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Abstract 

The concept of h-stability is studied and compared with the classical stabilities. Basically, the h-stability is applied to 
obtain a uniform treatment for the concept of stability in difference equations. 
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1. Introduction 

In [8] the notion of h-stability was introduced in order to obtain results about stability for weakly 
stable difference systems under some perturbations (at least, for systems with stabilities weaker than 
those given by exponential stability and uniform Lipschitz stability). In Section 4 of this paper we 
obtain asymptotic formulae for these systems, which state new results about asymptotic behavior for 
perturbed systems under general hypotheses. Moreover, the corresponding results for linear difference 
systems give new insights about discrete Levinson’s Theorem (see [2, 31). 

Consider the following systems of difference equations: 

x(n + 1) = A(n)x(n), (1) 

Yk + 1) = 4n)y(n) + f(n, y(n)>, (2) 

where X(X>, y(n) E R”, f : No x R” + R”, i’V0 = {no,no + 1,. . . ,no + k, . . .} (no a nonnegative integer, 
for no = O,i% =: N the set of positive integers); f(n, 0) = 0 for all n E No and A(n) is a discrete 
m x m matrix function defined for all n E No. 
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For no ENS and x0 E R”, let x(n,no,xo) = x(n), n >/n o, denote the solution of (1) with x(no, no,xo) 
=x0. Then, x(~z,~z~,x~) = @(Iz,Y~~)x~, where @(n,no) is the fundamental matrix of (1) defined as 

n-1 

@(n,no) =A(n - l)A(n -2)...A(n,) = n A(i). 
i=?Q 

In Section 3 we give sufficient conditions in order to ensure the perturbed system (2) inherits the 
stability from the original system (1). We shall study the perturbed system (2) assuming that the 
original system (1) is h-stable, and the perturbation f = f(n, y) satisfies 

If(C VII d f: Li(n)COi(lYl), p EN (3) 
i=l 

with &:No + [O,m) (l<‘< ) , I, p properly summable functions and Coi : [0, co) + [0,x1) (1 d i < p) 

suitable nondecreasing and positive functions on (0,~). We shall prove that under certain conditions, 
the zero solution of (2) is also h-stable. In particular, if (1) is uniformly Lipschitz stable then (2) is. 

An important class of admissible functions Coi, is any polynomial system: 

Oj(U) = ZP, yi>/l (1 <i<p> 

for which, if &(n)hy~(,)h-‘(n + 1) E k’,(N,) then (2) is also h-stable. Thus, the results in this paper 
extend many of the classical stabilities appeared in the literature (see [ 1, 4-6, 111). 

2. Preliminaries 

Let us consider the difference system 

with g(n,O) = 0 for all IZ E NO, and g : No x IR” + [Wm. Then, 

(4) 

Definition 2.1 (Medina and Pinto [S]). System (4) is called an h-system around the null solution, 
or more briefly an h-system, if there exist a positive function h : No + R and a constant c 2 1 such 
that 

for lx01 small enough (h-‘(n) =: l/h(n)). 

The function h as well as the constant c depend only on g. If h is a bounded function, then an 
h-system allows the following types of stability: 

Definition 2.2 (Medina and Pinto [S]). The zero solution of (4), or more briefly (4), is said to be 
(hS) h-stable if there exits 6 > 0 such that (4) is an h-system for 1x01 f 6 (and h is bounded). 
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Definition 2.3 (Medina and Pinto [S]). The zero solution of (4) or more briefly (4) is said to be 
(GhS) globally h-stable if (4) is an h-system for every x0 ED; where D C R” is a region which 
includes the origin (and h is bounded). 

Lemma 2.4 (Medina and Pinto [S]). The linear system 

x(n + 1) = A(n)x(n), x(n0) =x0, (6) 

where A(n) is an m x m matrix is h-stable, fund only if, the following condition (A) holds; 
(A) There exist a constant c 3 1 and a positive and bounded function h dejined on N,, such that 

for every x0 E F!“, 

I@(n,no)l d ch(n)h-‘(no), n > no, 

where @(n,no) is the fundamental matrix of system (6). 

(7) 

We shall use the following theorem, which gives an explicit pointwise estimate, independent of u, 
for a function u = u(n) which satisfies the inequality 

u(n) 6 c + 5 F A(j)Wi(u(j)) 1 , p EN, (8) 
i=l j=no 

where 
(I) the functions coi : [O,CQ) + [0, cc), 1 d i G p, are continuous and nondecreasing, ai > 0 for 

u > d and CO~+~/U~ (1 <i < p - 1) are nondecreasing on (d, 00). 
(II) u:N + [d,oo) and /2:N -+ [d, co ) are functions, c is a constant such that c > d. 
We define the functions 

(i) K(U) = JUr ds/ai(s), u > 0, Ui > 0 (1 <i < p) and IF-’ is their inverse function. 
(ii) cpo(u) = u and 

qi(u)=&O$;_~ o...o&, l<i<p, (9) 

where 4i(U) = I+-‘[F(u) + ai], LX, 2 0 is a constant. Thus, we can establish the following theorem: 

Theorem A (Medina and Pinto [9]). Let d E R and assume (I) and (II) hold Let m EN such that 

Cti(m) =I 5 Aj(j) < r ds (l<i<p), 
j=l qJ-l(C) 4s) 

where the functions qi (0 <i< p - 1) are given in (9) with ai = ai( If the function u satis$es 
the inequality (8), then 

for any n < m. 
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3. Main results 

In this section we shall obtain some h-stability criteria for the perturbed system (2) satisfying (3). 

Theorem 3.1. Suppose that (1) is h-stable and the perturbation f = f (n, y) is defined on N x R” 
satisjjing (3), where 

(H, ) The functions Coi (1 d i < p) satisfy conditions (I) and for any i, 1 d i < p, there is a function 
ri dejined on (0,oo) such that 

~0~(c(u) < rj(a)Oi(u) jbr a > 0, 2.430, (10) 

and 
(H2) the functions Ibi (1 <i < p) are nonnegatives on No. Furthermore, suppose that 
(H3) there exists 6 > 0 such that 

- (l<i<p), (11) 

where c is the constant satisfying (7), and 

@(no, yo) = Iyo, j=n” hO F A(j)h-‘(j + l)rl(lyolh(j)h-‘(n,)) (1 <i <p>, 

and 

qi = Ic; 0 $!I;.1 0 ” ’ 0 $1, l+bj(U) = J4-‘[Pqu) + d,(d)]. 

Then, for all no 3 0 and / yo( smaZZ enough any solution y(n) = y(n,no, yo) of (2) satisfies 

ly(n,no, yo)l G Co,(c)lYolh(n)h-‘(no), n>no. 

Proof. By variation of parameters formula, the solution y(n) = y(n, no, yo) of (2) satisfies 

n-l 
y(n) = @(n, n0)y0 + C @(n,j + 1 )f (j, v(j)) for n 2 no. 

/=4 

Thus, using (3) and (7) we have 

n-1 

Iv(n)/ < cb0l4n)h-‘(n0) + c ch(n)h-‘(j + 1) f: ~LW~(IY(.II)~ (12) 
j=no i=l 

or, denoting k’(n,no, yo) = lyolh(n)h-‘(no) for 0 < lyol < 6, we have that u(n) = ly(n)l/l(n,no, yo) 
satisfies for 0 # Iyol: 
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So, by Theorem A it follows that 

for y1 >no, where qi are the functions defined in (H,). The inequalities (11) show that this estimation 
is valid for every M ano and that the function in the right member is bounded by 

Hence, u(n) < cp,(c) for II 3 n o, that is, for ]yo] small enough, 

lY(Vo,Yo)l d cp,(c)lYoIh(n)h-‘(no), n 3 110. 

Therefore, the perturbed system (2) is h-stable because, from [9, Corollary 21, we have cp,(c) 3 
c>l. cl 

Remark 3.2. If in (11) the inequalities are not strict, then in general the conclusion of Theorem 3.1 
is not true. 

By considering A E 0 in (1 ), we obtain an useful criteria for the Lipschitz stability. 

Corollary 3.3. Suppose that for (n,x) E No x W”, 

where oi (1 <i < p) satisfy (I), and Ai (1 <i < p) are nonnegative and Ibi E e,(No). Further, assume 
that Jkr 0 < 1x0/ < 6, 

4i(6) =: Sup 
f”iM> 

i 1 ,xoI 0 < 1x01 < 6 
i 

is jinite and verifies 

where vi is the same of (H3), Theorem 3.1. 
Then, for all no 2 0 and 1x0/ small enough, any solution x(n,no,xo) of system 

x(n + 1) = f(n,x(n)) 

is Lipschitz stable, that is, there exists a constant c3 1 such that 

Ix(nz,nO,xO)I G+o(, n2n0, 

for Ix0 I small enough (respectively globally Lipschitz stable if lx01 =C 00). 

(13) 

(14) 
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Remark 3.4. Corollary 3.3 extends Theorem 2.13 [3] to difference equations with several nonlinear- 
ities. 

Similarly, if (1) is exponentially asymptotically stable, we have: 

Corollary 3.5. Assume that (1) is exponentially asymptotically stable and that (3) holds, where 
the functions Coi (1 <i < p) satisfy (Hi) such that 

ri(CtU) < W”j(U) < MCtU (1 <i < p) 

for 0 < CI < 1, 0 < u < 6, where A4 > 0 is a constant, and the functions /Ii (1 d i < p) are nonnegatives 
and Eli E ~“,(l$,). Further, suppose that for some 6 > 0, Ki(6) (defined in (13)) satisjes 

CKi(6) < - (l<i<p>, 

where Cpi is shown in (Hj) of Theorem 3.1 and c is the constant in (7) for h(n) = e-““. Then, the 
perturbed system (2) is exponentially asymptotically stable. 

The stabilities considered in Corollaries 3.3 and 3.5 are Lipschitz stabilities, that is, for which 
(14) holds. In the next corollary we shall study h-stability and Lipschitz stability simultaneously, 
assuming that the perturbations is “polynomial”. 

Corollary 3.6. Assume that (1) is uniformly h-stable, that is, h-stable such that h(n)hh’(q,) <A4 
for n 3 no and M > 1 a constant. Furthermore, the perturbation f (n, y) satisfies condition (3) for 
OIL = ~71, yi 2 1, 1 <i <p, where &(n) E e,(No). 

Then. the statements of Theorem 3.1 remain valid. 

Proof. In fact, for Oi(U) = uyI, Ui+l/‘Oi is nondecreasing, if and only if, yi < yi+r and ri = u),. Thus, 
if yi Z 1, ( 11) follows provided that 

Ki(6) = (6M)“-‘ai < C-' (15) 

where 

cli = FAi(j) (ldi Gp). 
j=no 

The existence of such 6 will follow from the fact that for y1 > 1, Ki(0’) = 0. 
Since 

s,z,,,) : = { :yyi - l)-‘(cp,_,(c))‘-y’ i; ;: I :: 
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we must study only the case yi > 1. So, let 6’ > 0 satisfying (1.5) for i = 1: 

K’(6,) = (&M);“-‘a, < c-‘/(y, - I), a, = 2 A’(j). 
j=no 

Moreover, also there exists & <6,, satisfying (15) for i = 2: 

&(82) = (&W)WX* < c-‘(@,(c))‘-;‘2/()‘2 - 1) 

=c-‘(yz - I)-‘(IP_‘[W,(c) + cK,(&)])‘-;‘2, 

because J&(0+) = 0. Thus, we find 6, 3 S2 2. . ‘3 6, such that 

Ki(6’) < C-‘(yi - l)-‘(($_‘(C))‘-“, 

where 

Gi = lJi 0 l+J_, 0 . . . 0 ‘j,, ‘ji(U) = PF-‘[K(U) + CKi(Si)], 1 <i <p. 

Since K, (1 <i < p) are nondecreasing functions, for 6 = S, it verifies 

Kp(S) < Ki(6i) < C-‘(yi - l)-‘(@i_‘(C))‘-‘r 

< C-‘(yi - I)-‘(vi-l(C))‘-;’ 

because q(c) G@(c). Thus, 6 = S, satisfies (15). Cl 

Remark 3.7. The method proposed in Corollary 3.6 to compute 6, which satisfies (11) is not only 
exclusive of ai = 9, yi > 1. It is rather proper of the situation: Kj (1 d i < p) are nondecreasing 
functions such that Ki(O+)=O. For Oi(U)= U’J, yi< 1 this last assertion does not satisfy the conclusion 
of Theorem 3.1. 

4. Asymptotic formulae 

Our objective is to obtain some results about asymptotic summation of systems resulting from the 
perturbation of an h-system. 

Definition 4.1. A function o : [O,oo) + [O,oo) is said to be of the class 9 if 
(i) O(U) is nondecreasing and continuous for u 30 and positive for u > 0, and 

(ii) there exists a nonnegative function r (multiplier function) defined on (0,~) such that 

o(c(u) d r(a)o(u) for a > 0, u 2 0. 

Theorem 4.2. Assume that 
(F) The system ( 1) is an h-system for x0 small enough. 
(G) The perturbation f = f (n, y) is defined on No x KY” such that 
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where 
(G.l) The function o E F, with corresponding multiplier function r, and 

(G.2) the function 1 : No -+ [O,oo) satisjies 

A(n)r(h(n)h-‘(no))h-‘(n + l)~e,(N,). 

Then, 
(T, ) for no 30 and y. sufJicientZy small, every solution y(n) = y(n, no, yO) of (2) satisfies 

ly(n,no, yo)l <Kh(n)h-‘(no), 

where K is a positive constant. 
(T2) for each one of these solutions y(n) of (2), there is z. E R” such that 

y(n) = @(n,no)zo + h(n)d(l) as n + 00, 

where 6(I) represents a function which has a limit when n approaches to injinity. 

Proof. By variation of parameters formula, y(n) = y(n,no, yo) satisfies 

n-1 
y(n) = @(n,n0)y0 + 1 @(nJ + l>f(i Y(A). 

j=no 

Hence, by (F) and (G) it follows that 

n-l 
Iv(n)1 dclyoI&)h-‘(no) + c ch(n)h-‘(j + 1)%)4~(j)l); 

j=no 

thus, 

IMn)l n-’ Wk4Y(j)l) 

WW’hd 
Gclyol + c 

jxno h(j + l)h-‘(no)’ 

So, by (G. 1) and (G.2) one obtains 

+-l WPW, no>> 
&<ClY,,l + c 

IuWl 
> jzno P(j+ l,n0) co P(j,n0> ’ ( 1 

where P(n, no) =: h(n)h-‘(no), n >no. 
Now, we apply Theorem A to v(n) = Iy(n)l//?(n,no), thus establishing that 

and then for y. small enough, there is a positive constant K such that 

ly(n,no,yo)l dKh(n)h-‘(no), n3no. 

(16) 

(17) 
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Now, for these solutions y(n) of system (2) we have 

Then, for every solution y of system (2) the solution x of system (I), given by 

n-l 
x(n) = v(n) - c @(%j + llf-(~~YW) 

j=no 

has the property 

y(n) = x(n) + h(n)d(l) as n + 00. 

On the other hand, if x is solution of system (1) then there is z. E 58” such that x(n) = @(n, IZ~)Z~, 
where @(n,no) is the fundamental matrix of (1). 
Therefore, 

Y(n) = &n,no)zo + h(n)o(l) as II + 0~). 0 

Remark 4.3. In (17), we are assuming that Iyo 1 is small enough and that 

w(o+) = -00, (18) 

where 

in order that W-’ has meaning. That is, the inverse function W-‘(v) is defined for v E (0, So), where 
do > 0 is small enough. 

Remark 4.4. We remark that under the conditions of Theorem 4.2, the error given by the asymptotic 
formula (16) is always dominated by h. However, if the function h is not a good majorant then all 
information can be added to the error. Also, a difficulty like this can be solved assuming that the 
function h satisfies the condition lim,,, h(n) < cc exists, and the proof Theorem 4.2 remains valid 
without modifications. 

Corollary 4.5. Assume that 
(Ho) there is a positive constant c such that J@(n,no)( dc, for n3no; and 
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(H3) there exist a nonnegative function ;1 such that for (n, y)~ No x UP’, 

where w is continuous, positive and nondecreasing function which satisfies (18). 
Then, 
(T,) for y. suficiently small, every solution y(n) = y(n,no, yo) of (2) satisjes jy(n,no, yo)l dK, 

K > 0 a constant, 
(T2) for each one of these solutions y of (2), there is a solution x of (1) such that 

y(n) = x(n) + 6(l) as n + 00. 

A more precise asymptotic formula is given in the following theorem: 

Theorem 4.6. Let IX be a continuous, positive and nondecreasing function on [O,oo) such that CIJ 
satisjies (18). Assume that for the fundamental matrix @(n,no) of (1) we have 

I@-‘(n + l,n0>f (n, @( n,no)z)l ~/l(n)~(IzI),~~Ee,(No) for nEN0 and ZEW. 

Then, for every solution y(n) = y(n,no, yo) of (2), with /y 1 o su f/i ciently small, there is z. E R” 
such that 

y(n)= @Cn,n0) [z0+O(~W)] as n+a. (19) 

Proof. Making y(n) = @(n,nO)z(n) in system (2), we obtain 

n-1 

z(n) = YO + C @-‘(j + l,no>f(j, @(j,n0)4j)). 
j=no 

Thus, 

n-1 

Iz(n)l G IYOI + c J-(j)QNlz(j)l) 
j=no 

and by Theorem A, for p = 1, 

[ 

n-1 

I44 d We1 VIYOI) + C 43 . j=no 1 
Moreover, for y. sufficiently small, there exists a positive constant K such that Iz(n)l dK for all 
n3no. Thus, for n>,no 

ly(n,no,yo)l dKl@(n,no)l. 
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Moreover, @-‘(n + 1, no)f(n, y(n)> E k’~(%) and 

g@-‘(j+ l,no)f(j,y(j)) = +l(j+ 1,~0)f(~~~(~,~0)~(~)) 
j=n I I j=n 

j=n 

So, for each one of these solutions y of system (2), the function 

is a solution of system (1) and satisfies 

@-‘(n,no)(x(n) - y(n)) = 0 9 @ 
( j=n 

and then there is z. E R’” such that 

‘(j + Lno)f(j>Yw) ) 7 

as IZ -+ co. 0 

Notice that in Theorem 4.2 the hypothesis over the system (1) is independent of the perturbation 
f, but in Theorem 4.6 that dependency really exists. Also, these two theorems differ by the error 
given in their respective asymptotic formulae: In (16) we get only hd( 1 ), however in ( 19) we get 
an error of order @o( 1). These difference are notorious when the perturbed system (2) is linear: 

Corollary 4.7. Assume that (F) of Theorem 4.2 is satisjed. Then, for every fundamental matrix 
y ?f 

v(n + 1) = M(n) +B(n))y(n), BE41(No), 

there exists a constant and invertible matrix C such that 

Y(n) = @(n, no)C + h(n)b( 1) as n + 00, 

where @(n, no) is the fundamental matrix of system (1). 

(20) 

Corollary 4.8. Assume that for the fundamental matrix @(n,no) of (1) we have 

@-‘(n + l,n0)B(n)@(n,n0)E~~(N0). 

Then, for each fundamental matrix Y of system (20) there exists an invertible and constant matrix 
C such that 

Y(n) = @(n,no)[C + o(l)] as n + 00. 
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The last two corollaries are different versions of [2, Lemma 2.11, which do not require that A(n) 
be diagonalizable. Notice that Lemma 2.1 of [2] is the discrete analogue of Levinson’s Theorem [7, 
p. 921 about asymptotic representation of solutions of differential systems. 

Corollary 4.9. If all the solutions of the linear system with constant coeficients 

x(n + 1) = Ax(n), 

where A is a constant matrix, are bounded, then for each fundamental matrix Y(n) of the perturbed 
system 

u(n + 1) = (A +B(n))y(n), BEG, 

there exists an m x m constant and invertible matrix C such that 

Y(n) = A”-““C + 6(l) as n ---f CO. 

More delicate arguments ensure that in this case 6( 1 ), the error, is really an o( 1). (see [lo]). 

5. Examples and applications 

Example 5.1. Consider the Emden-Fowler difference equation 

A2Y(n) = p(n)yW (21) 

where Mn)F is a sequence of real numbers, y (# 0,l) is a real number and A is the forward 
difference operator with unit spacing, i.e., Au(i) = u(i + 1) - u(i), and n2u(n) = A(Au(n)). 

If we define ui(n) = y(n + i - 1 ), 1 < i < 2 then Eq. (21) can be written as 

u(n + 1) = Au(n) + g(n, u(n)), (22) 

where 

A= [ _Ol :] , 

and u(n) = tudnh(n)) = (y(4,ytn + 1)). 
A fundamental matrix solution of equation 

v(n + 1) = Av(n) (23) 

is given by 

@(n,O)= [,i, :I. 
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Moreover, we have 

where A(n) = /p(n)/ and o(v) = VT. 
On the other hand, Eq. (23) is an h-system, because 

I@(n,O)l <ch(n)h_‘(0) whereh(n)=2n+3 andc>3, forn>no=O. 

Then, for p(n) and y such that ((2n + 3)‘/(2n + S))p(n)~li(&), we can apply Theorem 4.2 and 
therefore, for each solution u(n) of (22) with small initial conditions, there exists z. = (zA,z,‘) E R2 
such that 

u(n) = @(n,O)zo + h(n)o(l) as II -+ 00. 

Thus, it follows that 

y(n)=nz~+z~+nb(l) asn+cc. 

(24) 

(25) 

Example 5.2. Consider the second-order linear difference equation 

u(n + 2) + (a(n) + Wn))y(n) = 0, bE4Wo). 

If the solutions of the nonperturbed equation 

x(n + 2) + a(n)x(n) = 0 

are all bounded, then by Corollary 4.5, for each solution y(n) of (24) there exists a solution x(n) 
of (25) such that 

y(n) = x(n)(l + o(1)) as II -+ 00. (26) 

We remark that formula (26) is a precise asymptotic formula. 

Example 5.3. Consider the scalar difference equation 

Y(n + 1) = $Y(") + 
y7(n)eP 

1 + 4y6(n> 
sin(ny(n)), n 2 no > 1. 

The nonperturbed difference equation 

x(n + 1) = Lx(n) 
n+l 

possesses the solution 

(27) 

x(n, no,xo) = :x0 for no 2 1 and x0 E R. 
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So, by Corollary 4.5, Eq. (27) has solutions y(n, no, yo) for no b 1 and y. small enough such that 

y(n,no,yo) = zy0 +6(l) as II + 00, 

where 6( 1) represents a function which has limit when n approaches to infinity. 

Example 5.4. For a more special example, consider the system 

v(n + 1) = can> + Wn))y(n), n ano, 

where 

(28) 

and B(n) is an m x m matrix. 
Assume that B E 8, (No) and n(n) satisfies the following condition: 
For every i, l<idm, 

and K a positive constant. 

Then, by Corollary 4.7, for every fundamental matrix Y of system (28), there exists a constant 
and invertible matrix C such that 

n-1 

Y(n) = n A(2f)C + h(n)d( 1) as IZ -+ 00. 
/=?I0 
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