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Abstract 

Arnold, B.C., Logistic and semi-logistic processes, Journal of Computational and Applied Mathematics 40 
(1992) 139-149. 

Random geometric minima of logistic random variables are again logistic. Certain multivariate logistic 
distributions share this property. This phenomenon is exploited to develop and study a variety of stationary 
k-dimensional processes with logistic marginals 2nd semi-logistic marginals. 

Keywords: min-stable distribution, min-geometric stable distribution, autoregressive processes, multivariate 
logistic distribution. 

1. Introduction 

A random variable X is said to have a logistic distribution if its survival function is of the 
form 

F,(x) = P(X>x) =[l+exp(y)]-l, XER, (1 1) . 

in which p E R is a location parameter and c > 0 is a scale parameter. In such a case, we write 
X +3’(~, ~1. The standard logistic distribution corresponds to the choice p = 0, (T = 1. The 
logistic density is quite similar to the normal density and logistic models are viable competitors 
to normal models in a variety of settings. Variables which are frequently well described by 
logistic models include a variety of biological measurements and the logarithms of many 
economic variables (such as exchange rates, income and wealth, etc.). A broad spectrum of 
multivariate logistic distributions have been studied (see [5]!. The focus of this paper is the 
study of stationary stochastic processes with univariate or multivariate logistic marginal distri- 
butions. The goal is to provide logistic alternatives to the perhaps overused normal processes, 

Correspondence to: Prof. B.C. Arnold, Department of Statistics, University of California, Riverside, CA 92521, 
United States. 
* The paper has been presented at the Special Session “Applied Probability” of the American Mathematical Society 

Meeting, University of California at Santa Barbara, November 9-10, 1991, organized by A.P. Godbole and S.T. 
Rachev. 

0377-0427/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 



140 B.C. Arnold / Logisric and semi-logistic processes 

described, for example, in [lo]. The models introduced are, to some extent, parallel to the 
exponential processes developed in [l l] and elsewhere and the analogous Linnik processes 
introduced in [l]. The exponential and Linnik models have a structure determined by the 
geometric compounding closure property of exponential and Linnik variables. The parallel 
geometric minimization closure property is exploited to develop logistic models. These concepts 
will be introduced in Section 2. The following sections discuss a variety of related logistic 
models. The emphasis is on the multivariate case. Appropriate references will be given to 
earlier papers in which univariate models have been described. 

2. Geometric millh&~tiOn 

Suppose that X,, X,,. . . are independent identically distri’luted (i.i.d.1 random variables 
each having a logistic& G) distribution. Suppose also that N, independent of the Xi’s, has a 
geometric(p) distribution (i.e., P(N = n) =pqn-I, n = 1, 2,. . . ). If one defines 

Y= t:icnhiXi, (2 I) . 

then by a sim$ conditioning argument it can be verified that 

Y “P(fi + CT log p, u). (2 2) . 

Consequently we have 

Y-crlogp ix,. (2 3) . 
In fact, if (2.3) holds for every p E (0, 11, then the common distribution of the Xi’s must be 
logistic. Technically it is enough for (2.3) to hold for two distinct values of p, say p1 and p2 
provided that {pi/p,“: j = 0, 1, 2,. . . , k = 0, 1, 2, . . . ) is dense in W. Alternatively, having (2.3j 
hold for one value of p and invoking a regularity condition on the rate at which F’(x) 
decreases to 0 as x decreases to --oo is enough to guarantee that the Xi’s and consequently Y 
must be logistic variates (a convenient early reference for these observations is 171). 

There are multivariate analogs to this. Suppose now that X1, &. . . are independent 
identically distributed k-dimensional random vectors and that N,%dependent of the ~i’S, is a 
geometric(p) random variable. Using a coordinatewise definition of the minimum of random 
vectors, we may define 

Y= min X. . 
- 1 GizzN-’ 

Suppose that for any p there exists a vector c(p) > 0 such that - 

(2 4) . 

In such a case the common distribution of the xi’s is said to be min-geometric stable (paralleling 
the definition of max-geometric stability provided in [13]). 

In one dimension we have seen that only logistic distributions will satisfy (2.5). In fact, using 
[13], we can also characterize the class of k-dimensional distributions for X which satisfy (2.5). 
They turn out to have logistic marginals and provide a potentially rich collection of k-variate 
logistic distributions, many of which are as yet unexplored. Before identifying the class of 
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solutions to (2.5) we will make two comments. First, a remark on the interchangeability of 
maximum and minimum in many logistic models, and second, a remark !V semi-logistic 
distributions, the distributions encountered when (2.3) (or (2.5)) holds for only one value of p. 

The logistic density is symmetric (about p). Consequently a geometric minimum of 
logistic(p, c+) random variables has the same distribution as a geometric maximum of 
logistic( -p, (T) random variables. Consequently, if the Xi’s are independent identically dis- 
tributed logistic random variables and N is geometric(p) (independent of the Xi’s), then 
defining 

Y= min Xi 
ldi<N 

and 
Z= max Xi, 

1 ,ci<N 

there exists c(p) > 0 such that 

Y+c(p) ix,, (2 6) . 

Z-c(p) ky, (2 7) . 

and 

Y i Z - 2c(p). ! 8) 3 _. 

Any one of three properties can be used to characterize the logistic distribution (see [9]). 
Naturally, k-dimensional analogs could be readily stated. Important for our purposes is the 
ability to easily translate max-geometric stable and max-stable results to corresponding min-ge- 
ometric stable and min-stable statements. 

Now we turn to semi-logistic distributions. Suppose that X,, X,, . . . are independent 
identically distributed random variables such that (2.3) holds for one particular value of p. It is 
not difficult to verify that F, the common survival function of the Xi’s, must satisfy 

F(x)= [l+&(x)]-‘, 
* 

(2 9) . 
where the function # is nondecrcasing, right-continuous and satisfies 

1 
$(x) = p@(x +a log P), (2.10) 

f Jr some p E (0, 1) and some (T > 0. Distributions of this type are called semi-logistic distribu- 
tions (Pillai [12] introduced closely related semi-Pareto distributions). The function # which 
appears in (2.9) can be quite arbitrary. To construct such a function, first define II, * to be a 
completely arbitrary nondecreasing right-continuous function on the interval [0, --(T log p) 
subject only to $*( -0 log p) < +*(0)/p. Then use (2.10) to extend the definition of $* over 
the entire real line. The simplest and best behaved solution is 

J/(x) =a$“. (2.11) 

This of course brings us back to the logistic distribution. 
Now we turn to identifying the class of distributions satisfying (2.5). Let F denote the 

common survival function of the Xi’s (i.e., F(x) = P(xj > x)). From [13, Proposition (3.311 we 
conclude that F is a min-geometrz stable sur&al function if and only if exp(1 - l/F) is the 
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survival function of a min-stable distribution. Then we refer to 114, Chapter 51 for the 
observation that such min-stable distributions must be multivariate extreme value distributions. 

ext, our earlier one-dimensional results assure us that the marginal distributions of F must be 
logistic. The accompanying mm-stable sunrival function exp( 1 - l/F) must have double expo- 
nential marginal survival functions (i.e., its marginal survival function must be of the form 
exp( -e”)). But a convenient characterization of such survival functions is available 114, 
I’roposition (Xl 111. Eventually we obtain the following characterization of multivariate-min-ge- 
ometric stable survival functions, i.e., survival functions F, such that (2.5) holds for every 
p E (0, 1). There must exist nonnegative integrable functio%s fi( s), i = 1, 2, . . . , k, on [O, l] 
satisfying 

=l, i=l,2 ,..., k, 

and 
-1 

gyk [ fi(s) e(x~-r~)/q ds I 1 
. . . (2 12) 

The logistic character of the marginals is readily apparent in (2.12). Setting p = 0 and (+= 1 in 
(2.12) yields a standardized version of the distribution. The corresponding value &f c( p)<n (2.5) 
is then ( - log p)l. Not every k-dimensional logistic distribution can be written ?n the form 
(2.12) (for exampie, many of those described in [5] do not have this character). Two examples 
which do satisfy (2.12) are 

1 
-1 

(2.13) 

r 

F&) = [l+ _&XI- [ +-‘J’. 
It is easy to directly verify that in both these cases we hpxle Y + ( - log p)l g X. 

Semi-logistic versions of (2.12) are readily described. Theyare of the f6rm- 

(2.14) 

(2.15) 

where the fi’s integrate to 1 as before and the g,‘s are nondecreasing, right-continuous 
functions which satisfy gi( Xi) = g,(xi + log p)/p. 

3. Autoregressive logistic processes 

We concentrate on standard logistic processes; location and scale parameters Al, and cr can be 
introduced later in an obvious way. TInis we are interested in stationary stoch%tic p?ocesses 
with k-dimensional state space whose stationary distribution has logistic marginals. Since our 
constructions will involve geometric minimization, we additionally will require that the station- 



B.C. Arnold / Logistic and semi-logistic prccesses 143 

ary distribution be min-geometric stable, that is to say, 5ts surviva! function is of the form (2.12) 
with p = 0 and (+= 1. Semi-logistic versions involving (2.15) coulrl of course also be described. 

Le&j,, c,,:.. %e a sequence of independent identically distributed “innovation” random 
vectors with common survival function 

-1 . 
Now define a Markov process &Jr= 1 as follows: 

ZO=50~ 

and for n 2 1, 

X -fl =$-I + (-log P)& with probability p, 

= min(&_ 1 + ( - log p)l, sn), with probability 1 -p, (3.2) 

where p E [0, 1). p is a dependence parameter. A one-dimensional version of this process was 
introduced in [15]. Yeh-Shu [16] discussed a multivariate Pareto process closely related to a 
special case of the present process corresponding to the simple sulcvivai function 

( I 
-1 

FE(X) = 1 +- i e”l . 
-- 

i=l 
(3 3) . 

It is not difficult to verify that the process (3.2) has (3.1) as its long-run distribution 
regardless of the initial distribution of &. The choice of z0 = Ed yields the desired stationary 
process called a k-dimensional autoregress& iogisiic process. The marginal ~EUL~SS~;;S ;;l,$), 
i= 1,2,... , k, are of course autoregressive logistic processes of the kind studied in [8]. It is not 
difficult to verify that for each n and i, 

P(X,(i) >X,_,(i)) = +(l +p). (3.4) 

This observation may be used to derive a simple consistent estimate of p based on a realization 
from the process X’, namely 

fib.-- ,“, $ $I(Xj(i) >Xj-l(i)) - 1. 
[ j-l i-l 1 

(3 5) . 

Location and scale parameters may be consistently estimated using marginal sample moments. 
The general problem of estimating the structural functions fr< s), . . . , fk( sj appearing in (3.1) 
would appear to be quite challenging. If these fi’S are assumed to be known up to a few 
unknown parameters, then it will generally be possible to construct consistent estimates based 
on mixed sample moments from the observed series. In one dimension, Arnold and Robertson 
[8] observed that the autocorrelation, provided p is not too small, was approximately given by 

P(X,9 Xfl+k) G Pk’2* (3 6) . 

Simulations lend support to this assertion. If p is close to zero, the process (3.2) behaves like a 
sequence of i.i.d. k-dimensional logistic variables. Here again, one-dimensional simulations 
support this claim, using both estimated spectra and estimated b&spectra. In one dimension, 
sample paths exhibit stretches of regular increase interspersed by sporadic drops. The character 
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of the sample paths of the k-dimensional processes is a little harder to describe, even though, 
marginally, the pattern of regular increases with sporadic drops is necessarily present. 

A possibly distressing feature associated with the autoregressive logistic process (3.2) is that 
the joint distribution of (X,, X,, J is singular. In practice this means that, given a realization 
from the process, one could actually determine the value of p exactly, by looking for tied 
marginal increments. A simple modification which alleviates this problem is to make the value 
p in (3.2) a random variable. Specifically we postulate that, in addition to the i.i.d. sequence 

{$=o. we have a further i.i.d. sequence { &}I=! independent of the E’S whose common 
drstribution function has support [O, 1). We then define our s.0 .Acw k-dimensi6nal logistic process 
e>4a 

isI = 509 

and given B, = p and Xn = sn we define 

X _ ntl =x_rr * (-logP)& with probability p, 

= mink, + (-ldg p)& ~,+$ with probability 1 -p. (3 71 . 

It is not difEicult to verify that this yields a stationary k-dimensional logistic process with 
absolutely continuous joint distributions for (X,, zn+ I 1. See [8] for more detailed discussion of 
univariate processes of this type, especially the so-called power-logistic processes which 
correspond to tire choice F,(p) = ps as a common distribution for the {B,} sequence. Included 
in that paper is a discussion of the potential of such processes for modelling currency exchange 
rate series. 

4. Extremes ftom autoregressive logistic processes 

Let Xi, zZ,... be a realization from an autoregressive standard logistic process of the form 
(3.2). Define 

and 

T -n = min X. 
l<i,cr+ (4 1) . 

Mn -5 max Xi . 
1<:‘<n- 

(4 2) . 

What can be said about the distribution of these extreme vectors? 
First consider the minima vector Tn. Sample traiectories Xn increase except when an 

innovation (an E,) is observed (with probability 1 -p) and it has at least one small coordinate. 
The number of&ovations observed at times 2, 3,. . . , n has a binomial(n - 1, 1 - p) distribu- 
tion. Tn will exceed t if XI and every one of the random number of observed innovations 
exceeds t. Consequently 

T 2 min+ _n i<N’- (4.3) 

where the Ei’S are i.i.d. with common distribution (3.1) and N - 1 * binomialcn - 1, 1 -p). If 
we rewrite (3.lj in the abbreviated form 

F,(x) = [l +g(x)] -I, -- - (4 4) . 
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we may verify Qhat 

I- : +pg(t) It-l 
FT (t) = [’ +g(l)]-l 1 +g(t) I -1 

l -.n - (4 5) . 

From this or frcm well-known results about minima of random numbers of random vectors, the 
asymptotic distribution of 7’n is readily obtained. 

rdext consider the vector of maxima AJ_. In the one-dimensional case Yeh et al. [15] 
presented a technique which permits a simple evaluatioir of the distribution of IM,. They dealt 
with Pareto processes, but a simple logarithmic transformation changes them to logistic 
processes. 

In one dimension, one defines a class of level-crossing processes as follows. For any t E R, 

define a (0, 1) process by 

KW = 
( 

0, if &>t, 
1 

9 if X&t. 

These level -brossing processes turn out 

0 

0 

I 

I +pe’ (1-L) et 
-- 

1 +e’ 1 +e’ 1 
1-P p+e’ ’ 

l- - 
\ l+e’ 1 +e’ J 

We then argue easily that, for any t, 

(4 6) . 

to be Markov chains with transition matrices given by 

(4.7) 

P(M,a)=P(W@)=l, W2(t)=1,...,Wn(t)=l) 

et p+e’ n4 
=- - ( 1 l+e’ l+e’ l 

From this the asymptotic distribution of Mn 
In the case of a k-dimensional process we 

bY 

(4.8) 

is readily obtained. 
can define level-crossing processes for each i E lRk 

(4 9 . 

and we can again observe that 

p(g, gt)=P(W,(t)=l, W2(~)=19.**rWn(t)=l)* (4.10) 

If the {w,(t)} processes can be shown to be MarLov processes with simple transition matrices 
analogous to (4.7), then the distribution of & will be easy to derive. One is tempted to 
conjtrture that 

P(M, <t)= - (4.11) 

where g(t) is as defined in (4.4). At present, the question of the exact distribution of F2 
remains open. 
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The Markovian character of the level-crossing processes (in one dimension) was shown in [6] 
to essentially characterize the autoregressive logistic process among stationary processes of the 
form x, = min( X,_ ,, Y,) + c. The possibility of a k-dimensional analog of this result is 
intriguing. 

5. Lagistic processes involving geometric minimization 

In this section we describe a k-dimensional version of the logistic process introduced in [4]. 
Let (&}z=, be a sequence of i.i.d. Bernoulli(p) random variables (P(U, = 1) =p), where 
p E (0, 1). Also let y’ be a sequence of i.i.d. k-dimensional logistic random vectors with 
common survival function (3.1), i.e., 

-1 

P(v, aL.)= l+ 
- [ 

1 

11 max fr(s) e’; ds . 
() l<i<k 1 1 (5 1) . 

Recall that geometric minima of random variables of the form (5.1) have survival functions 
which differ from (5.1) only by a translation. This is exploited to define our process. A natural 
sequence of geometric random variables can be associated with the Bernoulli sequence {U,}. 
Define {NE}:=, as follows: 

(N, = 1) = (U, = l), 

and for i = 2,3,. .., 

(Nn=i)=(U,=O, Ir,+,=O,...&+,_,=O, L;+i_l=l). (5 21 . 

In words, N, is the waiting time until “success” among trials n, n + 1,. . . . By construction, the 
{N,}‘s are dependent geometric random variables. All of them are independent of the {y.J 
sequence (since the Q’s were independent of the yn’s). Our stationary standard k-dimensional 
logistic process may then be defined as follows, for n = 0, 1, 2, . . . : 

X -n = min Vn+i_l + (-log p)i. ( is-y,- ) - (5 3) . 

Each xn has survival function (5.1). The sample paths of such processes have “flat spots”, 
instances in which &=zn+l= a.- =Xn+k (this occurs when U,=O, Un+l=O,...,U’+k=O; 
so the length of a “flat spot” is geome&). Such phenomena might occur in economic series 
perhaps, for example, due to market closures. The frequency of ties (gn = Xn + I) in an observed 
series can be used to generate a simple consistent estimate of p. 

Several variations of this scheme show promise of developing flexible families of k-dimen- 
sional logistic processes and are currently under investigation. 

One possibility involves replacing the i.i.d. Bernoulli sequence {U,) by an i.i.d. multinomial 
sequence &“I where each & is a k-dimensional random vector of O’s and l’s such that 

‘(!!n = s) ‘&, - s E (0, l)“, . - - (5 4) 

(where C, p, = 1). 
Again -take the yn’s to be i.i.d. with common survival function (5.1). Now define our 

stationary logistic process in a manner analogous to that used in (5.3) but this time looking 
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ahead coordinatewise for a U, with a 1 in the given coordinate and then minimizing the 
appropriate corresponding coordinates of the /n’s. Thus for the Ith coordinate X,JZ>, we define 
a one-dimensional geometric random variable 

N,(l) = waiting time in trials n, n + 1,. . . 

until a U,, is observed with a 1 in the Zth coordinate. 

Then defi? ,where V,(E) is the Ith coordinate of Is,,) 

Lrn (1) = r& K+i- I(l) - log Pr*, (5 5) . 
’ n 

where p: = c(p,: sI = 1, s E (0, l}k}. Given a realization of such a process it is possible to 
estimate all the 17,‘s by obs&ing the frequency of various configurations of coordinatewise ties. 

A second possibility involves a relaxation of the assumption that the Un’s are i.i.d. Bernoulli 
random variables. Instead we might postulate that they represent a realization of a stationary 
Markov chain with state space {O, 1). We can still define a sequence of random variables {N,} as 
in (5.2). However, they will no longer have a common geometric distribution. If the transition 
matrix for the Markov chain {U,,} is of the form 

then we may verify that 

P(N,, = 1) = PO 
Po+P1’ 

and for k 2 2, 

P(N,,=k)= 

(5 6) . 

(5 7) . 

Geometric minima of random vectors with survival function (5.1) are again of the same type. 
However, in the current setting if we use an analog of (5.3) to define our process 

X -n = min T/,+i_*, 
i&N,- 

(5 8) . 

then, since our Nn’s are not geometric (having distribution (5.7) instead), we have to be devious 
in selecting a common (nonlogistic) distribution for the yn’s to ensure that the resulting process 
is indeed a stationary k-dimensional logistic process with common survival function (5.1) for the 
&‘s. In one dimension it is shown_in [3] that the appropriate common distribution for the V’s 
may be described as follows. Let U be a uniform(O, 1) random variable; then define 

o2 &l_p”&_ _-_- pop1 

PO +p1 Po+Pl [l- (1 -PO)01 ’ 
(5 9) . 

and finally 

W 
V-log - 

i I 1-P. 
(5.10) 
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In that report an analogous development is provided under the assumption that the U,, 
sequence is a second-order Markov chain. It is possible to estimate the dependence parameters 
of the model (the elements of the transition matrix of r/,?, by observing the frequencies of ties 
and increases in the observed series X,. 

In principle we can easily extend these results to higher dimensions. If we use {N,} with 
distribution (5.7) in our definition of & using (5.8, then, to obtain a logistic process, the 
common survival function of the Ln’s must satisfy 

-1 
14 
Fv2 

[l - (1 -i&o,] l 

(5.11) 

Consequently, FJr) is the solution of a quadratic equation. It would be nice to have a simple 
simulation scten?e,analogous to that defined in the one-dimensional case in (5.8) and (5.9), for 
this k-dimensional distribution. 

6. Related processes 

(a) Higher-order autoregressive logistic processes can be developed. See [16] for details in 
the univariate case. The discussion is in the context of Pareto processes but only a minor 
modification is needed, see (b). 

(b) If IX,} is a k-dimensional process and if we define {KJ by coordinatewise exponentia- 
tion, i.e., 

X,(l) = exJf), 

then we have a k-dimensional Pareto process. Several of the concepts in the current paper 
were first discussed in such a context (usually in one dimension). 

(cl Analogous exponential and Linnik processes may be obtained by replacing geometric 
minimization by geometric summation throughout (see [l]). 
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