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ADAPTIVE CROSS APPROXIMATION FOR ILL-POSED PROBLEMS∗

T. MACH† , L. REICHEL‡ , M. VAN BAREL§ , AND R. VANDEBRIL¶

Abstract. Integral equations of the first kind with a smooth kernel and perturbed right-hand
side, which represents available contaminated data, arise in many applications. Discretization gives
rise to linear systems of equations with a matrix whose singular values cluster at the origin. The
solution of these systems of equations requires regularization, which has the effect that components
in the computed solution connected to singular vectors associated with small singular values are
damped or ignored. In order to compute a useful approximate solution typically approximations of
only a fairly small number of the largest singular values and associated singular vectors of the matrix
are required. The present paper explores the possibility of determining these approximate singular
values and vectors by adaptive cross approximation. This approach is particularly useful when a fine
discretization of the integral equation is required and the resulting linear system of equations is of
large dimensions, because adaptive cross approximation makes it possible to compute only fairly few
of the matrix entries.

Key words. ill-posed problem, inverse problem, sparse discretization, regularization, adaptive
cross approximation

1. Introduction. This paper considers the approximate solution of Fredholm
integral equations of the first kind,

∫

Ω1

κ(s, t)x(t)dt = g(s), s ∈ Ω2, (1.1)

with a smooth kernel κ. The Ωi are subsets of Rdi for some positive integers di,
i = 1, 2. Integral equations of this form arise in many applications, including remote
sensing, computerized tomography, and image restoration. The solution of (1.1) is a
so-called ill-posed problem. A reason for this is that the singular values of the integral
operator cluster at the origin; see, e.g., [10, 18].

Discretization of (1.1) by a Galerkin, Petrov–Galerkin, or Nyström method yield
a linear system of equations

Ax = g, A ∈ Rn×n, g ∈ Rn, (1.2)

with a matrix with many singular values close to the origin. The matrix may be
very ill-conditioned already for small to moderate values of n, where we measure the
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conditioning as the ratio between the largest and smallest singular values of A. In
fact, A may be singular. Linear systems of equations with a matrix of this kind are
commonly referred to as discrete ill-posed problems. We will for notational simplicity
in this paper assume the matrix A to be square, however, the methods described can
also be applied after minor modifications when A is rectangular, in which case the
linear system of equations (1.2) may be replaced by a least-squares problem.

In many applications, the right-hand side vector g represents measured data and
is contaminated by measurement and discretization errors. Due to these errors and
the ill-conditioning of A, straightforward solution of (1.2) typically yields a computed
solution that is severely contaminated by propagated error and is therefore not useful.
To circumvent this difficulty, the system (1.2) is commonly replaced by a nearby
problem that is less sensitive to the error in g. This replacement is referred to as
regularization. The possibly most popular regularization methods include truncated
singular value decomposition (TSVD) and Tikhonov regularization.

Define the singular value decomposition (SVD)

A = UΣV T , (1.3)

where U = [u1, u2, . . . , un] ∈ Rn×n and V = [v1, v2, . . . , vn] ∈ Rn×n are orthogonal
matrices and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rn×n

is a diagonal matrix. Its nontrivial entries are the singular values of A; they are
ordered according to σ1 ≥ σ2 ≥ . . . σn ≥ 0. The columns of U and V are commonly
referred to as the left and right singular vectors of A, respectively. The superscript T

denotes transposition. The matrix

Ak =
k∑

j=1

σjujv
T
j (1.4)

is a closest matrix of rank at most k to A in the spectral norm; see, e.g., [15]. The
TSVD method determines, for some suitable k ≥ 0, the solution of minimal Euclidean
norm, denoted by xk, of the least-squares problem

min
x∈Rn

‖Akx− g‖. (1.5)

Here and throughout this paper ‖ · ‖ stands for the Euclidean vector norm or the
spectral matrix norm. The parameter k is a regularization parameter that determines
how many singular values and vectors of A are used to compute the approximate
solution xk of (1.2).

Tikhonov regularization replaces the system (1.2) by the penalized least-squares
problem

min
x∈Rn

{‖Ax− g‖2 + µ‖x‖2}, (1.6)

which has a unique solution xµ for any positive value of the regularization parameter
µ. Substituting the SVD (1.3) into (1.6) shows that Tikhonov regularization dampens
the contributions to xµ of singular values and vectors with large index k the most;
increasing µ > 0 results in more damping. We refer to [8, 10, 14, 18, 19, 23, 26] for
details and computed examples with these regularization methods.
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The determination of suitable values of the regularization parameters, k in (1.5)
and µ in (1.6), is important for the quality of the computed approximate solution.
Several methods have been described in the literature including the discrepancy prin-
ciple, the L-curve criterion, and generalized cross validation; see [6, 25, 27] for recent
discussions of their properties and illustrations of their performance. Regularization
methods typically require that regularized solutions for several parameter values be
computed and compared in order to determine a suitable value.

The present paper is concerned with the situation when the data vector g in (1.2)
is of high dimension. Then the matrix A is large. The repeated solution of (1.6)
can be carried out by iterative methods; see, e.g., [8, 10, 14, 19, 23]. These methods
require the evaluation of matrix-vector products with A, and possibly with AT as
well, and this can be expensive when A is large. Moreover, all entries of the matrix
have to be computed. There are iterative methods for computing the first k singular
values and associated singular vectors of the matrix A; see, e.g., [2, 22, 24]. These
methods also require matrix-vector product evaluations with A and AT , as well as
the evaluation of all matrix elements.

Cross approximation, sometimes also referred to as skeleton approximation, of
matrices has been proposed as an approach to approximate a large dense matrix by
a matrix of low rank; see, e.g., [4, 5, 13, 16, 29] and references therein. This method
seeks to select a subset of k rows and columns of the matrix A to obtain a matrix
Mk ∈ Rn×n of rank at most k so that ‖A −Mk‖ is small. Due to the optimality of
the SVD of A, we have

‖A−Ak‖ ≤ ‖A−Mk‖.

However, Mk is much cheaper to compute than Ak. In particular, the determination
of Mk does not require that all entries of A be evaluated. The good performance of
cross approximation for the approximation of a large matrix A by a matrix Mk of
low rank k is well documented in the literature; see, e.g., [4, 5, 13, 16, 29]. However,
we are not aware of applications of cross approximation to the solution of discretized
Fredholm integral equations of the first kind (1.1) with a smooth kernel. It is the
purpose of the present paper to discuss this application.

This paper is organized as follows. Section 2 discusses an algorithm for adaptive
cross approximation. Its use in the TSVD method for computing an approximate so-
lution of (1.2) is described in Section 3 and its application in the context of Tikhonov
regularization is considered in Section 4. We discuss the TSVD and Tikhonov reg-
ularization methods when the regularization parameters k and µ, respectively, are
determined by the discrepancy principle. However, other approaches to determine
these parameters can also be applied; see, e.g., [6, 10, 19, 25, 27] for discussions and
comparisons of a variety of methods for determining the regularization parameters.
Section 5 presents computed examples and concluding remarks can be found in Sec-
tion 6.

2. Adaptive cross approximation. The aim of cross or skeleton approxima-
tion of a large matrix A is to determine a matrix Mk of (low) rank at most k, such that
Mk approximates A sufficiently well and can be computed much more efficiently than
the matrix (1.4). This goal is reached by carefully selecting k rows and columns of the
matrix A, called skeletons. The cross approximation is called adaptive when the choice
and number of skeletons is determined by properties of A during the computations;
see [3, 5]. This section considers three versions of adaptive cross approximation to
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reduce square nonsymmetric matrices, symmetric indefinite matrices, and symmetric
positive (semi)definite matrices.

Let us first consider the case when the matrix A ∈ Rn×n is nonsymmetric. We
select k rows of A with row indices i ⊂ {1, . . . , n} and denote the submatrix so obtained
by A(i,:). Similarly, we select k columns of A with column indices j ⊂ {1, . . . , n} and
denote the submatrix so defined by A(:,j). These k rows and columns have a common
“core matrix” A(i,j). Assuming that this core matrix is nonsingular, the rows i and
columns j of the matrix

Mk = A(i,:)A
−1
(i,j)A(:,j)

equal the corresponding rows and columns of A. When A is of rank k, we have
Mk = A.

Assume that the matrix A can be approximated well by a matrix of rank k and
that the row and column indices i and j are chosen in a suitable way. Then we can
expect Mk to be an accurate approximation of A. It is shown by Goreinov et al.
[16] that if A can be approximated sufficiently well by a matrix of low rank, then
under suitable conditions a cross approximation Mk that approximates A well exists.
However, it is not described how to choose suitable index sets i and j. Goreinov
et al. [17] explain that the index sets i and j should be chosen so that A(i,j) is a
submatrix of A of maximal volume; i.e., the modulus of the determinant is maximal.
However, the determination of such a submatrix is a difficult problem. We therefore
seek to determine a low-rank matrix Mk that is a sufficiently accurate approximation
of A in a different manner. All existing methods for constructing such a matrix Mk

use a greedy approach to successively compute rank-one approximations or skeletons
from a fairly small number of skeletons. Suppose that we already have computed
an approximation Mk−1 of rank at most k − 1 of A, where Mk−1 is a sum of k − 1
skeletons, i.e.,

Mk−1 =
k−1∑

l=1

w
(c)
l (w(r)

l )T .

To compute the next skeleton, a row index i∗ and a column index j∗ have to be deter-
mined. This is done by looking for the index of the maximum element in magnitude
(pivot) in the previously computed vectors w

(c)
k−1 (for pivot index i∗) and w

(r)
k−1 (for

pivot index j∗). In the beginning an arbitrary row of A can be chosen. We will choose
the first row in the computed examples of Section 5. In the simplest form of cross
approximation, the computation of the vectors w

(c)
k and w

(r)
k only requires the entries

in row i∗ and column j∗ of A and the entries of already computed skeletons:

(w(r)
k )j = Ai∗k,j −

k−1∑

l=1

(w(c)
l )i∗k(w(r)

l )j , δ = (w(r)
k )j∗k ,

(w(c)
k )i =

1
δ

(
Ai,j∗k −

k−1∑

l=1

(w(c)
l )i(w

(r)
l )j∗k

)
.

A new skeleton is obtained from the remainder,

Rk = A−
k∑

l=1

w
(c)
l (w(r)

l )T ,
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without explicitly computing Rk.
In general, the number of skeletons required, k, is not known in advance. There-

fore a stopping criterion is introduced to adaptively determine k. If the stopping
criterion would be based only on the value of the pivot element that is chosen in each
step, then this criterion would fail when the matrix A is block diagonal,

A =
[

A11 0
0 A22

]
,

with A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , and n = n1 + n2. Let the initial row and column
indices i∗ and j∗, respectively, belong to one of the index sets I1 = {1, . . . , n1} or
I2 = {n1 +1, . . . , n1 +n2}. Then the next chosen pivot indices will be elements of the
same index set. Therefore, at most one of the two diagonal blocks, A11 or A22, will
be approximated.

Most stopping criteria described in the literature, see, e.g., [3, 4, 5], only use the
computed rows and columns and therefore cannot avoid this difficulty. A new stopping
criterion was developed in [13], which also includes t randomly chosen matrix entries
Ail,jl

, for l = 1, . . . , t, with il, jl ∈ {1, 2, . . . , n}. When a new skeleton is determined,
the values of these entries are updated by subtraction of the available skeletons,

(Rk)il,jl
= (Rk−1)il,jl

− (w(c)
k )il

(w(r)
k )jl

, (2.1)

with (R0)il,jl
= Ail,jl

. If the following condition holds,

|(Rk)il,jl
| ≤ τ ∀l = 1, . . . , t, (2.2)

for a user-specified parameter-value τ , then the algorithm will stop. The number of
entries t considered in this stopping criterion is a percentage of the total number of
entries. The choice of this percentage should depend on properties of the matrix A;
see [13] for further details.

Algorithm 1 below is an adaptation and reformulation of the algorithm described
in [13]. It is applicable to nonsymmetric matrices A ∈ Rn×n. In the algorithm, the
pivot index i∗k is determined by the element of largest magnitude of w

(c)
k or by the

magnitudes of (Rk−1)il,jl
, l = 1, 2, . . . , t. A variant could be to always determine i∗k

by using the magnitude of the elements (Rk−1)il,jl
only.

When the matrix A is symmetric, we would like the approximant Mk also to
be symmetric. Let us first consider the case when A is symmetric and indefinite.
Algorithm 1 can be adapted as follows to compute an approximant Mk of the form

Mk =
k∑

l=1

δ−1
l wlw

T
l .

Assume that the stopping criterion is not satisfied. When j∗k = i∗k only one skeleton
δ−1
k wkwT

k is added to Mk−1, while when j∗k 6= i∗k two skeletons are added at the same
time. They are determined by the two rows and columns with indices i∗k and j∗k . The
set Zi (see Algorithm 1) is then updated according to

Zi ∪ {i∗p, j∗p}.

The next possible value for i∗k+1 is taken as the maximum absolute value of the two
columns

(Rk−1)(i,i∗k) and (Rk−1)(i,j∗k) with i ∈ I \ Zi.
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Algorithm 1 Adaptive Cross Approximation (ACA)
Choose i∗1 ∈ I := {1, . . . , n}, tolerance τ , number of points t in the stopping crite-
rion. Set Zi := {}, k := 1, J := {1, . . . , n}, stopcrit:=false.
while Not stopcrit do

Compute the maximal entry in modulus of the row

(w(r)
k )j := Ai∗k,j −

k−1∑

l=1

(w(c)
l )i∗k(w(r)

l )j , j ∈ J,

j∗k := argmax
j∈J

|(w(r))
k )j |,

δk := (w(r)
k )j∗

k
.

if |δk| ≤ τ then
Set i∗k := il∗ with l∗ := arg maxl |(Rk−1)il,jl

|.
else

Set Zi := Zi ∪ {i∗k}.
Compute the entries of the following vector

(w(c)
k )i :=

1
δk

(
Ai,j∗k −

k−1∑

l=1

(w(c)
l )i(w

(r)
l )j∗k

)
, i ∈ I.

Compute the maximal entry in modulus of the column

i∗k+1 := arg max
i∈I\Zi

|(w(c)
k )i|.

stopcrit := max1≤l≤t |(Rk)il,jl
| ≤ τ .

Set k = k + 1.
end if

end while

The computed approximant Mk is an incomplete LDLT-type factorization of the sym-
metrically pivoted matrix A.

When A is symmetric and positive (semi)definite, the stopping criterion can be
simplified. Instead of considering t randomly chosen elements of the matrix A, we
only have to look at the diagonal entries. In step k, we determine the largest element
in absolute value of (Rk−1)(i,i), i.e.,

i∗k = j∗k = arg max
i
|(Rk−1)(i,i)|.

Note that in this case all the δk-values will be positive and the approximant Mk is
an incomplete Cholesky factorization of the symmetrically pivoted matrix A. The
following result sheds some light onto the modification of Algorithm 1 for symmetric
positive semidefinite matrices.

Proposition 2.1. Let A ∈ Rn×n be symmetric positive semidefinite. Each one
of the matrices R1, R2, . . . , Rk, analogous to (2.1), generated by the above described
modification of Algoritm 1 for positive semidefinite matrices, is symmetric positive
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semidefinite.
Proof. We only have to consider one step of the algorithm. Let i∗1 = 1. The matrix

Cγ = I−γe1e
T
1 with 0 < γ < 1 is symmetric positive definite and by Sylvester’s law of

intertia CγACγ is positive semidefinite. A perturbation argument shows that C1AC1

also is positive semidefinite. The proposition now follows from the observation that
R1 = C1AC1.

3. The TSVD method. We first consider the situation when the matrix A ∈
Rn×n is nonsymmetric. Application of k steps of Algorithm 1 gives two matrices,

W
(c)
k = [w(c)

1 , w
(c)
2 , . . . , w

(c)
k ] ∈ Rn×k, W

(r)
k = [w(r)

1 , w
(r)
2 , . . . , w

(r)
k ] ∈ Rn×k

such that

A ≈ Mk = W
(c)
k (W (r)

k )T . (3.1)

Introduce the QR factorizations

W
(c)
k = Q

(c)
k R

(c)
k , W

(r)
k = Q

(r)
k R

(r)
k . (3.2)

where the matrices Q
(c)
k , Q

(r)
k ∈ Rn×k have orthonormal columns and R

(c)
k , R

(r)
k ∈

Rk×k are upper triangular. The latter matrices may be numerically singular. These
QR factorizations can be computed by the Householder-QR method or by methods
that run more efficiently on modern computers; see, e.g., [7, 11, 30] for examples.

We will use the singular value decomposition

R
(c)
k (R(r)

k )T = ŨkΣ̃kṼ T
k , (3.3)

where the matrices Ũk, Ṽk ∈ Rk×k are orthogonal and Σ̃k = diag[σ̃1, σ̃2, . . . , σ̃k] ∈
Rk×k has the nontrivial entries σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃k ≥ 0. The SVD of Mk is given by

Mk = Q
(c)
k ŨkΣ̃kṼ T

k (Q(r)
k )T . (3.4)

Since n ≫ k in our applications, the dominating computational effort for determining
the SVD (3.4) is the computation of the QR factorizations (3.2).

We first describe the discrepancy principle when applied to the solution of (1.2)
by using (1.4), and then discuss necessary modifications required when applying the
discrepancy principle to the solution of

min
x∈Rn

‖Mkx− g‖. (3.5)

Let a fairly accurate bound, ε, for the norm of the error in g be known, i.e.,

‖g − gexact‖ ≤ ε, (3.6)

where gexact denotes the unknown error-free vector associated with g, and assume
that the error-free linear system of equations associated with (1.2),

Ax = gexact, (3.7)

is consistent. This condition is required when the discrepancy is applied to determine
a suitable regularized approximate solution of (1.2). We refer to the solution of
minimal Euclidean norm of (3.7) by xexact. The discrepancy principle prescribes that
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the truncation index k in (1.4) be chosen as small as possible so that the minimal-norm
solution xk of (1.5) satisfies

‖Axk − g‖ ≤ ηε, (3.8)

where η ≥ 1 is a user-supplied constant independent of ε. The truncation index k
typically increases as ε decreases to zero. Engl et al. [10] show in a Hilbert space
setting that xk converges to xexact as ε decreases to zero.

Since the matrix A is not available, we instead apply the discrepancy principle to
the solution of (3.5). Let σ̃p be the smallest positive singular value of Mk and define,
for 1 ≤ ℓ ≤ p, the matrices

Σ̃(ℓ)
k = diag[σ̃1, σ̃2, . . . , σ̃ℓ, 0, . . . , 0] ∈ Rk×k.

and

M
(ℓ)
k = Q

(c)
k ŨkΣ̃(ℓ)

k Ṽ T
k (Q(r)

k )T . (3.9)

Let x
(ℓ)
k denote the minimal-norm solution of the least-squares problem

min
x∈Rn

‖M (ℓ)
k x− g‖. (3.10)

We easily can compute x
(ℓ)
k with the aid of the decomposition (3.9) as follows. Note

that the minimization problem (3.10) is equivalent to

min
x∈Rn

‖Q(c)
k ŨkΣ̃(ℓ)

k Ṽ T
k (Q(r)

k )T x−Q
(c)
k (Q(c)

k )T g‖2 + ‖(I −Q
(c)
k (Q(c)

k )T )g‖2.

Let y
(ℓ)
k be the least-squares solution of minimal norm of the reduced problem

min
y∈Rk

‖Σ̃(ℓ)
k y − ŨT

k (Q(c)
k )T g‖.

Then x
(ℓ)
k = Q

(r)
k Ṽky

(ℓ)
k . The discrepancy principle suggests that we choose 0 ≤ ℓ ≤ p

as small as possible so that

‖Mkx
(ℓ)
k − g‖ ≤ ηε, (3.11)

where η and ε are the same as in (3.8). Here we assume that such a value of ℓ
exists; see below for further comments on this. The left-hand side can be evaluated
inexpensively for several values of 0 ≤ ℓ ≤ p according to

‖Mkx
(ℓ)
k − g‖2 = ‖ŨkΣ̃ky

(ℓ)
k − (Q(c)

k )T g‖2 + ‖(I −Q
(c)
k (Q(c)

k )T )g‖2.

The following result sheds some light on whether an index 1 ≤ ℓ ≤ p exists such that
(3.11) can be satisfied.

Proposition 3.1. Let σ̃p for some 1 ≤ p ≤ k be the smallest positive singular
value of the matrix Mk and let the matrix Ũp ∈ Rk×p be made up of the first p columns
of the matrix Ũk in (3.4). Then there is a vector x ∈ Rn such that ‖Mkx− g‖ ≤ ηε
if and only if

‖PN (Q
(c)
k

Ũp)
g‖ ≤ ηε, (3.12)
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where PN (Q
(c)
k Ũp)

denotes the orthogonal projector onto the null space of Q
(c)
k Ũp. The

minimal-norm solution x
(p)
k of (3.10) (with ℓ = p) satisfies

‖Mkx
(p)
k − g‖ = ‖PN (Q

(c)
k Ũp)

g‖. (3.13)

Moreover, ‖Mkx
(ℓ)
k − g‖ decreases as ℓ increases, and 0 ≤ ℓ ≤ p.

Proof. Using the SVD of Mk (3.4), we obtain the relation

min
x∈Rn

‖Mkx− g‖ = ‖PN (Q
(c)
k Ũp)

g‖,

from which (3.12) follows. The equality (3.13) as well as the fact that ‖Mkx
(ℓ)
k − g‖

decreases when ℓ increases also can be shown with the aid of (3.4).
The singular values of Mk are bounded by the singular values of A, i.e., σ1 ≥ σ̃1

and σ̃k ≥ σn; see, e.g., [15]. However, we cannot evaluate ‖A−Mk‖. Therefore, we
choose k ≥ 3 large enough so that

σ̃ℓ ≥ 10 σ̃k−2. (3.14)

The value of ℓ in (3.14) depends on the amount of error in the data g, and both k
and ℓ depend on the matrix A. Typically, it is not known how large k should be chosen
in the beginning of the computations. For many problems of interest 10 ≤ k ≤ 20 is
sufficiently large. If k is found to be too small to satisfy (3.14), then we increase k
and update the QR factorizations (3.2) using the method described in [9].

Finally, we note that in order for the discrepancy principle to be able to determine
a suitable truncation index ℓ in (3.11), the unknown error-free data vector gexact

should be in the range of Mk. The distance between gexact and the range of Mk

depends on how well Mk approximates A. Recall that we assumed gexact to be in the
range of A. We have found the discrepancy principle to perform better when used
with the projected data vector Q

(c)
k (Q(c)

k )T g than with g. Thus, we let 0 ≤ ℓ ≤ p be
as small as possible so that

‖Mkx
(ℓ)
k −Q

(c)
k (Q(c)

k )T g‖ ≤ ηε. (3.15)

The value of ℓ determined in this manner is generally smaller than the value that
would have been computed by using (3.11).

We remark that the linear system of equations (1.2) is regularized by first sub-
stituting the matrix A by the matrix Mk of rank at most k, and then by replacing
the latter by a truncated singular value decomposition M

(ℓ)
k of rank at most ℓ ≤ k.

The number of cross approximation steps k is chosen so that Mk is an adequate ap-
proximation of A; this is the purpose of the requirement (3.14). The truncation index
ℓ in (3.9), determined by (3.15), has the effect of setting the k − ℓ smallest singular
values of Mk to zero and thereby reducing the propagation of the error in g into the
computed approximation x

(ℓ)
k of xexact.

We conclude this section with some comments on the situation when the matrix
A is symmetric. The modification of Algorithm 1 outlined at the end of Section 2 for
the situation when A is indefinite yields a matrix Wk = [w1, w2, . . . , wk] ∈ Rn×k and
a diagonal matrix Dk = diag[δ1, δ2, . . . , δk] ∈ Rk×k so that

Mk = WkD−1
k WT

k

9



approximates A. We compute the QR factorization Wk = QkRk, where Qk ∈ Rn×k

has orthonormal columns and Rk ∈ Rk×k is upper triangular, and the SVD

RkD−1
k RT

k = ŨkΣ̃kṼ T
k . (3.16)

The matrices in the right-hand side are of the same form as in (3.3). The computa-
tions now proceed as described above. Alternatively, one may compute the spectral
factorization of RkD−1

k RT
k and regularize by removing the eigenvalues of smallest mag-

nitude and associated eigenvectors from this matrix. When all entries of the diagonal
matrix Dk in (3.16) are nonnegative, the singular value decomposition of RkD

−1/2
k

should be computed instead of (3.16).

4. Tikhonov regularization. To apply this regularization method, we replace
the matrix A in (1.6) by the matrix Mk defined by (3.1),

min
x∈Rn

{‖Mkx− g‖2 + µ‖x‖2}. (4.1)

The discrepancy principle applied to the solution of (3.5) prescribes that the reg-
ularization parameter µ > 0 be chosen so that the solution x

(µ)
k of (4.1) satisfies

‖Mkx
(µ)
k − g‖ = ηε, (4.2)

where we use the same notation as in Section 3. We refer to this value of the regular-
ization parameter as µ∗. The following result is concerned with the existence of the
value µ∗.

Proposition 4.1. Let p, σp, Ũp, and the orthogonal projector PN (Q
(c)
k Ũp)

be

defined as in Proposition 3.1. Assume that MT
k g 6= 0 and define the function

ϕ(ν) = gT (νMkMT
k + I)−2g. (4.3)

Then, for ν > 0, the solution x
(1/ν)
k of (4.1) (with µ = 1/ν) satisfies

ϕ(ν) = ‖Mkx
(1/ν)
k − g‖2. (4.4)

Moreover, ϕ is decreasing and convex for ν ≥ 0 and the equation

ϕ(ν) = τ

has a unique solution 0 < ν < ∞ for any τ such that ‖PN (Q
(c)
k Ũp)

g‖2 < τ < ‖g‖2.
Proof. The proposition has been shown in [8, Theorem 2.1]. We therefore only

provide an outline of the proof. The solution of (4.1) is, for any µ > 0, given by

x
(µ)
k = (MT

k Mk + µI)−1Mkg.

Substituting this expression into (4.2) and using the relation Mk(MT
k Mk+µI)−1MT

k =
MkMT

k (MkMT
k + µI)−1 gives (4.4) with ν = 1/µ. The fact that ϕ is decreasing and

convex follows from (4.3). Substituting the SVD of Mk into (4.3) shows the remaining
properties of ϕ.

We use the decomposition (3.4) to reduce the minimization problem (4.1) in a
similar fashion as in Section 3. Thus, problem (4.1) is equivalent to

min
y∈Rk

{‖Σ̃ky − ŨT
k (Q̃(c)

k )T g‖2 + µ‖y‖2}
10



with solution

y
(µ)
k = (Σ̃2

k + µI)−1Σ̃kŨT
k (Q(c)

k )T g.

Then x
(µ)
k = Q

(r)
k Ṽky

(µ)
k . Substitution into (4.2) gives

‖Mkx
(µ)
k − g‖2 = ‖Σ̃ky

(µ)
k − ŨT

k (Q̃(c)
k )T g‖2 + ‖(I −Q

(c)
k (Q(c)

k )T )g‖2. (4.5)

The right-hand side can be evaluated inexpensively for any µ-value of interest. A
root-finder, such as Newton’s method, can be used to determine a value of µ such
that x

(µ)
k satisfies (4.2) or, equivalently, a value ν = 1/µ such that

ϕ(ν) = η2ε2.

Similarly as in Section 3, it often is preferable to replace the data vector g by the
projected vector Q

(c)
k (Q(c)

k )T g in (4.1) and (4.2). Thus, we solve

min
x∈Rn

{‖Mkx−Q
(c)
k (Q(c)

k )T g‖2 + µ‖x‖2} (4.6)

for x
(µ)
k and determine µ∗ := µ so that

‖Mkx
(µ∗)
k −Q

(c)
k (Q(c)

k )T g‖ = ηε. (4.7)

Analogously to the condition (3.14) for the TSVD method, we require when ap-
plying Tikhonov regularization that k is large enough so that

µ∗ ≥ 100 σ̃2
k.

5. Computed examples. As a proof of concept we will compute regularized
solutions for some ill-posed problems from Hansen’s regularization MATLAB tool-
box [21]. Adaptive cross approximation is used to approximate matrices A by ma-
trices Mk of low rank. Regularization is achieved by the TSVD method applied to
(3.15) and by Tikhonov regularization (4.6). The regularization parameters ℓ and µ,
respectively, are determined by the discrepancy principle. Throughout this section,
α e−β stands for α · 10−β.

Example 5.1. (“Baart” [1, 21]) This example is a Fredholm integral equation
of the first kind (1.1) with κ(s, t) = exp(s cos(t)), g(s) = 2 sinh(s)/s, and solution
x(t) = sin(t), where Ω1 = [0, π] and Ω2 = [0, π/2]. The code baart from [21] uses
a Galerkin method with piecewise constant test and trial functions to determine the
discretized integral operator A ∈ Rn×n, a discretized scaled approximation xexact ∈
Rn of x(t), and the corresponding error-free right-hand side vector gexact ∈ Rn. We
add the vector r ∈ Rn, which models measurement error, to gexact to obtain the error-
contaminated right-hand side g in (1.2). The entries of r are normally distributed
with zero mean and scaled so that ε := ‖r‖ =1 e−4. We let n = 2000 and choose the
constant η in (3.8) to be 1.

We compute the approximation Mk ≈ A by adaptive cross approximation as
described by Algorithm 1. The number of random index pairs, t, used in the stopping
criterion of the algorithm is n/4, and we denote this set of index pairs by T .

For truncated SVD regularization, we start with ℓ = 1 and increase ℓ until the
residual norm in (3.15),

rℓ := ‖Mkx
(ℓ)
k −Q

(c)
k (Q(c)

k )T g‖,
11
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Fig. 5.1. Example 5.1–“Baart”, ε =1 e−4.
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Fig. 5.2. Example 5.2–“Shaw”, n = 2000, ε =1 e−4.

is smaller than ε.
For Tikhonov regularization, we use the MATLAB function fminbnd to find the

µ-value for which the solution of (4.6) satisfies fulfills (4.7). Figure 5.1 displays the
exact solution, defined by xexact, and the computed approximate solutions determined
by TSVD and Tikhonov regularization. We summarize some key quantities for all
examples in Tables 5.1 and 5.2. The vector xexact is in the tables denoted by x.

Example 5.2. (“Shaw” [21, 28]) The kernel in (1.1) is taken to be κ(s, t) =
(cos(s) + cos(t))(sin(u)/u)2, with u = π(sin(s) + sin(t)), and Ω1 = Ω2 = [−π/2, π/2].
The solution x(t) is the sum of two Gaussian functions; see [28]. We discretize by a
Nyström method on grids with n = 2000 and n = 14500 grid points. The function
shaw from [21] determines a matrix A ∈ Rn×n and vector xexact ∈ Rn. The error-free
right-hand side is defined by gexact = Axexact. Adding Gaussian noise of absolute
norm 1 e−4 gives the error-contaminated vector g.

The computations with Algorithm 1 are carried out similarly as for Example 5.1.
The exact and computed regularized solutions for n = 2000 are displayed in Figure 5.2.
The corresponding results for n = 14 500 are shown in Figure 5.3. The latter figure
and Tables 5.1 and 5.2 illustrate that the method of this paper performs well also for
very large matrices.
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Fig. 5.3. Example 5.2–“Shaw”, n = 14 500, ε =1 e−4.
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Fig. 5.4. Example 5.3–“Foxgood”, ε =1 e−2.

Example 5.3. (“Foxgood” [12, 21]) The integral equation (1.1) is defined by
κ(s, t) =

√
s2 + t2, Ω1 = Ω2 = [0, 1], and g(s) = 1

3 (1 + s2)
3
2 − s3. It has the solution

x(t) = t. This example was first used by Fox and Goodwin [12]. The function
foxgood from [21] discretizes the integral equation by a Nyström method and gives
the matrix A ∈ Rn×n and vectors xexact, gexact ∈ Rn similarly as in the previous
examples. Gaussian noise r ∈ Rn is added to gexact to yield g. The vector r is scaled
to correspond to an absolute error 1 e−2. The results are shown in Figure 5.4.

Example 5.4. (“Gravity” [20, 21]) The integral operator (1.1) is defined by
κ(s, t) = d(d2 + (s − t)2)−

3
2 with d = 0.25 and Ω1 = Ω2 = [0, 1]. The solution

x(t) = sin(πt) + 0.5 sin(2πt) is given and defines the right-hand side function g. The
matrix A ∈ Rn×n and vectors xexact, gexact ∈ Rn are determined by discretizing
(1.1) using the function gravity from [21]. We let n = 2000 and determine the error-
contaminated right-hand side vector g ∈ Rn by adding Gaussian noise that corre-
sponds to an absolute error 1 e−2. The results are shown in Figure 5.5.

The matrices in Examples 5.2, 5.3, and 5.4 are symmetric. We also applied the
version of adaptive cross approximation for symmetric indefinite matrices described at
the end of Section 2 to these matrices. There was no significant difference in the run-
time for the symmetric and nonsymmetric adaptive cross approximation algorithms,
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Fig. 5.5. Example 5.4–“Gravity”, ε =1 e−2.

Table 5.1
Errors in regularized solution with ACA and TSVD regularization.

Example n ε k ‖A−Mk‖ ‖x
(ℓ)
k − x‖/‖x‖ ℓ

Ex. 5.1 2 000 1 e−04 7 1.12 e−07 1.15 e−01 4
Ex. 5.2 2 000 1 e−04 11 1.27 e−05 4.76 e−02 12
Ex. 5.2 14 500 1 e−04 11 1.28 e−05 4.76 e−02 7
Ex. 5.2s 2 000 1 e−04 11 2.26 e−05 4.76 e−02 7
Ex. 5.3 2 000 1 e−02 5 4.14 e−04 3.17 e−02 6
Ex. 5.3s 2 000 1 e−02 4 1.22 e−02 4.49 e−02 2
Ex. 5.4 2 000 1 e−02 9 4.11 e−01 8.02 e−02 14
Ex. 5.4s 2 000 1 e−02 11 7.92 e−01 8.18 e−02 4

but the former, of course, requires only about half as much computer memory than the
latter. Moreover, the approximate solutions determined by Tikhonov regularization
often have the same accuracy when symmetry is exploited, see Table 5.1 and 5.2,
where we marked the lines in which we used symmetric cross approximation by ’s’.

Finally, Tables 5.3 and 5.4 show computations analogous to those reported in Ta-
bles 5.1 and 5.2 but without application of adaptive cross approximation. Table 5.3
applies for n = 2000 the TSVD method to solve the discrete ill-posed problems of
Examples 5.1-5.4. The truncation index k differs from that in Table 5.1, but the
quality of the computed approximations of xexact is on average about the same as
in Table 5.1. Table 5.4 shows results obtained with Tikhonov regularization without
adaptive cross approximation for the same problems. The regularization parameter
values in Tables 5.4 and 5.2 are very close, and the quality of the computed approx-
imations of xexact in Tables 5.4 and 5.2 are very close for all but one problem. We
conclude from Tables 5.3 and 5.4 that the application of adaptive cross approxima-
tions does not on average affect the quality of the computed approximations of xexact

in a significant way.

6. Conclusion. This paper describes how adaptive cross approximation can be
applied in conjunction with regularization methods for the solution of ill-posed prob-
lems. Special variants for symmetric problems are discussed. Computed examples il-
lustrate the feasibility of the use of adaptive cross approximation for this application.
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Table 5.2
Errors in regularized solution with ACA and Tikhonov regularization.

Example n ε k ‖A−Mk‖ ‖x
(µ)
k − x‖/‖x‖ µ

Ex. 5.1 2 000 1 e−04 6 1.59 e−06 1.38 e−01 4.05 e−05
Ex. 5.2 2 000 1 e−04 12 1.39 e−05 4.71 e−02 4.10 e−05
Ex. 5.2 14 500 1 e−04 12 1.40 e−05 4.70 e−02 4.04 e−05
Ex. 5.2s 2 000 1 e−04 12 1.13 e−05 4.70 e−02 4.14 e−05
Ex. 5.3 2 000 1 e−02 6 9.76 e−05 2.36 e−02 5.47 e−05
Ex. 5.3s 2 000 1 e−02 6 5.58 e−03 8.23 e−02 4.44 e−05
Ex. 5.4 2 000 1 e−02 14 3.36 e−02 4.81 e−02 6.10 e−05
Ex. 5.4s 2 000 1 e−02 13 3.93 e−03 9.04 e−02 6.02 e−05

Table 5.3
Errors in regularized solution with TSVD regularization without ACA.

Example n ε ‖xk − x‖/‖x‖ k

Ex. 5.1 2 000 1 e−04 6.04 e−02 5
Ex. 5.2 2 000 1 e−04 3.22 e−02 9
Ex. 5.3 2 000 1 e−02 3.12 e−02 2
Ex. 5.4 2 000 1 e−02 2.09 e−02 8

In particular, the examples show that the quality of the computed approximations of
the desired solution xexact is not adversely affected by the reduction of the original
large problem to a smaller one by adaptive cross approximation.
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