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Abstract

In this paper we take a closer look at the nullity theorem as formulated by Markham and Fiedler in 1986. The
theorem is a valuable tool in the computations with structured rank matrices: it connects ranks of subblocks of an
invertible matrix A with ranks of other subblocks in his inverse A~1. A little earlier, Barrett and Feinsilver, 1981,
proved a theorem very close to the nullity theorem, but restricted to semiseparable and tridiagonal matrices, which
are each others inverses. We will adapt the ideas of Barrett and Feinsilver to come to a new, alternative proof of the
nullity theorem, based on determinantal formulas.

In the second part of the paper, we extend the nullity theorem to make it suitable for two types of decompositions,
namely the LU and the QR-decomposition. These theorems relate the ranks of subblocks of the factors L, U and
Q to the ranks of subblocks of the factored matrix. It is shown, that a combination of the nullity theorem and his
extended versions is suitable to predict in an easy manner the structure of decompositions and/or of inverses of
structured rank matrices, e.g., higher-order band, higher-order semiseparable, Hessenberg, and many other types of
matrices.

As examples, to show the power of the nullity theorem and the related theorems, we apply them to semiseparable
and related matrices.
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1. Introduction

The nullity theorem as formulated by Fiedler and Markham [13], is in fact a special case of a theorem
proved by Gustafson [17] in 1984. This original theorem was formulated for general principal ideal
domains. Markham and Fiedler translated this abstract formulation to matrices over a field. This makes it
applicable to real and complex matrices. Based on this nullity theorem Fiedler predicted structures of the
inverses of different types of structured rank matrices, including for example tridiagonal and semiseparable
matrices (see e.g. [8—10,12,13]). One should be aware that the nullity theorem is a structure predicting
theorem, this means that it does not provide inversion formulas, it just predicts the ranks of subblocks in
the inverse.

Around the same time people in different types of fields were interested in inverting either tridiagonal
and/or semiseparable matrices (see e.g. [14-16,19,20]). Also Barrett and Feinsilver were intrigued by this
problem of inverting tridiagonal and semiseparable matrices. Moreover they wanted to omit the restriction
of working with irreducible tridiagonal matrices, as all the inversion formulas of that time were highly
based on the irreducibility of the tridiagonal matrices. As this problem is not so simple as it might seem,
they produced three papers on this topic [2—4], where the last paper covers the most general case. The
final version related the structure of the inverse, of a not necessarily irreducible, tridiagonal matrix to
the vanishing of certain determinants in the original tridiagonal matrix. The vanishing of determinants
corresponds in natural way to ranks of blocks, which is related to their nullity, which is the dimension of
the right null-space. Of course one can only evaluate determinants of square matrices, whereas the nullity
can also be defined for rectangular matrices. The only missing link between the theorem of Barrett and
Feinsilver and the nullity theorem of Fiedler and Markham, is a simple lemma, which we will provide in
this paper. This leads to an alternative proof for the nullity theorem.

Moreover, we will provide in this paper a simple extension of the nullity theorem towards the decom-
position of structured rank matrices. Firstly, we will prove a relation between the structured rank of the L
and U factor of the LU-decomposition of an invertible matrix A and the structured rank of the lower and
upper part of the matrix A, respectively. The same is achieved for the QR-decomposition of an arbitrary
invertible matrix A. We predict the structure of the orthogonal matrix Q by looking at the structured rank
of the matrix A. As currently a lot of attention is being paid to recursively semiseparable matrices, # -
matrices, rank k plus diagonal matrices (see e.g. [5,6,18] and the references therein), these theorems can
provide a valuable tool for predicting the structure of the LU and QR-decompositions and/or the inverse of
these matrices. Moreover, more information connected to the nullity theorem and semiseparable matrices
can be found in the recent paper by Strang and Nguyen [21].

As examples, to show the power of the different theorems provided, we apply them to the classes of
semiseparable and closely related matrices. Structures of the inverses of banded, {p, g}-semiseparable,
higher-order Hessenberg and other matrices are derived.

The paper is organized as follows. In Section 2 we define the concept of a structured rank matrix,
and use this concept to define in an easy manner semiseparable and other related matrices. In the third
section we formulate the nullity theorem, incorporate the proof of Markham and Fiedler and provide
an alternative way to prove this nullity theorem based on observations made by Barrett and Feinsilver.
In the fourth section several examples are included showing the power of the nullity theorem. In Sec-
tion 5 we provide two generalizations towards the prediction of structured rank blocks in the QR and
LU-decomposition of structured rank matrices. We apply the theorems to the class of semiseparable
matrices.
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2. Structured rank matrices

Semiseparable matrices are structured rank matrices, i.e. all submatrices corresponding to a structure
satisfy certain rank properties. Structure and structured ranks are defined as follows. The definitions and
results in this section are based on [8,9,11,13].

Definition 1. Let A be an m x n matrix. Denote with M the set of numbers {1, 2, ..., m} and with N the
set of numbers {1, 2, ..., n}. Let « and f§ be nonempty subsets of M and N, respectively. Then, we denote
with the matrix A(«; ) the submatrix of A with row indices in o and column indices in f. A structure X
is defined as a nonempty subset of M x N. Based on a structure, the structured rank r(X; A) is defined
as (where o x 8 denotes the set {(i, j)|i € o, j] € B}):

r(2; A) = ma}fx {rank (A (o; B))|o x f C Z}.

Before giving the definition of a semiseparable matrix we have to specify the corresponding structure.
In the papers [8,9,11,13] more structures are given and investigated.

Definition 2. For M ={1,...,m} and N = {1, ..., n} we define the following structures:

e The subset
5={G plizj,ieM,je N}

is called the lower triangular structure; in fact the elements of the structure correspond to the indices
from the lower triangular part of the matrix.
e The subset

is called the weakly lower triangular structure.
e The subset

SV =G, pli>j—pieM,jeN)

is called the p-lower triangular structure and corresponds with all the indices of the matrix A, below
the pth diagonal. The Oth diagonal corresponds to the main diagonal, while the pth diagonal refers to
the pth superdiagonal (for p > 0) and the — pth diagonal refers to the pth subdiagonal (for p > 0).

Note that Zl(l) =X, 21(0) =Xy and Xy & 2;. Note that the structure Zl(p ) for p > 1 contains all the indices
from the lower triangular part, but also contains some superdiagonals of the strictly upper triangular part
of the matrix. The weakly lower triangular structure is sometimes also called the strictly lower triangular
structure or the subdiagonal structure. (We remark that the structures as defined here are slightly different

from the ones in [8,9,11,13].) For the upper triangular part of the matrix, the structures X,,, X, and Z,(dp )

are defined similarly, and are called the upper triangular structure, the weakly upper triangular structure

and the p-upper triangular structure, respectively. The structured rank connected to the lower triangular

structure, is called the lower triangular rank. Similar definitions are assumed for the other structures.
With the above defined structures we can define semiseparable and closely related matrices.
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Definition 3. An n x n matrix S is called a {p, g}-semiseparable matrix, with p >0 and ¢ >0, if the
following two properties are satisfied:

(" 9)<p
rzy?; 8)<q.

This means that the p-lower triangular rank is less than or equal to p and the (—¢g)-upper triangular rank
is less than or equal to gq.

The above definition says that the maximum rank of all subblocks which one can take out of the matrix
below the pth superdiagonal is less than or equal to p and the maximum rank of all subblocks which one can
take above the gth subdiagonal is less than or equal to g. When speaking about a { p}-semiseparable matrix
or a semiseparable matrix of semiseparability rank p, we mean a {p, p}-semiseparable matrix. When
briefly speaking about a semiseparable matrix, we refer to a semiseparable matrix of semiseparability
rank 1.

It is not necessary for a structured rank matrix to take the structure from the upper as well as from the
lower triangular part of the matrix.

Definition 4. A matrix Z is called an upper { p}-Hessenberg-like matrix if the p-lower triangular rank of
Z is less than or equal to p:

vz 2)<p.

A lower {q}-Hessenberg-like matrix is defined in a similar way.

Like in the above case, when speaking about a Hessenberg-like, a {1}-Hessenberg-like matrix is meant.
When it is clear from the context, we omit the notation “upper”.

In the next two sections we will derive that the inverse of an invertible tridiagonal matrix is an invertible
semiseparable one and vice versa. We will prove even more, namely that the inverse of an invertible { p, g }-
semiseparable matrix is a { p, ¢ }-band matrix (this is a matrix with p subdiagonals, and g-superdiagonals).
Using the following definition, we will prove that the inverse of an invertible { p}-generalized Hessenberg
matrix (see the definition here below) is an invertible { p}-Hessenberg-like matrix, and vice versa.

Definition 5. A matrix H is defined as a { p}-generalized Hessenberg matrix if and only if all the elements
below the pth subdiagonal are equal to zero.

In order to prove all the above-mentioned properties of semiseparable and Hessenberg-like matrices, in
Section 3 we will first prove a very powerful theorem, namely the nullity theorem. Based on this theorem,
we will deduce properties of different classes of structured rank matrices in Section 4.

3. The nullity theorem

In this section we will prove the nullity theorem in two different ways. Although this theorem is not
so widely spread, it can easily be used to derive several interesting results about structured rank matrices
and their inverses. It was formulated for the first time by Gustafson [17] for matrices over principal ideal
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domains. In [11], Fiedler and Markham translated this abstract formulation to matrices over a field. Barrett
and Feinsilver formulated theorems close to the nullity theorem in [2,4]. Based on their observations we
will provide an alternative proof of this theorem. The lemma will be followed by some small corollaries.
In the following section we will apply these corollaries, to classes of structured rank matrices predicting
thereby the structured rank of their inverses.

Definition 6. Suppose a matrix A € R™*" is given. The nullity n(A) is defined as the dimension of the
right null space of A.

Theorem 7 (The nullity theorem). Suppose we have the following invertible matrix A € R**" partitioned

as
A An
A= ,
(A21 Ax
with A1y of size p X q. The inverse B of A is partitioned as
Bi1 B2
B= ,
(le Bzz)
with By of size g x p. Then the nullities n(A11) and n(B22) are equal.

Proof (Fiedler and Markham [11]). Supposen(A11) <n(Bpz).Ifthisisnottrue, we can prove the theorem
for the matrices

A22 A2 1 By, By
A 12 A 11 B By
which are also each others inverse. Suppose n(B22) > 0 otherwise n(A1) = 0 and the theorem is proved.

When n(B>2) = ¢ > 0, then there exists a matrix F' with ¢ linearly independent columns, such that
B> F = 0. Hence, multiplying the following equation to the right by F:

AnBia+ AnBn =0,
we get

A BpF =0. (D)
Applying the same operation to the relation

A21Bip + AnBy =1,

it follows that Ay B12F = F, and therefore rank(B12 F) >c. Using this last statement together with
Eq. (1), we derive

n(A1) >rank(B12F) >c =n(B2).

Together with our assumption n(A1) <n(B»2), this proves the theorem. [

This provides us the first proof of the theorem. The alternative proof is based on some lemmas, and
makes use of determinantal formulas. Let us denote with |«| the cardinality of the corresponding set «.
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Lemma 8 (Gantmacher and Krein [15, p. 13]). Suppose A is an n X n invertible matrix and o and f
two nonempty sets of indices in N = {1,2, ..., n}, such that |o| = |f| < n. Then, the determinant of any
square submatrix of the inverse matrix B = A~ satisfies the following equation:

| det B(x; f)| = | det ACN\B; N\o)|.

| det(A)]
With N\ the difference between the sets N and [ is meant (N minus f3).

The theorem can be seen as an extension of the standard formula for calculating the inverse of a matrix,
for which each element is determined by a minor in the original matrix. This lemma already implies the
nullity theorem for square subblocks and for nullities equal to 1, since this case is equivalent with the
vanishing of a determinant. The following lemma shows that we can extend this argument also to the
general case, i.e. every rank condition can be expressed in terms of the vanishing of certain determinants.

Lemma 9. Suppose A € R"™" is a nonsingular matrix and n> |o| > |f|. The following three statements
are equivalent:!

(1) n(A(x; ) >d.
(2) det A(e/; BYy=0foralle! Coaand f' < pand || =|f|=|pl —d + 1.
(3) det A(o/; BY=0foralloa C o and p C f and |o/| = || = |a| +d — 1.

Proof. The arrows (1) < (2) and (1) = (3) are straightforward. The arrow (3) = (1) makes use of
the nonsingularity of the matrix A. Suppose the nullity of A(«; f) to be less than d. This would mean that
there exist || — d + 1 linearly independent columns in the block A(«; ). Therefore A(o; N) has rank
less then |«|, implying the singularity of the matrix A. O

An alternative proof of the nullity theorem can be derived easily combining the previous two lemmas.
In [21], Strang proves a related result and comments on different ways to prove the nullity theorem.
The following corollary is a straightforward consequence of the nullity theorem.

Corollary 10 (Fiedler and Markham [11, Corollary 3]). Suppose A € R"™" is a nonsingular matrix,
and o, B to be nonempty subsets of N with |o| <n and || <n. Then

rank (A~ (o5 §)) = rank (A(N\; N\)) + |o| + || — n.

Proof. By permuting the rows and columns of the matrix A, we can always move the submatrix A(N\f;
N\w) into the upper left part A;;. Correspondingly, the submatrix B(«; §) of the matrix B = A~! moves
into the lower right part B>;. We have

n(Ayy) =n — |a| —rank(Aqy)
n(Byz) = |B| — rank(B2)
and because n(A11) = n(B»y), this proves the corollary. O

When choosing « = N\ 8, we get

IThe authors thank Steven Delvaux for formulating and proving this lemma.
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RI’[XI’!

Corollary 11. For a nonsingular matrix A € and o € N, we have

rank(A~! (e N\a)) = rank (A (o; N\o)).

In the next section we will use the previously obtained results about the ranks of complementary blocks
of a matrix and its inverse to prove the rank properties of the inverse for some classes of structured rank
matrices.

4. Applications of the nullity theorem

Here we will briefly formulate some results by applying the previously mentioned nullity theorem.
Proofs are not included as they can be reconstructed rather easily by taking the correct subblocks and
afterwards applying the nullity theorem (see also [1,2,4,7-9,11-13,21]).

Using Corollaries 10 and 11, one can easily prove the well-known result that the inverse of a lower
triangular matrix is again a lower triangular matrix. Moreover, one can also easily prove that the weakly
lower triangular rank is maintained.

Considering the structure

2e=(N x N\{(1,1),(2,2),...,(n,n)},

which is called the off-diagonal structure, one can easily prove the following theorem.

Theorem 12 (Fiedler and Markham [12, Theorem 2.2]). Assume A is a nonsingular matrix. Then the
off-diagonal rank of A equals the off-diagonal rank of A=

1(Ze; A) =1(Z5; A7),

Using Theorem 12, we can see that the inverse of an invertible rank £ matrix plus a diagonal is again a
rank k& matrix plus a diagonal.

A partition of a set N is a decomposition of N = N{UN,U - - - UN,, where U denotes the disjunct union:
this means that N; N\ N; is the empty set, Vi, j withi # j. A generalization of Theorem 12, from diagonal
to block diagonal is as follows

Theorem 13 (Fiedler [8, Theorem 2]). Let N=N{UN,U - - - UNp a partitionof Nwith N={1,2, ..., n}.
Let

)4
Zop = (N x N) \ [J@i x V).
i=1

Then, for every nonsingular n x n matrix A we have

1(Zop; A7) = 1(Zgp; A).

This means that the inverse of a rank k matrix plus a block diagonal matrix is again a rank k matrix plus
a block diagonal matrix for which the sizes of the blocks of the first and the latter diagonal are the same.
More general extensions to blocks and different structures put on matrices can be found in the above
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references. Let us now formulate briefly an interesting, known, result, which is in fact a straightforward
consequence of the nullity theorem. We remark once more that this theorem covers the general case of
invertible band and tridiagonal matrices, whereas a lot of papers put the restriction of irreducibility on
the matrices.

Theorem 14. The inverse of an invertible

e tridiagonal matrix is a semiseparable matrix;
e {p, q}-band matrix is a {p, q}-semiseparable matrix;
o {p}-generalized Hessenberg matrix is a { p}-Hessenberg-like matrix.

We already deduced very useful properties from the nullity theorem. Nevertheless, we can adapt the
theorem a little bit and obtain immediate information about decompositions of structured rank matrices.

5. Extensions to the QR and LU decompositions

Based on the proof of the nullity theorem by Fiedler, it is very easy to generalize the nullity theorem
and apply it to decompositions of structured rank matrices.

Theorem 15. Suppose we have an invertible matrix A, with an LU factorization of the following form:
A=LU.

Suppose A to be partitioned in the following form

Al Ap
A= :
(AZI A22>

with A1y of dimension p x q. The inverse B of U is partitioned as

1_ pn_ (B B
U _B_<0 Bzz),

with B11 of dimension q X p. Then the nullities n(A12) and n(B13) are equal.

It is enough to have the structure in terms of ranks of the matrix U ~!, because using the nullity theorem
one can easily deduce the structured rank of the matrix U. The proof is very similar to the one of the
nullity theorem.

Proof. First, we will prove thatn(A12) >n(Bj2), by using the relation AU ~!' = L. Suppose that the nullity
of By equals c. Then there exists a matrix F with ¢ linearly independent columns such that By F = 0.
Partitioning L in the following way

L1 0
L= ,
(LZI Lzz)
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with L7 of dimension p x p, we can write down the following equations:

A11B12 + A12Bxn =0,
ApByF =0,

and

A21B12 + A2 By = Lo,
A2 By F =Lx»F.

Therefore rank (B, F') > ¢, because Ly» is of full rank. This leads us to the result:
n(Ajp) >2rank(Byn F) >c =n(By2).

This proves already one direction of the proof. For the other direction, n(Aj2) <n(Bj2), we use a par-
titioning for the inverse of A and the matrix U, such that the upper left block of C = A~!, denoted as
C11 has size ¢ x p and the upper left block of U denoted as Uy has size p x g. Using the equation
UA~" = L~ we can prove in a similar way as above that

n(Ui2) >n(Cr2).
Using the nullity theorem gives us
n(B12) =n(U12) 2n(Ci2) = n(A).

This proves the theorem. [

An analogous theorem can be formulated for the lower triangular matrix L. This theorem is very
useful because the structured rank of both of the factors U and L can be determined now in terms of
the structured rank of the original matrix A. This can be generalized in a straightforward manner to the
Cholesky decomposition, which is a special case of the LU-decomposition, for positive definite structured
rank matrices. We will give as an example here the LU factorization of semiseparable matrices. We derive
the structure of L and U in two different ways: based on the generalized nullity Theorem 15 and based
on the structure of the LU factorization of the inverse.

Example 16. We will prove here that the inverse U ! of the matrix U in the LU-decomposition of an
invertible semiseparable matrix S is an upper bidiagonal matrix. Hence, the factor U is an upper triangular
semiseparable matrix. (One can deduce similar properties for the lower triangular matrix L.) Suppose our
semiseparable matrix S is of size n x n. Use the set of indices:

o={1,...,k} and N\a={k+1,...,n},
B={k,...,n} and N\B={1,...,k—1}.

We have

n(S(; f)) =n —k + 1 — rank (S (a; p)),
n(UH(N\B; N\w)) =n — k — rank(U ' (N\f; N\o)).
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Rewriting these equations and using Theorem 15, we get:
rank (S(x; f)) = rank(U "' (N\B; N\a)) + 1.

This means that for a semiseparable matrix of semiseparability rank 1 all elements above the super diagonal
in the matrix U~! have to be zero. Therefore the inverse U will be an upper triangular semiseparable
matrix.

An alternative approach is to look at the inverse of the matrix S, namely 7, which is tridiagonal. Let
T = Ur Lt be a UL decomposition of the tridiagonal matrix 7, where L7 is a lower bidiagonal matrix,
and U7 is an upper bidiagonal matrix. This means that the LU decomposition of § has the following form:

S=7"1!
—1yr7—1
=L;'U;
=LU,

for which L is lower triangular semiseparable and U is upper triangular semiseparable.

Note that for the more general LU factorization
PA=LU,

with P a nontrivial permutation matrix the two factors L and U are not necessarily semiseparable. Take
for example the matrix

01 1
A:(l 0 O).
1 0 1

Then, PA = LU with

01 0 1 00 1 00
P=<1 0 0), L=<0 1 0), U=<0 1 1).
0 0 1 1 01 0 0 1

Hence, it is clear that L is not semiseparable.

Similar theorems as Theorem 15 can be deduced for other types of decompositions. We prove a similar
theorem for the QR-decomposition, which will give us information about the structured rank of the
factor Q.

Theorem 17. Suppose we have an invertible matrix A, with a QR-factorization A = QR. Suppose A to
be partitioned in the following form:

A AIZ)
A= ,
(A21 Axn

with A1y of dimension p x q. The inverse of Q, the matrix B, is partitioned as
-1 Bii Bz
= B = ,
Q (321 Bzz)

with By of dimension g x p. Then the nullities n(A31) and n(Ba1) are equal.
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Proof. Similar to the one from Theorem 15. O

Using this theorem one can deduce the structure of the lower triangular part of the orthogonal matrix Q.
Even more, one can deduce the structure of the Q factor of decompositions of for example rank k£ matrices
plus a diagonal or of {p, g}-semiseparable matrices plus a diagonal. As an example we will investigate
as in the previous example the QR-decomposition of semiseparable matrices. A more elaborate study of
the QR-factorization of semiseparable matrices can be found in for example [22].

Theorem 18. Suppose S is an invertible semiseparable matrix. Suppose S = QR is a QR-decomposition
of the semiseparable matrix S. Then we have that R has upper triangular rank 2. Moreover, Q is a lower
Hessenberg matrix for which the lower triangular rank is 1.

Proof. The structured rank properties of the orthogonal matrix Q can easily be derived from Theorem
17. However, one can also work via the inverse 7 = S~!. Denote with 7 = Ry Q7 an RQ decomposition
of the matrix 7. Ry denotes an upper triangular matrix and Q7 an orthogonal matrix. Because T is a
tridiagonal matrix, we know that R7 is an upper triangular matrix with only the diagonal and the next two
superdiagonals different from zero. Moreover, the orthogonal matrix Q7 is an upper Hessenberg matrix,
for which the upper triangular rank is 1.

Translating the above equations towards S we get:

S=r1""
—1p—1
=01 Ry

= QOR.

Because of Theorem 14 we know that R has upper triangular rank 2. The matrix Q is a lower Hessenberg
matrix for which the lower triangular rank is 1. I

6. Conclusions and future work

In this paper we provided an alternative proof of the nullity theorem, based on the observations by
Barrett and Feinsilver. Moreover, we expanded the nullity theorem in its current form to be suitable for
predicting structures in the OR and LU decomposition of structured rank matrices. Examples, connected
to semiseparable and closely related matrices were included proving the power of these theorems, in
predicting rank structures in matrices.

A clear and rather strong restriction to the decomposition theorems is the demand of invertibility. In
our current research we try to omit this restriction, such that we can formulate these theorems also for
noninvertible matrices, thereby predicting the structures of the factors.
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