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a b s t r a c t

We use an auxiliary point on the semilocal convergence of Newton’s method when the
majorant principle of Kantorovich is applied to operators with high order derivatives
satisfying a center Lipschitz type condition, so that we extend the classical conditions of
these types, that are centered at the starting point of Newton’s method, to other points
belonging to the domain of definition of the operator involved. This extension provides a
modification of the domain of starting points for Newton’smethodwhich allows increasing
the choice of starting points. We illustrate this study with nonlinear Fredholm integral
equations.
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1. Introduction

Using mathematical modeling, many problems from computational sciences, physics and other disciplines can be solved
if they are brought into a form similar to equation F (x) = 0. To give sufficient generality to this problem, we consider that F
is a nonlinear operator defined on a nonempty open convex subsetΩ of a Banach space X with values in a Banach space Y .
Usually, it is not possible to find a solution of F (x) = 0 in closed form and, therefore, it is necessary to apply iterativemethods
for solving it. For this, starting from one initial approximation x0 of a solution x∗ of the equation F (x) = 0, a sequence {xn} of
approximations is constructed such that the sequence {∥xn − x∗

∥} is strictly decreasing to zero.
Three types of studies can be done when we are interested in proving the convergence of the sequence {xn} given by an

iterative method, that depend on the conditions required to the operator F and the starting point of the iterative method:
local [1], semilocal [2] and global [3]. In this paper, we pay our attention to the semilocal convergence.

Three types of conditions are required to obtain a semilocal convergence result for an iterativemethod: conditions on the
starting point x0, conditions on the operator involved F and conditions that connect both types of the previous conditions.
An important feature of the semilocal convergence results obtained for an iterative method is that conclusions about the
existence and uniqueness of solution of the equation to solve are drawn from the theoretical significance of the result and
the initial approximation of the iterative method used to solve the equation. This fact makes the choice of the starting points
for iterativemethods is a basic aspect in semilocal convergence studies.Moreover, the fact that the conditions required to the
starting point and to the operator F are independent makes that we can choose the initial approximation inside a domain of
starting points depending on the conditions that connect both types of conditions. In another case, if both types of conditions
are connected, the domain of starting points can be significantly reduced and this is a problem.
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We then try to solve the last problem by introducing an auxiliary point, different from the starting point, that allows us
to eliminate the connection between the conditions required to the starting points and to the operator F , and thus recover
the domain of starting points.

We use the best known and most used iterative method in practice to solve equation F (x) = 0, that is Newton’s method,
whose algorithm is:

x0 ∈ Ω, xn = xn−1 − [F ′(xn−1)]−1F (xn−1), n ∈ N. (1)

The main aim of this paper is to obtain, under a center type condition for the operator F , a domain of starting points for
Newton’s method that, in the case of requiring the condition on the starting point x0, such as we have indicated previously,
this domain is then reduced to x0. We consider that the operator F is sufficiently differentiable; namely, F ∈ C (k)(Ω) with
k ≥ 3. In [4], we obtain a semilocal convergence result for Newton’s method under the following conditions:

(A1) There exists Γ0 = [F ′(x0)]−1
∈ L(Y , X) for some x0 ∈ Ω , with ∥Γ0∥ ≤ β and ∥Γ0F (x0)∥ ≤ η, where L(Y , X) is the set

of bounded linear operators from Y to X; moreover, ∥F (i)(x0)∥ ≤ bi, with i = 2, 3, . . . , k and k ≥ 2.
(A2) ∥F (k)(x) − F (k)(x0)∥ ≤ ω(∥x − x0∥) for x ∈ Ω , where ω : R+ → R+ is a nondecreasing continuous function such that

ω(0) = 0.
(A3) g(α) ≤ 0, where

g(t) =

∫ t

0

∫ θk−1

0
· · ·

∫ θ1

0
ω(z) dz dθ1 · · · dθk−1 +

k∑
i=2

bi
i!

t i −
t
β

+
η

β

and α is the unique positive solution of g ′(t) = 0, and B(x0, t∗) ⊂ Ω , where t∗ is the smallest positive solution of
g(t) = 0.

It is obvious that a solution x∗ of equation F (x) = 0must satisfy the convergence conditions in a trivialway, so that it seems
clear that we can choose, by continuity, points next to x∗ as initial approximations for Newton’s method. However, under
conditions (A1)–(A3), the solution x∗ can be only chosen as starting point for Newton’s method if condition (A2) is satisfied
at x0 = x∗. In this case, the domain of starting points for Newton’s method is just reduced to x0 and Newton’s sequence {xn}
is convergent to the solution x∗ of F (x) = 0. In another case, we cannot choose other starting points for Newton’s method,
since condition (A2), required to the operator F , is only given in x0. To solve this problem, we use an auxiliary point x̃, that
can be different from x0, so that (A2) is given at this point x̃ instead of the point x0 and, if condition (A3) is not satisfied, once
x0 is fixed, we can consider, as initial approximation for Newton’s method, any point different from x0 that satisfies (A3),
expanding so the domain of starting points.

The paper is organized as follows. In Section 2, we introduce the majorant principle of Kantorovich and show how we
can use it under Lipschitz type conditions for high order derivatives centered at a point different from the starting point of
Newton’s method. For this, we construct majorizing sequences from solving initial value problems, which is an approach
different from that given by Kantorovich, that is based on interpolation fitting. In Section 3, we analyze the semilocal
convergence of Newton’s method and provide a domain of existence of solution. In Section 4, we show the uniqueness
of solution and prove the quadratic convergence of Newton’s method under conditions required in the paper. In Section 5,
we illustrate the previous studywith a nonlinear Fredholm integral equation. Finally, in Section 6, we analyze two particular
cases of the main condition required previously, that are reduced to high order derivatives that are center Lipschitz or
Höolder continuous at an auxiliary point. Both cases are illustrated with nonlinear Fredholm integral equations.

Throughout the paper we denote B(x, ϱ) = {y ∈ X; ∥y − x∥ ≤ ϱ} and B(x, ϱ) = {y ∈ X; ∥y − x∥ < ϱ}.

2. Initial focus

The application of Newton’s method to solve nonlinear equations has a long history and different techniques have been
developed over the past years to analyze the semilocal convergence of the method. In this paper, we use the most famous,
‘‘the majorant principle’’ of Kantorovich [5], devised by Kantorovich at the beginning of the 50s of the last century. The idea
of the principle is simple, since it allows us to translate the problem of solving F (x) = 0 to the problem of solving a scalar
equation. For this, we look for a scalar sequence {tn} such that

∥xn − xn−1∥ ≤ tn − tn−1, n ∈ N,

where

tn = tn−1 −
f (tn−1)
f ′(tn−1)

, n ∈ N, with t0 given,

and f (t) is a suitable scalar function that we have to find.
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Taking into account the aims indicated in the introduction, we then analyze the semilocal convergence of Newton’s
method by ‘‘the majorant principle’’ of Kantorovich under the following conditions:

(P1) There exists the operator Γ0 = [F ′(x0)]−1
∈ L(Y , X) with ∥Γ0∥ ≤ β and ∥Γ0F (x0)∥ ≤ η; moreover, ∥F (i)(x0)∥ ≤ bi

with i = 2, 3, . . . , k − 1 and k ≥ 3.
(P2) There exists x̃ ∈ Ω such that ∥x0 − x̃∥ = γ , where x0 ∈ Ω , and ∥F (k) (̃x)∥ ≤ δ.
(P3) There exists a nondecreasing continuous function ω : [0,+∞) −→ R such that ∥F (k)(x) − F (k) (̃x)∥ ≤ ω(∥x − x̃∥) for

x ∈ Ω and ω(0) = 0.

On the one hand, it seems clear that Kantorovich solved a problem of interpolation fitting, from the conditions required
to the operator F and the starting point x0, to obtain the real function from which the majorizing sequences are built.

On the other hand, if we pay attention to the condition imposed to the operator F in (P3), it also seems clear that we
cannot use the same procedure as Kantorovich to find the real function, since (P3) does not allow us to determine the class
of functions where (P1)–(P2) can be applied. To solve this problem, we proceed differently, without interpolation fitting, and
solve an initial value problem. Then, we look for a real function f ∈ Cj([̃t,+∞)), with t̃ ∈ R+ and j ≥ k, such that

∥F (k)(x) − F (k) (̃x)∥ ≤ f (k)(t) − f (k) (̃t) with ∥x − x̃∥ ≤ t − t̃, x ∈ Ω and t ∈ [̃t,+∞).

So, from (P3) and the last, it follows

∥F (k)(x) − F (k) (̃x)∥ ≤ ω(∥x − x̃∥) ≤ ω(t − t̃) = f (k)(t) − f (k) (̃t)

if ∥x − x̃∥ ≤ t − t̃ , since ω is a nondecreasing continuous function, and then

f (k)(t) = f (k) (̃t) + ω(t − t̃).

In addition, if we consider t0 = t̃ + γ , f (k) (̃t) = δ and take into account (P1)–(P2), we can solve the initial value problem⎧⎪⎨⎪⎩
y(k)(t) = δ + ω(t − t0 + γ ),

y(t0) =
η

β
, y′(t0) = −

1
β
,

y′′(t0) = b2, y′′′(t0) = b3, . . . , y(k−1)(t0) = bk−1,

to find the real function f (t), since we can choose, from (P1), − 1
f ′(t0)

= β , − f (t0)
f ′(t0)

= η and f (i)(t0) = bi, for i = 2, 3, . . . , k− 1.
So, next result is given.

Theorem 1. Suppose that the function ω(t − t0 + γ ) is continuous in [t0,+∞). Then, for any nonnegative real numbers γ , δ,
β ̸= 0, η, b2, b3, . . . , bk−1, the last initial value problem has a unique solution ψ̂(t) ∈ Cj([̃t,+∞)), with j ≥ k ≥ 3, which is
given by

ψ̂(t) =

∫ t

t0

∫ θk−1

t0

· · ·

∫ θ1

t0

ω(s − t0 + γ ) ds dθ1 · · · dθk−1 +
δ

k!
(t − t0)k +

k−1∑
i=2

bi
i!
(t − t0)i −

t − t0
β

+
η

β
.

Remark 2. Observe that t0 ≥ 0, but we can choose t0 = 0, since function ψ̂(t) is such that ψ̂(t + t0) = ψ(t), with

ψ(t) =

∫ t

0

∫ θk−1

0
· · ·

∫ θ1

0
ω(s + γ ) ds dθ1 · · · dθk−1 +

δ

k!
tk +

k−1∑
i=2

bi
i!
t i −

t
β

+
η

β
, (2)

and the sequence {tn = Nψ̂ (tn−1)}n∈N, for any t0 > 0, satisfies tn = Nψ̂ (tn−1) = t0 + Nψ (sn−1), n ∈ N, where sn = Nψ (sn−1)
with s0 = 0, since we have, for t0 ≥ 0 and s0 = 0,

t0 + sn = t0 + Nψ (sn−1) = t0 + sn−1 −
ψ(sn−1)
ψ ′(sn−1)

= t0 + sn−1 −
ψ̂(sn−1 + t0)
ψ̂ ′(sn−1 + t0)

= tn−1 −
ψ̂(tn−1)
ψ̂ ′(tn−1)

= tn = Nψ̂ (tn−1)

for all n ∈ N. Therefore, the real sequences {tn} and {sn} given by Newton’s method when they are constructed from ψ̂(t)
and ψ(t), respectively, can be obtained, one from the other, by translation. Besides, tn − tn−1 = sn − sn−1, for all n ∈ N, and
all the results obtained previously are independent of the value t0 ≥ 0, so that we choose t0 = 0 because, in practice, it is
the most favorable situation.

3. Majorizing sequence and semilocal convergence

Once we have found the scalar function ψ(t) to construct the majorizing sequence {tn = Nψ (tn−1)}n∈N, we have to
guarantee that ψ(t) has at least one zero greater than t0 = 0, so that the sequence converges to this zero. So, we give
the next result.
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Theorem 3. Let ψ and ω be the two functions defined in (2) and (P3), respectively.

(a) If there exists a solution α > 0 of the equation ψ ′(t) = 0, then α is the unique minimum of ψ(t) in [0,+∞) and ψ(t) is
nonincreasing in [0, α).

(b) If ψ(α) ≤ 0, then equation ψ(t) = 0 has at least one solution t∗ in [0,+∞). In addition, if t∗ is the smallest root of
ψ(t) = 0 in the interval [0,+∞), then t∗ ∈ (0, α].

Proof. First, from (P3), it follows that ψ (k)(t) ≥ 0 in [̃t,+∞) and ψ (k−1)(t) is nondecreasing in [̃t,+∞). In addition, as
ψ (k−1)(0) = bk−1 > 0, then ψ (k−1)(t) ≥ 0 in [0,+∞). Repeating the previous reasoning until the second derivative, we
obtainψ ′′(t) ≥ 0 in [0,+∞). As a consequence,ψ(t) is convex in [0,+∞), α is the uniqueminimum ofψ(t) in [0,+∞) and
ψ ′(t) is nondecreasing in [0,+∞).

Moreover, as ψ ′(0) = −
1
β
< 0, then ψ ′(t) ≤ 0 in [0, α) and ψ(t) is nonincreasing in [0, α).

Second, if ψ(α) < 0, then ψ(t) has at least one zero t∗ in [0, α), since ψ(0) =
η

β
≥ 0 and ψ(t) is continuous. In addition,

as ψ(t) is nonincreasing in [0, α), we have that t∗ is the unique zero of ψ(t) in [0, α).
On the other hand, if ψ(α) = 0, then α is a double root of ψ(t) = 0 and t∗ = α. ■

After knowing what the conditions are to be satisfied so that the functionψ(t) has a zero, we guarantee the convergence
of the Newton sequence {tn = Nψ (tn−1)}n∈N in the following result.

Theorem 4. Suppose that there exists a solution α ∈ (0,+∞) of ψ ′(t) = 0 such that ψ(α) ≤ 0. Then, the Newton sequence
{tn = Nψ (tn−1)}n∈N is nondecreasing and converges to the smallest positive solution t∗ of the equation ψ(t) = 0.

Proof. If ψ(0) =
η

β
= 0, then tn = 0, for all n ≥ 0, and {tn} converges to t∗ = 0. If ψ(0) =

η

β
> 0, then t∗ ≥ 0. By the

Mean-Value Theorem, we obtain

t1 − t∗ = Nψ (0) − Nψ (t∗) = N ′

ψ (θ0)(0 − t∗) with θ0 ∈ (0, t∗),

so that t1 < t∗, since N ′

ψ (t) =
ψ(t)ψ ′′(t)
ψ ′(t)2

> 0 in [0, t∗). Moreover,

t1 − t0 = −
ψ(0)
ψ ′(0)

≥ 0.

Then, by mathematical induction on n, it follows easily tn < t∗ and tn − tn−1 ≥ 0. In addition, we infer that sequence
{tn = Nψ (tn−1)}n∈N converges to v ∈ [0, t∗]. Moreover, since t∗ is the unique root of ψ(t) = 0 in [0, t∗], it follows that
v = t∗. ■

Next, in the following result, we prove that {tn = Nψ (tn−1)}n∈N is a majorizing sequence of the sequence {xn}, given by
(1), in the Banach space X , so that the semilocal convergence of Newton’s sequence is then guaranteed in X .

Theorem 5. Let X and Y be two Banach spaces and F : Ω ⊆ X −→ Y a nonlinear q (q ≥ 2) times continuously differentiable
operator on a nonempty open convex domainΩ andψ(t) be function defined in (2). Suppose that conditions (P1)–(P3) are satisfied,
there exists a root α > 0 of ψ ′(t) = 0 such that ψ(α) ≤ 0, and B(x0, t∗) ⊂ Ω , where t∗ is the smallest positive root of
ψ(t) = 0. Then, the sequence {xn}, given by Newton’s method (1), converges to a solution x∗ of F (x) = 0 starting at x0. Moreover,
xn, x∗

∈ B(x0, t∗) and

∥x∗
− xn∥ ≤ t∗ − tn, n ≥ 0,

where tn = Nψ (tn−1), with n ∈ N and t0 = 0.

Proof. We begin by proving that Newton’s sequence (1) is well-defined and xn ∈ B(x0, t∗), for all n ≥ 0. From (P1), it follows

∥x1 − x0∥ = ∥Γ0F (x0)∥ ≤ η = −
ψ(0)
ψ ′(0)

= t1 < t∗

and x1 ∈ B(x0, t∗).
Next, we prove the following five recurrence relations for all n ∈ N:

(In) There exists Γn = [F ′(xn)]−1 and ∥Γn∥ ≤ −
1

ψ ′(tn)
,

(IIn) ∥F (i)(xn)∥ ≤ ψ (i)(tn), i = 2, 3, . . . , k − 1,
(IIIn) ∥F (xn)∥ ≤ ψ(tn),
(IVn) ∥xn+1 − xn∥ ≤ tn+1 − tn,
(Vn) xn+1 ∈ B(x0, t∗).
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For the last, we use mathematical induction on n. The case (I1)–(V1) is analogous to which we do for the inductive step, no
more to consider conditions (P1)–(P3). For the inductive step, we suppose that (In)–(Vn) are true for n = 1, 2, . . . , d− 1 and
see that (Id)–(Vd) are true.

To prove (Id), we consider Taylor’s series of F and write

I − Γd−1F ′(xd) = Γd−1
(
F ′(xd−1) − F ′(xd)

)
= Γd−1

(
F ′(xd−1) −

k−1∑
i=1

1
(i − 1)!

F (i)(xd−1)(xd − xd−1)i−1
−

1
(k − 2)!

∫ xd

xd−1

F (k)(z)(xd − z)k−2 dz

)

= −Γd−1

(
k−1∑
i=2

1
(i − 1)!

F (i)(xd−1)(xd − xd−1)i−1
+

1
(k − 2)!

∫ xd

xd−1

(F (k)(z) − F (k) (̃x))(xd − z)k−2 dz

+
1

(k − 2)!

∫ xd

xd−1

F (k) (̃x)(xd − z)k−2 dz

)
.

Besides, if z ∈ [xd−1, xd] and s ∈ [td−1, td], then z = xd−1 + τ (xd − xd−1) and s = td−1 + τ (td − td−1) with τ ∈ [0, 1], so that

∥z − x̃∥ ≤ ∥z − xd−1∥ + ∥xd−1 − x̃∥

≤ τ∥xd − xd−1∥ + ∥xd−1 − xd−2∥ + · · · + ∥x1 − x0∥ + ∥x0 − x̃∥

≤ τ (td − td−1) + td−1 − td−2 + · · · + t1 − t0 + γ

= s − t̃.

In addition,

∥I − Γd−1F ′(xd)∥ ≤ ∥Γd−1∥

(
k−1∑
i=2

1
(i − 1)!

∥F (i)(xd−1)∥∥xd − xd−1∥
i−1

+
1

(k − 2)!

∫ 1

0
∥F (k)(xd−1 + τ (xd − xd−1)) − F (k) (̃x)∥ × ∥xd − xd−1∥

k−1(1 − τ )k−2 dτ

+
1

(k − 1)!
∥F (k) (̃x)∥∥xd − xd−1∥

k−1
)

≤ −
1

ψ ′(td−1)

(
k−1∑
i=2

ψ (i)(td−1)
(i − 1)!

(td − td−1)i−1

+
1

(k − 2)!

∫ 1

0

(
ψ (k)(td−1 + τ (td − td−1)) − ψ (k) (̃t)

)
(td − td−1)k−1(1 − τ )k−2 dτ

+
ψ (k) (̃t)
(k − 1)!

(td − td−1)k−1
)

= −
1

ψ ′(td−1)

(
k−1∑
i=2

ψ (i)(td−1)
(i − 1)!

(td − td−1)i−1

+
1

(k − 2)!

∫ 1

0
ψ (k)(td−1 + τ (td − td−1))(td − td−1)k−1(1 − τ )k−2 dτ

)

= 1 −
1

ψ ′(td−1)

(
k−1∑
i=1

ψ (i)(td−1)
(i − 1)!

(td − td−1)i−1
+

1
(k − 2)!

∫ td

td−1

ψ (k)(u)(td − u)k−2 du

)

= 1 −
ψ ′(td)
ψ ′(td−1)

< 1,

since td−1 < td ≤ t∗, ψ ′′(t) ≥ 0 in [0,+∞) and ψ ′(td)
ψ ′(td−1)

∈ (0, 1). Therefore, by the Banach lemma on invertible operators, it
follows that there exists the operator Γd and ∥Γd∥ ≤ −

1
ψ ′(td)

.
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To prove (IId), we distinguish two cases: i ∈ {2, 3, . . . , k− 1} and i = k. First, we choose i ∈ {2, 3, . . . , k− 1}. Then, from
Taylor’s series, we have

F (i)(xd) =

k−i∑
ℓ=1

1
(ℓ− 1)!

F (ℓ+i−1)(xd−1)(xd − xd−1)ℓ−1

+
1

(k − i − 1)!

(∫ 1

0
(F (k)(xd−1 + τ (xd − xd−1)) − F (k) (̃x))(xd − xd−1)k−i(1 − τ )k−i−1 dz

+

∫ 1

0
F (k) (̃x)(xd − xd−1)k−i(1 − τ )k−i−1 dτ

)
.

Taking now into account that ∥z − x̃∥ ≤ s − t̃ , where z ∈ [xd−1, xd], s ∈ [td−1, td] and ∥xd − xd−1∥ ≤ td − td−1, it follows

∥F (i)(xd)∥ ≤

k−i∑
ℓ=1

1
(ℓ− 1)!

∥F (ℓ+i−1)(xd−1)∥∥xd − xd−1∥
ℓ−1

+
1

(k − i − 1)!

(∫ 1

0
∥F (k)(xd−1 + τ (xd − xd−1)) − F (k) (̃x)∥∥xd − xd−1∥

k−i(1 − τ )k−i−1 dτ

+

∫ 1

0
∥F (k) (̃x)∥∥xd − xd−1∥

k−i(1 − τ )k−i−1 dτ
)

≤

k−i∑
ℓ=1

ψ (ℓ+i−1)(td−1)
(ℓ− 1)!

(td − td−1)ℓ−1

+
1

(k − i − 1)!

(∫ 1

0
(ψ (k)(td−1 + τ (td − td−1)) − ψ (̃t))(td − td−1)k−i(1 − τ )k−i−1 dτ

+

∫ 1

0
ψ (k) (̃t)(td − td−1)k−i(1 − τ )k−i−1 dτ

)
≤

k−i∑
ℓ=1

ψ (ℓ+i−1)(td−1)
(ℓ− 1)!

(td − td−1)ℓ−1
+

1
(k − i − 1)!

∫ td

td−1

ψ (k)(s)(td − s)k−i−1 ds

= ψ (i)(td).

Second, if i = k, then

∥F (k)(xd)∥ ≤ ∥F (k)(xd) − F (k) (̃x)∥ + ∥F (k) (̃x)∥ ≤ ψ (k)(td),

since ∥xd − x̃∥ ≤ td − t̃ .
Item (IIId) follows in a way completely analogous to the first case of item (IId).
Items (IVd) and (Vd) are immediate, since

∥xd+1 − xd∥ ≤ ∥Γd∥∥F (xd)∥ ≤ −
ψ(td)
ψ ′(td)

= td+1 − td,

∥xd+1 − x0∥ ≤

d−1∑
ℓ=1

∥xℓ − xℓ−1∥ ≤

d−1∑
ℓ=1

(tℓ − tℓ−1) = td+1 < t∗,

so that xd+1 ∈ B(x0, t∗). Thus, bymathematical induction, items (In)–(Vn) are true for all positive integers n. As a consequence
of the above, Newton’s sequence {xn} is well-defined and xn ∈ B(x0, t∗) for all n ≥ 0.

From item (IVn), for all n ≥ 0, it follows that the sequence {tn} majorizes the sequence {xn} and, as a result, {xn} is
convergent. Then, if x∗

= limnxn, we obtain ∥x∗
− xn∥ ≤ t∗ − tn, for all n ≥ 0, since limntn = t∗. Besides, from (IIIn), for all

n ≥ 0, and the continuity of F , it follows F (x∗) = 0 by letting n → +∞. ■
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4. Uniqueness of solution and order of convergence

After proving the semilocal convergence of Newton’s method and locating the solution x∗, we prove the uniqueness of
x∗. Before, we need the following lemma.

Lemma 6. If the conditions of the last theorem are satisfied and ψ(t) has two real zeros t∗ and t∗∗ such that 0 < t∗ ≤ t∗∗ and
x ∈ B(x0, t∗∗) ∩Ω , then

∥F ′′(x)∥ ≤ ψ ′′(t), for ∥x − x0∥ ≤ t.

Proof. From Taylor’s series, it follows

F ′′(x) =

k−1∑
i=2

1
(i − 2)!

F (i)(x0)(x − x0)i−2
+

1
(k − 3)!

∫ x

x0

F (k)(z)(x − z)k−3 dz

=

k−1∑
i=2

1
(i − 2)!

F (i)(x0)(x − x0)i−2
+

1
(k − 3)!

∫ x

x0

(
F (k)(z) ± F (k) (̃x)

)
(x − z)k−3 dz

=

k−1∑
i=2

1
(i − 2)!

F (i)(x0)(x − x0)i−2

+
1

(k − 3)!

∫ 1

0

(
F (k) (x0 + τ (x − x0))− F (k) (̃x)

)
(x − x0)k−2(1 − τ )k−3 dτ

+
1

(k − 3)!

∫ 1

0
F (k) (̃x)(x − x0)k−2(1 − τ )k−3 dτ .

Taking norms, we obtain, from (P1)–(P3) and for ∥x − x0∥ ≤ t ,

∥F ′′(x)∥ ≤

k−1∑
i=2

1
(i − 2)!

∥F (i)(x0)∥∥x − x0∥i−2

+
1

(k − 3)!

∫ 1

0

F (k) (x0 + τ (x − x0))− F (k) (̃x)
 ∥x − x0∥k−2(1 − τ )k−3 dτ

+
1

(k − 3)!

∫ 1

0
∥F (k) (̃x)∥∥x − x0∥k−2(1 − τ )k−3 dτ

≤

k−1∑
i=2

ψ (i)(0)
(i − 2)!

t i−2
+

1
(k − 3)!

∫ 1

0

(
ψ (k)(s) − ψ (k) (̃t)

)
tk−2(1 − τ )k−3 dτ

+
1

(k − 3)!

∫ 1

0
ψ (k) (̃t) tk−2(1 − τ )k−3 dτ

= ψ ′′(t),

if z = x0 + τ (x − x0) and s = τ t with τ ∈ [0, 1] and ∥z − x̃∥ ≤ ∥x0 − x̃∥ + τ∥x − x0∥ ≤ s − t̃ . ■

Next, provided that ψ(t) has two real zeros t∗ and t∗∗ such that 0 < t∗ ≤ t∗∗, the uniqueness of solution is established
in the following theorem, which is a generalization of the result on uniqueness of solution obtained under the classical
Kantorovich conditions. The proof follows exactly as in Theorem 12 of [4].

Theorem 7. If the conditions of the last theorem are satisfied andψ(t) has two real zeros t∗ and t∗∗, such that 0 < t∗ ≤ t∗∗, then
the solution x∗ is unique in B(x0, t∗∗) ∩Ω if t∗ < t∗∗ or in B(x0, t∗) if t∗∗

= t∗.

We finish this section by seeing the quadratic convergence of Newton’s method under conditions (P1)–(P3). We obtain
the following theorem from Ostrowski’s technique [6]. For this, we need that the scalar function ψ(t) has two real zeros t∗

and t∗∗ such that 0 < t∗ ≤ t∗∗. In this case,

ψ(t) = (t∗ − t)(t∗∗
− t)g(t)

with g(t∗) ̸= 0 and g(t∗∗) ̸= 0. Following then Ostrowski’s technique given in [6], we obtain next result, where a priori
error estimates are provided for Newton’s method and whose proof is similar to that given in [7]. Notice that the quadratic
convergence of Newton’s method is deduced from the result if t∗ < t∗∗ and linear if t∗ = t∗∗.
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Theorem 8. Suppose that (P1)–(P3) are satisfied, and ψ(t) has two real zeros t∗ and t∗∗ such that 0 < t∗ ≤ t∗∗.

(a) If t∗ < t∗∗ and there exist m1 > 0 andM1 > 0 such that m1 ≤ min{D1(t); t ∈ [t0, t∗]} andM1 ≥ max{D1(t); t ∈ [t0, t∗]},
where D1(t) =

(t∗∗
−t)g ′(t)−g(t)

(t∗−t)g ′(t)−g(t) , then

(t∗∗
− t∗)θ2

n

m1 − θ2
n ≤ t∗ − tn ≤

(t∗∗
− t∗)∆2n

M1 −∆2n , n ≥ 0,

where θ =
t∗
t∗∗ m1,∆ =

t∗
t∗∗ M1 and provided that θ < 1 and∆ < 1.

(b) If t∗ = t∗∗ and there exist m2 > 0 andM2 > 0 such that m2 ≤ min{D2(t); t ∈ [t0, t∗]} andM2 ≥ max{D2(t); t ∈ [t0, t∗]},
where D2(t) =

(t∗−t)g ′(t)−g(t)
(t∗−t)g ′(t)−2g(t) , then

mn
2t

∗
≤ t∗ − tn ≤ Mn

2 t
∗, n ≥ 0,

provided that m2 < 1 and M2 < 1.

5. Example

We illustrate the above-mentioned with the following nonlinear Fredholm integral equation

x(s) = s2 +
1
2

∫ 1

0
s t13

(
x(t)11/3 + x(t)5

)
dt, (3)

where s ∈ [0, 1] and x(s) is a solution to be determined.
Observe that solving Eq. (3) is equivalent to solving F(x) = 0, where F : Ω ⊆ C([0, 1]) −→ C([0, 1]) is such that

[F(x)](s) = x(s) − s2 −
1
2

∫ 1

0
s t13

(
x(t)11/3 + x(t)5

)
dt. (4)

Notice that a solution x∗(s) of Eq. (3) always satisfies

∥x∗(s)∥ − ∥s2∥ −
1
28

(
∥x∗(s)∥11/3

+ ∥x∗(s)∥5)
≤ 0,

which is true provided that ∥x∗(s)∥ ≤ ρ1 = 1.1146 . . . or ∥x∗(s)∥ ≥ ρ2 = 1.6364 . . . , where ρ1 and ρ2 are the two real
positive roots of the scalar equation deduced from the last expression and given by 1

28

(
t5 + t11/3

)
− t +1 = 0. Thus, we can

consider the domain

Ω = {x(s) ∈ C([0, 1]) : ∥x(s)∥ < ρ, s ∈ [0, 1]} ,

with ρ ∈ (ρ1, ρ2), as domain for the operator F .
Besides, as

[F ′(x)y](s) = y(s) −
1
2

∫ 1

0
s t13

(
11
3

x(t)8/3 + 5x(t)4
)
y(t) dt,

[F ′′(x)(yz)](s) = −
1
2

∫ 1

0
s t13

(
88
9

x(t)5/3 + 20x(t)3
)
z(t)y(t) dt,

[F ′′′(x)(yzw)](s) = −
1
2

∫ 1

0
s t13

(
440
27

x(t)2/3 + 60x(t)2
)
w(t)z(t)y(t) dt,

we have

∥F ′′′(x) − F ′′′ (̃x)∥ ≤
1
28

(
240
70

(
ρ1/3

+ ∥̃x∥1/3)
∥x − x̃∥1/3

+ 60 (ρ + ∥̃x∥) ∥x − x̃∥
)
,

so that F ′′′(x) is center ω-Lipschitz continuous at x̃with

ω(t) =
1
28

(
240
70

(
ρ1/3

+ ∥̃x∥1/3) t1/3 + 60 (ρ + ∥̃x∥) t
)

and we can apply Theorem 5 for guaranteeing the convergence of the method.
As the kernel of (3), s t13, is separable, we can then determine the corresponding operator [F ′(x)]−1. For this, we write

[F ′(x)y](s) = ℓ(s), so that, if there exists [F ′(x)]−1, we have

[F ′(x)]−1ℓ(s) = y(s) = ℓ(s) +
s
2

∫ 1

0
t13
(
11
3

x(t)8/3 + 5x(t)4
)
y(t) dt.



Please cite this article in press as: J.A. Ezquerro, M.A. Hernández-Verón, Auxiliary point on the semilocal convergence of Newton’s method, Journal of
Computational and Applied Mathematics (2018), https://doi.org/10.1016/j.cam.2018.03.015.

J.A. Ezquerro, M.A. Hernández-Verón / Journal of Computational and Applied Mathematics ( ) – 9

If we now denote
∫ 1
0 t13

( 11
3 x(t)8/3 + 5x(t)4

)
y(t) dt = I, multiply next-to-last equality by s13

( 11
3 x(s)8/3 + 5x(s)4

)
and

integrate it between 0 and 1, we obtain

I =

∫ 1
0 s13

( 11
3 x(s)8/3 + 5x(s)4

)
ℓ(s) ds

1 −
∫ 1
0 s14

( 11
3 x(s)8/3 + 5x(s)4

)
ds

provided that∫ 1

0
s14
(
11
3

x(s)8/3 + 5x(s)4
)

ds ̸= 1. (5)

Therefore,

y(s) = [F ′(x)]−1ℓ(s) = ℓ(s) +
s
2

∫ 1
0 t13

( 11
3 x(t)8/3 + 5x(t)4

)
ℓ(t) dt

1 −
∫ 1
0 t14

( 11
3 x(t)8/3 + 5x(t)4

)
dt
.

After that, if we consider, as it is usually done, the starting point x0(s) = s2 for Newton’s method, it follows that [F ′(x0)]−1

exists, since condition (5) is satisfied at x0(s) = s2,
[F ′(x0)]−1

 ≤ 1.2602 . . . = β ,
[F ′(x0)]−1F(x0)

 ≤ 0.0557 . . . = η and
b2 = 0.7820.

Next, if we choose ρ = 3/2 and x̃(s) = x0(s), then γ = 0, δ = 2.1980 . . . ,

ψ(t) = (0.0442 . . .) − (0.7935 . . .)t + (0.3910 . . .)t2 + (0.3663 . . .)t3 + (0.1203 . . .)t10/3 + (0.2232 . . .)t4,

α = 0.4777 . . . , ψ(α) = −0.1837 . . . < 0 and B(x0, s∗) ⊂ Ω , where s∗ = 0.0575 . . . is the smallest positive zero of ψ(t).
Therefore, the convergence of Newton’s method is guaranteed by Theorem 5 and taking into account the point x̃(s), where
F ′′′(x) is center ω-Lipschitz continuous, as starting point for the method.

In addition, we can also guarantee the convergence of Newton’s method starting at other points different from the point
x̃(s) where F ′′′(x) is center ω-Lipschitz continuous, so that the domain of starting points is then increased when center
conditions are required. For example, if we choose the starting point x0(s) =

7
10 s

2, that also satisfies condition (5), then
γ = ∥̃x(s) − x0(s)∥ = 3/10, β = 1.0680 . . . , η = 0.3309 . . . , b2 = 0.3271 . . . ,

ψ(t) = (0.3076 . . .) − (0.9604 . . .)t + (0.0695 . . .)t2 + (0.6342 . . .)t3 + (0.2232 . . .)t4

+ (0.0015 . . .) 3√10t + 3 + (0.0150 . . .) t 3√10t + 3 + (0.0502 . . .) t2 3√10t + 3

+ (0.0260 . . .) t3 3√10t + 3 + (0.0164 . . .) t3 3√60t + 18 t3,

α = 0.5187 . . . , ψ(α) = −0.0053 . . . < 0 and B(x0, t∗) ⊂ Ω , where t∗ = 0.4627 . . . is the smallest positive zero of the
last ψ(t). Therefore, the convergence of Newton’s method can be also guaranteed when the method starts at x0(s) ̸= x̃(s).
Moreover, from Theorems 5 and 7, the domains of existence and uniqueness of solution are respectively

{ν ∈ Ω : ∥ν(s) − x0(s)∥ ≤ 0.4627 . . .} and {ν ∈ Ω : ∥ν(s) − x0(s)∥ < 0.5725 . . .} .

On the other hand, we notice that condition (5) is satisfied in B(x0, t∗) for all x(s), so that the sequence {xn(s)}, given by
Newton’s method, is well-defined, so that we can apply the method for approximating a solution of Eq. (3). So, the direct
application of Newton’s method is

xn+1(s) = xn(s) − [F ′(xn)]−1
[F(xn)](s) = s2 +

s
2

An − Bn + En
1 − Dn

,

where

An =

∫ 1

0
t13
(
xn(t)11/3 + xn(t)5

)
dt, Bn =

∫ 1

0
t13
(
11
3

xn(t)8/3 + 5xn(t)4
)
xn(t) dt,

Dn =

∫ 1

0
t14
(
11
3

xn(t)8/3 + 5xn(t)4
)

dt, En =

∫ 1

0
t15
(
11
3

xn(t)8/3 + 5xn(t)4
)

dt,

and x∗(s) = (0.0567 . . .)s+ s2 is the approximated solution obtained after five iterations and shown in Table 1 with stopping
criterion ∥xn(s) − xn−1(s)∥ < 10−16. In Table 1, we can also see errors ∥x∗(s) − xn(s)∥ and sequence {∥[F(xn)](s)∥}. From the
last, observe that x∗(s) is a good approximation of a solution of (3). Moreover, see Fig. 1, the approximated solution x∗(s) lies
within the existence domain of solution obtained above.

6. Particular cases

Next, we see two particular cases of the last analysis: ω(t) = Qt and ω(t) = Qtp with Q > 0 and p ∈ [0, 1]. In the first
case, we say that the operator F (k)(x) is center Lipschitz continuous at x̃ and, in the second, F (k)(x) is center Hölder continuous
at x̃.
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Table 1
Approximated solution x∗(s) of (3), absolute errors and {∥[F(xn)](s)∥}.

n xn(s) ∥x∗(s) − xn(s)∥ ∥[F(xn)](s)∥

1 (0.02907312167342 . . .)s + s2 2.7681 . . .× 10−2 2.1285 . . .× 10−2

2 (0.05637087524162 . . .)s + s2 3.8408 . . .× 10−4 2.9114 . . .× 10−4

3 (0.05675488103969 . . .)s + s2 7.9640 . . .× 10−8 6.0357 . . .× 10−8

4 (0.05675496068006 . . .)s + s2 3.4277 . . .× 10−15 2.7825 . . .× 10−15

5 (0.05675496068006 . . .)s + s2

Fig. 1. Graph (the solid line) of the approximated solution x∗(s) of Eq. (3).

6.1. F (k) is center Lipschitz continuous at an auxiliary point

We consider that conditions (P1)–(P3) are relaxed, respectively, to the following conditions:

(R1) There exists the operator Γ0 = [F ′(x0)]−1
∈ L(Y , X) with ∥Γ0∥ ≤ β and ∥Γ0F (x0)∥ ≤ η; moreover, ∥F (i)(x0)∥ ≤ bi

with i = 2, 3, . . . , k − 1 and k ≥ 3.
(R2) There exists x̃ ∈ Ω such that ∥x0 − x̃∥ = γ , where x0 ∈ Ω , and ∥F (k) (̃x)∥ ≤ δ.
(R3) There exists Q > 0 such that ∥F (k)(x) − F (k) (̃x)∥ ≤ Q∥x − x̃∥ for x ∈ Ω .

Observe that ω(t) = Qt , with Q > 0, in this case, so that we can find a scalar function ψ̂(t) satisfying the hypotheses of
Theorem 5 by solving the following initial value problem⎧⎪⎨⎪⎩

y(k)(t) = δ + Q (t − t0 + γ ),

y(t0) =
η

β
, y′(t0) = −

1
β
,

y′′(t0) = b2, y′′′(t0) = b3, . . . , y(k−1)(t0) = bk−1,

since we can choose −
1

ψ̂ ′(t0)
= β , − ψ̂(t0)

ψ̂ ′(t0)
= η and ψ̂ (i)(t0) = bi, for i = 2, 3, . . . , k − 1, from (P1) and (R1). In addition, the

next result is established.

Theorem 9. The last initial value problem has only one solution φ̂(t) ∈ Cj([t0 − γ ,+∞)), with j ≥ k ≥ 3, which is:

φ̂(t) =
Q

(k + 1)!
(t − t0)k+1

+
1
k!
(δ + Qγ )(t − t0)k +

k−1∑
i=2

bi
i!
(t − t0)i −

t − t0
β

+
η

β
,

where Q , γ , δ, β ̸= 0, η and b2, b3, . . . , bk−1 are nonnegative real numbers. In addition, φ̂(t) satisfies conditions (P1)–(P3).

Notice that function φ̂(t) satisfies φ(t + t0) = φ(t) with

φ(t) =
Q

(k + 1)!
tk+1

+
1
k!
(δ + Qγ )tk +

k−1∑
i=2

bi
i!
t i −

t
β

+
η

β
, (6)

so that we can choose, in practice, t0 = 0, as we have done before for ψ̂(t).
Observe also that function ψ(t) is reduced to function φ(t) if ω(t) = Qt .
As a consequence of the above, the semilocal convergence of Newton’s method is guaranteed in the Banach space X , since

function φ(t) satisfies the conditions of Theorem 5, as we see in next result.
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Theorem 10. Let X and Y be two Banach spaces and F : Ω ⊆ X −→ Y a nonlinear q (q ≥ 2) times continuously differentiable
operator on a nonempty open convex domain Ω and φ(t) be polynomial defined in (6). Suppose that conditions (R1)–(R3) are
satisfied, there exists a root α > 0 of φ′(t) = 0 such that φ(α) ≤ 0, and B(x0, t∗) ⊂ Ω , where t∗ is the smallest positive root of
φ(t) = 0. Then, the sequence {xn}, given by Newton’s method (1), converges to a solution x∗ of F (x) = 0 starting at x0. Moreover,
xn, x∗

∈ B(x0, t∗) and

∥x∗
− xn∥ ≤ t∗ − tn, n ≥ 0,

where tn = Nφ(tn−1), with n ∈ N and t0 = 0.

6.2. Example

We illustrate Section 6.1 with the following nonlinear Fredholm integral equation

x(s) =
1
2
sin(πs) +

∫ 1

0
cos(πs) sin(π t)x(t)6 dt, (7)

where s ∈ [0, 1] and x(s) is a solution to be determined.
Observe that solving Eq. (7) is equivalent to solving F(x) = 0, where F : Ω ⊆ C([0, 1]) −→ C([0, 1]) is such that

[F(x)](s) = x(s) −
1
2
sin(πs) −

∫ 1

0
cos(πs) sin(π t)x(t)6 dt.

In addition, a solution x∗(s) of Eq. (7) always satisfies

∥x∗(s)∥ −
1
2
∥ sin(πs)∥ −

2
π

∥x∗(s)∥6
≤ 0,

which is true provided that ∥x∗(s)∥ ≤ ρ1 = 0.5113 . . . or ∥x∗(s)∥ ≥ ρ2 = 0.9404 . . . , where ρ1 and ρ2 are the two real
positive roots of the scalar equation deduced from the last expression and given by 2

π
t6 − t +

1
2 = 0. Thus, we can consider

the domain

Ω = {x(s) ∈ C([0, 1]) : ∥x(s)∥ < ρ, s ∈ [0, 1]} ,

with ρ ∈ (ρ1, ρ2), as domain for the operator F .
Besides, as

[F ′(x)y](s) = y(s) − 6
∫ 1

0
cos(πs) sin(π t)x(t)5y(t) dt,

[F ′′(x)(yz)](s) = −30
∫ 1

0
cos(πs) sin(π t)x(t)4z(t)y(t) dt,

[F ′′′(x)(yzw)](s) = −120
∫ 1

0
cos(πs) sin(π t)x(t)3w(t)z(t)y(t) dt,

[F (iv)(x)(yzwd)](s) = −360
∫ 1

0
cos(πs) sin(π t)x(t)2d(t)w(t)z(t)y(t) dt,

we have

∥F (iv)(x) − F (iv) (̃x)∥ ≤
720
π

(ρ + ∥̃x∥) ∥x − x̃∥,

so thatF (iv)(x) is center Lipschitz continuous at x̃withQ =
720
π
(ρ + ∥̃x∥) andwe can then apply Theorem10 for guaranteeing

the convergence of the method.
Hence, if we consider, as it is usually done, the starting point x0(s) =

1
2 sin(πs) for Newton’s method, we have β =

1.0585 . . . , η = 0.0048 . . . , b2 = 2/π and b3 = 45/8. If we now choose ρ = 3/4 and x̃(s) = x0(s), then γ = 0, δ =
120
π

,

φ(t) = (0.0045 . . .) − (0.9446 . . .)t + (0.3183 . . .)t2 + (0.9375 . . .)t3 + (1.5915 . . .)t4 + (2.3873 . . .)t5,

α = 0.3389 . . . , φ(α) = −0.2108 . . . < 0 and B(x0, s∗) ⊂ Ω , where s∗ = 0.0048 . . . is the smallest positive zero of φ(t).
Therefore, the convergence of Newton’s method is guaranteed by Theorem 10 and taking into account the point x̃(s), where
F (iv)(x) is center Lipschitz continuous, as starting point for the method.

In addition, we can also guarantee the convergence of Newton’s method starting at other points different from the
point x̃(s) where F (iv)(x) is center Lipschitz continuous, so that the domain of starting points is then increased when center
conditions are required. For example, if we choose the starting point x0(s) =

9
20 sin(πs), then γ = ∥̃x(s) − x0(s)∥ =

1
20 ,

β = 1.0346 . . . , η = 0.0025 . . . , b2 = 0.4176 . . . , b3 = 4.1006 . . . ,

φ(t) = (0.0024 . . .) − (0.9665 . . .)t + (0.2088 . . .)t2 + (0.6834 . . .)t3 + (2.1883 . . .)t4 + (2.3873 . . .)t5,
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Table 2
Absolute errors and {∥[F(xn)](s)∥} for (7).

n ∥x∗(s) − xn(s)∥ ∥[F(xn)](s)∥

1 5.2053 . . .× 10−4 5.2033 . . .× 10−4

2 1.2329 . . .× 10−8 1.2324 . . .× 10−8

α = 0.3520 . . . , φ(α) = −0.2356 . . . < 0 and B(x0, t∗) ⊂ Ω , where t∗ = 0.0025 . . . is the smallest positive zero of the last
φ(t). Thus, the convergence of Newton’s method can be also guaranteed when the method starts at x0(s) ̸= x̃(s). Moreover,
the domains of existence and uniqueness of solution are respectively

{ν ∈ Ω : ∥ν(s) − x0(s)∥ ≤ 0.0025 . . .} and {ν ∈ Ω : ∥ν(s) − x0(s)∥ < 0.5625 . . .} .

After that, we apply Newton’s method from x0(s) =
9
20 sin(πs) to approximate a solution x∗(s) of integral equation (7)

and obtain the approximation

x∗(s) = (0.0045 . . .) cosπs +
1
2
sinπs

after three iterations with stopping criterion ∥xn(s) − xn−1(s)∥ < 10−16. In Table 2, we show errors ∥x∗(s) − xn(s)∥ and
sequence {∥[F(xn)](s)∥}. From the last, observe that x∗(s) is a good approximation of a solution of Eq. (7).

6.3. F (k) is center Hölder continuous at an auxiliary point

We consider that conditions (P1)–(P3) are now relaxed, respectively, to next conditions:

(S1) There exists the operator Γ0 = [F ′(x0)]−1
∈ L(Y , X) with ∥Γ0∥ ≤ β and ∥Γ0F (x0)∥ ≤ η; moreover, ∥F (i)(x0)∥ ≤ bi

with i = 2, 3, . . . , k − 1 and k ≥ 3.
(S2) There exists x̃ ∈ Ω such that ∥x0 − x̃∥ = γ , where x0 ∈ Ω , and ∥F (k) (̃x)∥ ≤ δ.
(S3) There exist Q > 0 and p ∈ [0, 1] such that ∥F (k)(x) − F (k) (̃x)∥ ≤ Q∥x − x̃∥p for x ∈ Ω .

As in the previous case and taking now into account ω(t) = Qtp with Q > 0 and p ∈ [0, 1], we can find, from conditions
(S1)–(S3) and Theorem 5, a real function ψ̂(t) by solving next initial value problem:⎧⎪⎨⎪⎩

y(k)(t) = δ + Q (t − t0 + γ )p,

y(t0) =
η

β
, y′(t0) = −

1
β
,

y′′(t0) = b2, y′′′(t0) = b3, . . . , y(k−1)(t0) = bk−1.

So, the following result is then established.

Theorem 11. The last initial value problem has only one solution ϕ̂(t) ∈ Cj([t0 − γ ,+∞)), with j ≥ k ≥ 3, which is:

ϕ̂(t) =
Q

(1 + p)(2 + p) · · · (k + p)
(t − t0 + γ )k+p

+
δ

k!
(t − t0)k

+

k−1∑
i=2

1
i!

(
bi −

Qγ k−i+p

(1 + p)(2 + p) · · · (k − i + p)

)
(t − t0)i

−

(
1
β

+
Qγ k−1+p

(1 + p)(2 + p) · · · (k − 1 + p)

)
(t − t0)

+
η

β
−

Qγ k+p

(1 + p)(2 + p) · · · (k + p)
, (8)

where Q , p ∈ [0, 1], γ , δ, β ̸= 0, η and b2, b3, . . . , bk−1 are nonnegative real numbers. In addition, ϕ̂(t) satisfies conditions
(P1)–(P3).

Taking into account that ϕ̂(t) satisfies ϕ̂(t + t0) = ϕ(t) with

ϕ(t) =
Q

(1 + p)(2 + p) · · · (k + p)
(t + γ )k+p

+
δ

k!
tk
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+

k−1∑
i=2

1
i!

(
bi −

Qγ k−i+p

(1 + p)(2 + p) · · · (k − i + p)

)
t i

−

(
1
β

+
Qγ k−1+p

(1 + p)(2 + p) · · · (k − 1 + p)

)
t

+
η

β
−

Qγ k+p

(1 + p)(2 + p) · · · (k + p)
,

we can then choose, in practice, t0 = 0, as we have done before for ψ̂(t) and φ̂(t).
Observe that, if ω(t) = Qtp, then function ψ(t) is reduced to function ϕ(t) and it is reduced to φ(t) if p = 1.
Finally, the semilocal convergence of Newton’s method is then guaranteed in the Banach space X , since function ϕ(t)

satisfies the conditions of Theorem 5, as we see in the following.

Theorem 12. Let X and Y be two Banach spaces and F : Ω ⊆ X −→ Y a nonlinear q (q ≥ 2) times continuously differentiable
operator on a nonempty open convex domain Ω and ϕ(t) be polynomial defined in (8). Suppose that conditions (S1)–(S3) are
satisfied, there exists a root α > 0 of ϕ′(t) = 0 such that ϕ(α) ≤ 0, and B(x0, t∗) ⊂ Ω , where t∗ is the smallest positive root of
ϕ(t) = 0. Then, the sequence {xn}, given by Newton’s method (1), converges to a solution x∗ of F (x) = 0 starting at x0. Moreover,
xn, x∗

∈ B(x0, t∗) and

∥x∗
− xn∥ ≤ t∗ − tn, n ≥ 0,

where tn = Nϕ(tn−1), with n ∈ N and t0 = 0.

6.4. Example

In our last example, we illustrate the analysis given in this section with the following nonlinear Fredholm integral
equation

x(s) =
s
2

+

∫ 1
2

−
1
2

estx(t)19/5dt, (9)

where s ∈
[
−

1
2 ,

1
2

]
and x(s) is a solution to be determined.

Observe that, in this case, kernelK(s, t) = est is nonseparable, so that the application of Newton’s method to solve Eq. (9)
is not easy. To solve this difficulty, we first approximate K(s, t) = est by Taylor’s series. So,

K(s, t) = est = K̃(s, t) + R(ϵ, s, t); K̃(s, t) =

j−1∑
i=0

si t i

i!
, R(ϵ, s, t) =

esϵ

j!
sj t j,

where ϵ ∈ (min{0, t},max{0, t}), consider the integral equation

x(s) =
s
2

+

∫ 1
2

−
1
2

K̃(s, t)x(t)
19
5 dt, s ∈

[
−

1
2
,
1
2

]
(10)

and solve it by Newton’s method.
For this, we take into account that solving Eq. (10) is equivalent to solving F(x) = 0, where F : Ω ⊆ C

([
−

1
2 ,

1
2

])
−→

C
([

−
1
2 ,

1
2

])
is such that

[F(x)](s) = x(s) −
s
2

−

∫ 1
2

−
1
2

K̃(s, t)x(t)
19
5 dt.

Besides, a solution x∗(s) of Eq. (10) always satisfies

∥x∗(s)∥ −

 s
2

− (1.0104 . . .)∥x∗(s)∥19/5
≤ 0,

which is true provided that ∥x∗(s)∥ ≤ ρ1 = 0.2556 . . . or ∥x∗(s)∥ ≥ ρ2 = 0.8848 . . . , where ρ1 and ρ2 are the two real
positive roots of the scalar equation deduced from the last expression and given by (1.0104 . . .)t19/5 − t +

1
4 = 0. Thus, we

can consider the domain

Ω =

{
x(s) ∈ C

([
−

1
2
,
1
2

])
: ∥x(s)∥ < ρ, s ∈

[
−

1
2
,
1
2

]}
,

with ρ ∈ (ρ1, ρ2), as domain for the operator F .
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Table 3
Absolute errors for (10) and {∥[F∗(xn)](s)∥}.

n ∥x∗(s) − xn(s)∥ ∥[F∗(xn)](s)∥

1 1.0748 . . .× 10−5 1.0711 . . .× 10−5

2 2.2038 . . .× 10−12 7.5081 . . .× 10−12

In addition,

[F ′(x)y](s) = y(s) −
19
5

∫ 1
2

−
1
2

K̃(s, t)x(t)14/5y(t) dt,

[F ′′(x)(yz)](s) = −
266
25

∫ 1
2

−
1
2

K̃(s, t)x(t)9/5z(t)y(t) dt,

[F ′′′(x)(yzw)](s) = −
2394
125

∫ 1
2

−
1
2

K̃(s, t)x(t)4/5w(t)z(t)y(t) dt

and

∥F ′′′(x) − F ′′′ (̃x)∥ ≤ (19.3512 . . .)
(
ρ3/5

+ ρ2/5
∥̃x∥1/5

+ ρ1/5
∥̃x∥2/5

+ ∥̃x∥3/5)
∥x − x̃∥1/5.

Thus, F ′′′(x) is center Hölder continuous at x̃with

Q = (19.3512 . . .)
(
ρ3/5

+ ρ2/5
∥̃x∥1/5

+ ρ1/5
∥̃x∥2/5

+ ∥̃x∥3/5) and p =
1
5
,

so that we can apply Theorem 12 for guaranteeing the convergence of the method.
If we consider, as it is usually done, the starting point x0(s) =

s
2 for Newton’s method, we have β = 1.0859 . . . ,

η = 0.0056 . . . b2 = 0.8866 . . .. Moreover, if we choose ρ = 3/4 and x̃(s) = x0(s), then γ = 0, δ = 6.3838 . . . ,

ϕ(t) = (0.0052 . . .) − (0.9208 . . .)t + (0.4433 . . .)t2 + (1.0639 . . .)t3 + (5.7141 . . .)t16/5,

α = 0.2104 . . . , ϕ(α) = −0.1200 . . . < 0 and B(x0, s∗) ⊂ Ω , where s∗ = 0.0056 . . . is the smallest positive zero of ϕ(t).
Therefore, the convergence of Newton’s method is guaranteed by Theorem 12 and taking into account the point x̃(s), where
F ′′′(x) is center Hölder continuous, as starting point for the method.

Furthermore, we can also guarantee the convergence of Newton’smethod starting at other points different from the point
x̃(s) whereF ′′′(x) is center Hölder continuous, so that the domain of starting points is then increased when center conditions
are required. For example, if we choose the starting point x0(s) =

9
20 s, then γ = ∥̃x(s) − x0(s)∥ = 1/40, β = 1.0626 . . . ,

η = 0.0302 . . . , b2 = 0.7334 . . . ,

ϕ(t) = (0.0284 . . .) − (0.9465 . . .)t + (0.1262 . . .)t2 + (1.0639 . . .)t3

+ ((0.00004 . . .) + (0.0051 . . .)t + (0.2049 . . .)t2 + (2.7323 . . .)) 5√1 + 40t

α = 0.2096 . . . , ϕ(α) = −0.0993 . . . < 0 and B(x0, t∗) ⊂ Ω , where t∗ = 0.0308 . . . is the smallest positive zero of the
last ϕ(t). Therefore, the convergence of Newton’s method can be also guaranteed when the method starts at x0(s) ̸= x̃(s).
Besides, the domains of existence and uniqueness of solution are respectively

{ν ∈ Ω : ∥ν(s) − x0(s)∥ ≤ 0.0308 . . .} and {ν ∈ Ω : ∥ν(s) − x0(s)∥ < 0.3463 . . .} .

Next, we apply Newton’s method from x0(s) =
9
20 s to approximate a solution x∗(s) of integral equation (10) and obtain

the approximation

x∗(s) = (5.0044 . . .× 10−1)s + (1.3813 . . .× 10−5)s3 + (1.3743 . . .× 10−7)s5

after three iterations with stopping criterion ∥xn(s) − xn−1(s)∥ < 10−16. In Table 3, we show errors ∥x∗(s) − xn(s)∥ and
sequence {∥[F∗(xn)](s)∥}, where F∗ is the operator F∗ : C

([
−

1
2 ,

1
2

])
−→ C

([
−

1
2 ,

1
2

])
associated with (9),

[F∗(x)](s) = x(s) −
s
2

−

∫ 1
2

−
1
2

estx(t)
19
5 dt.

From the last, observe that x∗(s) is a good approximation of a solution of (9).
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