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Abstract 

Cubature formulae for evaluating integrals on the hypersphere in R n for n >~5 are obtained, which are exact for any 
polynomial of degree not exceeding 7, and are invariant with respect to the group of transformations of the regular 
simplex. 
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I. Introduction 

Let S. denote the unit hypersphere in ~" 

So = xE~" ~-~x2i <<.1 . 
i= l  

Denoted by T~ the regular simplex in ~ ,  with vertices at n + 1 points in R ~ 

a(r) . (r) (r) ~(r)x = t a l  ,a2 , . . . , %  j, r = l , 2 , . . . , n + l ,  

where 

I _ / .  n + l  i<r, 
Vn(n - i + 2)(n - i + 1) '  

a~ r) 
/ ( n  + 1)(n - r + 1) 
V - ~ : r - - + - ~  ' i=r,  

O, i>r. 
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(1.2) 
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The center of  the simplex T, is the point 0 = (0, 0 , . . . ,  0). The vertices of the T, lie on the surface 
of  the unit hypersphere in R" 

U n = x E ~ n  x 2 1 i z 

i=1 

The projection onto U~ of  the mid-point of  the edge which connect vertices a ~1) and a ~2) will be 
denoted by 

= \ V  2n V - ~ n  ' ° ' " " °  " (1.3) 

The projection onto U, of the center of  the two-dimensional face of  T,, with vertices a I~), a t2), a ~3) 
will be denoted by 

c ( ' ) =  g ~ ' g  3 n ( n - 1 )  ' 3 ~ - - 1  "" " 

The projection onto U, of  a t-point ( 1 -  t)a(~)+ta (2), 0 < t < 1/2, which lies on the edge connecting 
the vertices a ~1) and a (2) at the Tn, will be denoted by 

b ( l ) ( t )  = (nr)-~/2(n - t(n + 1 ) , t v ~  - 1,0,... ,0),  (1.5) 

where 

T = 2(n + 1)t 2 - 2(n + 1)t + n. 

Let G is the group of  all transformations of the regular polyhedron in N" (its center being point 
0) into itself. The set of  the points of  the sort 9a, where a is a fixed point in N" and 9 involves 
all transformations of the group G, will be called an orbit, or G-orbit, which contains the point a 
and will be denoted by G(a). The number of  points in the G-orbit depends on the point a. 

The group of all transformations of  it, into itself will be denoted by rinG. It is known [4], that 
the order of the group T,G is equal to (n + 1)!. 

It is known [4] that the basis of  polynomials which are invariant with respect to the group T,G 
consists of  n polynomials 

n + l  

rck(x)=~-~l~(x), k = 2 , 3 , . . . , n + l ,  (1.6) 
r = l  

where 
n 

lr(x) = X-" a!r)x . A_., ' " r = l , 2 , . .  , n + l .  
i=1 

This means that any polynomial invariant with respect to the group T,G is a polynomial in the 
polynomials ( 1.6). 

The group which is derived from the group T,G by adding central symmetry transformation under 
the point 0, will be denoted by T,G*. The set of  the polynomials which are invariant with respect 
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to the group TnG* coincides with the set of  the even invariant polynomials of  T,,G group. It is 
known [4] that the order of  the group T,G* is equal to 2(n + 1 )!. 

Cubature formulae for S,, which are invariant with respect to the group T,G* and are exact 
for all polynomials of  degree not exceeding 5 are obtained in [3, 5]. Cubature formulae for $3, 
which are invariant with respect to the group T3G* and are exact for all polynomials of  degree not 
exceeding 7, are obtained in [7]. 

In this paper, Sobolev's theorem [6] is used to construct cubature formulae for integrals of  the 
hypersphere (1.1) for n/> 5, which are exact for all polynomials of  degree not exceeding 7, and 
invariant with respect to the group T,,G*. 

In Section 2 we derive the parameters of  the cubature formulae. Numerical results are presented 
in Section 3. 

Let Gn denote the hyperoctahedron in ~" 

The group of all transformations of  G~ into itself will be denoted by G~G. 
Cubature formulae for Sn, which are invariant with respect to the group G~G are obtained in 

[2, 8]. A bibliography of references to cubature formulae for S~ is presented in [1]. 
The cubature formulae obtained in this paper, which are exact for all polynomials of  degree not 

exceeding 7 and are invariant with respect to the group TnG* have less number of nodes than the 
number of  nodes of  the cubature formula in [2] and the cubature formula S~ : 7 - 3 in [8, pp. 272-  
273], which are exact for all polynomials of  degree not exceeding 7 and are invarint with perspect 
to the group GnG. 

2. Cubature formula for n >/5 

Since the cubature formula must be exact for all polynomials of  degree not exceeding 7, for n/> 5 
it must be exact for 8 invariant polynomials 

1, 7~2(X), ~2(X), g4(X), 7~(X), 7~2(X)~4(X), ~2(X), 7~6(X), (2.1) 

where the polynomials rck(x), k = 2, 3,4, 6 are defined by (1.6). 
Accordingly, the nodes of the cubature formula are selected such that the cubature sum depends 

on 8 parameters at least. 
The nodes of  the cubature formula are taken as the following orbits: (1) T.G*(2a<l)), 

(2) T.G*(~b~1)), (3) T.G*(7c<1>), (4) T.G*(fb~I)(1/4)), (5) T.G*(O), where 2,/~,7, are unknown 
parameters; parameter 6 ¢ 0 is assigned arbitrary; a <1), b <1), c <~), are defined by (1.2), (1.3), (1.4), 
respectively; b°>(1/4) is defined by (1.5) for t = 1/4; 0 is the center of  the simplex T.. The first 
orbit consists of  the points 5:2a <j), where a <j) are the vertices of  the simplex T.. The second orbit 
consists of  the points -l-~b <j), where b <j) are the projections onto U. of  the mid-points of  the edges 
of  the Tn. The third orbit consists of  the points + ~c </), where c <j) are the projections onto U. of 
the centers of  the two-dimensional faces of  the T.. The fourth orbit consists of  the points +fib<J)(¼), 
where b~/)(¼) are the projections onto U. of  the t-points for t = ¼, which lie on the edges of the 
T.. The fifth orbit consists of  the point 0. 
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The cubature formula can be written in the form 

N~ N2 
1 f ,  f ( x ) d x ~ A Z f ( 2 a ( l ) ) + B Z f ( f l b ( l )  ) 

, 

N3 N4 
+ C ~ f (~c  (')) + E ~ f(rb( ')(1/4))  + Df(O), (2.2) 

1 l 

where the sum is accomplished for all points o f  the corresponding orbit; / f f S , ) =  2rff/2/[nF(n/2)] - 
the volume of  the hypersphere ( 1.1 ). The number of  nodes is N = N1 + N2 + N3 + N4 + 1, for n/> 5, 
whereNl=2(n+l) ,N2=n(n+l) ,N4=2n(n+l) forn>~5;N3--2C,~+13 f o r n ~ > 6 ; N 3 -  3 for -- Cn~+l n = 5 ,  
since the centers o f  two-dimensional faces form a centrally symmetric set when n = 5. Hence, for 
n = 5 the number of  nodes is N -- 123; for n i> 6 the number of  nodes is N --- (n 3 + 9n 2 + 14n + 9)/3. 

The cubature sum depends on 9 parameters. The parameter 6 ¢ 0 is assigned arbitrary. The rest 8 
parameters D, A, B, C, E, 2, r ,  ~ are calculated. 

The requirement that formula (2.2) is exact for polynomials (2.1) yields the non-linear system o f  
8 equations with 8 unknowns D,A,B, C,E, 2,/3, 

(1): D + N~A + NzB + N3C + N4E = 1, 

(~22): rsNiA22 + rsNzBfl 2 + rsN3C72 + r~N4E62/r4 = (n + 1)/(n + 2), 

(~2): r~N, A24 + r~NzB[34 + r~N3C74 + rZN4Ef4/r24 = rs(n + 1)/(n + 4), 

(n4): r8NIA24 + r7N2Bfl 4 + r6N3Cy 4 + rzN4E64/r24 = 3(n + 1 )/[(n + 2)(n + 4)], 

(rc~): r3N~A26 + r3N2Bfl 6 + r3N3C76 + r~N4E66/r 3 = r~(n + 1)/(n + 6), (2.3) 

(g2~4): rsr8NiA26 + rsr7N2Bfl 6 q- rsr6N3C76 + rlr2N4E66/r34 

= 3rs(n + 1 )/[(n + 2)(n + 6)], 

QZ2): r9N)A~6/n 4 -+- rloN2Bfl 6 + rlIN3C~ 6 ~- r3N4E~6/r 3 

= 6r~(n - 1)/[(n ÷ 2)(n + 4)(n + 6)], 

(0"6): S4N, A)~6/n 5 + S~N2Bfl6/[4n3(n - 1 )2] + S~N3CT6/rl2 + S~N4Er' 6/i.~3 

= 15(n + 1)/[(n + 2)(n + 4)(n + 6)], 

where 

rl = (3n - 1) 2 + (n - 3) 2 + 16(n - 1), r2 = (3n - 1 )  4 -t- (n - 3 )  4 q-  256(n - 1), 

r 3 = [(3n - 1) 3 q- (n - 3) 3 - 64(n - 1)] 2, r4 = 2n(5n - 3), 

r5 = (n + 1 )/n, r6  = [(n - 2 )  3 -k- 27]/[3n2(n - 2)], 

r 7 = [ ( n - 1 ) 3 + 8 ] / [ 2 n Z ( n - 1 ) ] ,  r s = ( n  3 + l ) / n  3, 

r 9 = ( n  2 - 1 ) 2 ,  r 1 0 = [ ( n - 1 ) z - 4 1 2 / [ 2 n 3 ( n - 1 ) ] ,  

r l l = [ ( n - 2 )  2 - 9 1 2 / [ 3 n 3 ( n - 2 ) ] ,  r 1 2 = 9 n 3 ( n - 2 )  2 , 
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S I = (n - 2) 5 + 243, S~ = (n - 1 )5 + 32, (2.4a) 

S~ = ( 3 n -  1)6 + ( n -  3)6 + 4096(n - 1), S ~ = n S +  1. (2.4b) 

The system (2.3) can be solved as follows. 
Introducing the notations 

A1 • N1A26, Bl ~- NzBfl 6, CI = N3C]~ 6, E1 -~ N4Et~ 6, (2.5) 

from the equations (~z3), (~z2~4), (n2) and (n6) we  obtain a linear system of  four equations with 
four unknowns A1,B~, G ,E1  and we solve this system. 

Then, from the equations (n2), (n2) and (n4) we obtain a non-linear system o f  three equations 
and we find unknowns 2 2, f12, ~2. 

Afterwards, using (2.5) we find the coefficients A , B , C , E .  From the first equation o f  the system 
(2.3) we  find the coefficient D. 

The solution o f  the system (2.3) for n>~5 is 

3 ~ 0 being assigned arbitrary, 

S I - S~ are found from (2 .4a) - (2 .4b) ,  S~ = n 2 + 4n - 8, 

S 6 = ( n + l ) ( n + 2 ) ( n + 4 ) ,  S ~ = n ( n - 1 ) ,  S ~ = n ( n - 2 ) ,  

S ~ = ( n - 1 ) ( n - 2 ) ,  S i o = ( n +  l ) ( n + 6 ) S 6 ,  S i 1 = ( 5 n - 3 )  3, 

S ~ 2 = ( n - 1 ) ( n - 3  ), S ~ 3 = n 2 - 7 n + 1 9 ,  S ~ 4 = n 2 - n + l ,  

S ~ 5 = 2 ( n - 3 ) ( n + l )  2, S ~ 6 = n  3 - 9 n  2 + 3 3 n - 3 8 ,  S ~ 7 = 3 ( n - 2 ) ,  

q, = 9(n + 1)[10nS(n + 1)2S~7 - n3S~S~ + 4(n - 1)S~S~S~ - 2S'4S6S~] 

-n2S~S~ + 8S'4S~S~, + 108nS~S~2-432(n  - 1)3S~$7, 

qz = nS~S7 - 3S~S~S~7 + 12(n - 1)S'4S~2 - 3n2(n - 3)S~, 

B~ = 2(n - 1 )[3(n + 1 )S~ S~q2 - S(2q, - 36(n - 1 )ZSvqz]/(S~oS~7q2), 

C, = S~q,/(ZS(oq2 ), E1 = 4nS~/(9S~o), A, = n/(n + 6) - B, - C, - E~, 

Y1 --- n/(n + 2) - E1/64, I12 ~- n/(n + 4) - E1/62, 

Y3 --- 3n2/[(n + 2)(n + 4)] - El(41n 3 - 101n 2 + 155n - 87)/ [2(5n - 3)262], 

Wo = S~7[Y3(S~s - S~4S~7) + S~3S~4Y2]/(S~3S~sC, ), 

Uo = n(S~7Y3 - SI3Y2)/(S~sA~), p,  = n(n - 4)B,/(4S~zA1), 
l I l l P2 -- S~6S~7B~/(4StzS~3C~), d~ = A l p  2 + C , p  2 + B1, 

d 2 = A , p l u o + C ,  pzwo, d 3 = A , u ~  + C l w  2 -  Y1, d o = d 2 - d l d 3 ,  

v = ( d 2  ± v ~ o ) / d l ,  U = u o -  plv ,  W = w o -  p2v, 

2 2 = 1/u, f12 = 1/v, ~2 = l / w ,  
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n =A1/(N,)~6), B =B,/(N2fl6), C ~- C,/(N33~6), 

E = E1 / (N466) ,  D = 1 - N~A - N z B  - N 3 C  - N4E.  

3. Numerical results for n/> 5 

A FORTRAN program written to compute the parameters of  the formula (2.2) can be used for 
any n ~> 5 if the formula exists, or to establish that the formula does not exist and why. 

The program can verify whether the nodes are inside S,. Since 6 ~ 0 is assigned arbitrary, we 
can derive an infinite set of  cubature formulae and one may seek such values for 6 for which the 
derived nodes are inside S,. Since two values have been obtained for v, we can derive two infinite 
sets of  cubature formulae. With this program computations are conducted for n = 5(1)40, and it is 
established that the formula (2.2) exists. 

For v = ( d 2  + v ~ o ) / d l  the following results are obtained: when n = 5(1)12, part of  the nodes are 
outside S,; when n =  13(1)40, the nodes are inside S, for 6 =  1. The results for n = 5(1)9 are given 
in Table 1. 

For v = ( d 2 -  x/-~o)/dl  the following results are obtained: when n=5(1)7 ,  part of  the nodes are 
outside S,; when n=8(1 )40 ,  the nodes are inside S, for 6=0 .8 .  The results for n = 5 ( 1 ) 9  are given 
in Table 2. 

Table 1 

n 5 6 7 8 9 

D 0.0078205 0.0065905 0.0068249 0.0066561 0.0088018 
A -0.0386067 -0.0380236 -0.0359039 -0.0332999 -0.0298446 
B -0.0092371 -0.0106772 -0.0100358 -0.0092346 -0.0071381 
C 0.0360897 0.0127323 0.0090270 0.0066849 0.0047443 
E 0.0168463 0.0128919 0.0099876 0.0078790 0.0060661 
2 1.0258720 1.0395800 1.0490710 1.0556250 1.0648150 

0.7549520 0.8109539 0.8554713 0.8864607 0.9351504 
7 0.7161868 0.7685523 0.8106032 0.8419303 0.8770112 
6 0.98945 1.005 1.017 1.026 1.04 

Table 2 

n 5 6 7 8 9 

D 0.0064428 0.0408036 0.0263534 0.0167648 0.0088672 
A -0.0385480 -0.1832419 -0.1903818 -0.1944091 -0.1804138 
B -0.0102778 -0.0073206 -0.0108513 -0.0137475 0.0144551 
C 0.0376321 0.0015358 0.0021891 0.0025222 0.0026250 
E 0.0168637 0.0443398 0.0391272 0.0350603 0.0292798 

1.0261320 0.7998886 0.7944336 0.7866791 0.7889329 
fl 0.7416388 0.8636032 0.8444049 0.8295807 0.8313973 
7 0.7112085 1.0933710 1.0264880 0.9904379 0.9679320 
6 0.98928 0.818 0.81 0.8 0.8 
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