQ̃n

2i 1, 2, . . . , 6 9.200485e−04 2i 1, 2, . . . , 4 3.185449e−02
1, 2, . . . , 6 9.200485e−04 1, 2, . . . , 5 8.468367e−03

4i 1, 2, 3 3.980982e−05 4i 1, 2, 3 7.766571e−03
1, 2, 3 3.980982e−05 1, 2, 3, 4 9.91e−01

10 + i 1, 2, . . . , 4 8.775534e−05 30 + i 1, 2, . . . , 4 5.367207e−04
1, 2, . . . , 7 7.329339e−05 1, 2, . . . , 6 4.545825e−05

2i 1, 2, . . . , 8 8.217080e−05 2i 1, 2, . . . , 7 7.201657e−03
1, 2, . . . , 11 5.341235e−06 1, 2, . . . , 16 4.598149e−06

6. Conclusions

In this paper old and new operators of Jakimovski and Leviatan type and of Ismail type are introduced. The rate of
convergence for these operators is examined by using classical techniques. An asymptotic expansion for operators of Ismail
type is presented. Hence, Richardson extrapolation algorithm is applied, in order to accelerate the convergence of these
operators. Numerical examples support theoretical results and show that high accuracy in the approximation by means of
extrapolation can be achieved.

Observe that the numerical results are strongly influenced by the power of the software and computing tools which have
beenused. Probably, by the use ofmore powerful tools, the approximationswould bemore stringent. However, by comparing
the absolute errors on the operators and those on the extrapolated operators, the effectiveness of the use of extrapolation
in approximation with the considered operators is evident. In fact, from Tables 6, 7, 10 and 11 we can observe that stringent
tolerances are achieved also for small values of n.
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