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Abstract

We present a new discretization of the mono-energetic Fokker-Planck
equation. We build on previous work (Kophazi and Lathouwers, A space-
angle DGFEM approach for the Boltzmann radiation transport equa-
tion with local angular refinement, j. of computational phys., 297:637-
668, 2015) where we devised an angular discretization for the Boltzmann
equation, allowing for both heterogeneous and anisotropic angular refine-
ment. The angular discretization is based on a discontinuous finite ele-
ment method on the unit sphere. Here we extend the methodology to
include the effect of the Fokker-Planck scatter operator describing small
angle particle scatter. We describe the construction of an interior penalty
method on the sphere surface. Results are provided for a variety of test
cases, ranging from purely angular to fully three-dimensional. The results
show that the scheme can resolve highly forward-peaked flux distributions
with forward-peaked scatter.

Keywords: discontinuous Galerkin, Fokker-Planck, particle transport, ra-
diation transport, upwinding, interior penalty

1 Introduction

Charged particle radiation occurs in fields such as radiotherapy, plasma physics,
and material sciences. To consider the effects of such radiation one needs an
accurate description of how the particles interact with materials of interest such
as human tissue.

The interactions of charged particles with the nuclei and the electrons of
the material cause a variety of processes that are fundamentally different from
those encountered with neutral particles such as photons and neutrons. Charged
particle interactions are much more frequent and therefore lead to very large
cross sections. Many of these interactions lead to either small deflections in the
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direction of the particle with a negligible energy loss, or a small energy loss and a
negligible deflection. Conversely, nuclear interactions can cause large deflections,
transmutation or secondary particles to form [23]. Though the processes are
quite different from neutral particles, the radiation field is accurately described
by the linear Boltzmann equation with appropriate cross section data. The small
deflection in Coulomb scatter means that highly forward-peaked scatter needs
to be resolved. In many cases one can use the Fokker-Planck approximation,
where the deflection angle tends to zero while the momentum transfer stays
constant [21]. In this work, we will focus on the discretization of the angular
part of the Fokker-Planck equation.

There are two computational approaches to solving the Boltzmann (or Fokker-
Planck) equation: the Monte Carlo method and the deterministic method [18].
The Monte Carlo method is highly accurate both with respect to geometry and
in simulating complex particle physics, but may be slow when complete distri-
butions are of interest. The deterministic method is based on a discretization
of the Boltzmann (Fokker-Planck) problem in space, angle and energy. Modern
deterministic methods are well-equipped to handle complex geometries and are
more efficient when one is interested in complete distributions [3].

The most commonly applied angular discretization is the method of discrete
ordinates or SN method. Morel [21] showed that standard SN codes can perform
charged particle transport calculations through careful manipulation of the cross
sections used, so that state of the art neutral-particle tools can also be used for
charged particle transport. Another method to handle highly forward-peaked
scatter is the so-called extended-transport correction. There too the Legendre
scatter cross sections are manipulated to mimic the physics of the problem [10].
The problem with the SN method is that it cannot be anisotropically refined in
angle, which is required for efficient solution methods in many practical prob-
lems, such as radiotherapy. Product quadratures (e.g. [22]) can focus on the
solution close to a single direction (the pole of the sphere), but not on multi-
ple directions simultaneously. To achieve the best available accuracy with the
SN method, one resorts to Galerkin quadratures that obey certain favorable
properties, but these cannot be anisotropically refined either [25]. Finally, stan-
dard discrete ordinates codes use source iteration, which tends to break down
for increasingly forward-peaked scatter functions. Turcksin et al. [27] devised
acceleration methods based on multigrid iteration to address this shortcoming
at the price of considerable complexity.

In the present work we investigate a discretization of the Fokker-Planck equa-
tion that is based on discontinuous finite elements for the angular discretization.
Kópházi and Lathouwers [14] introduced this earlier for neutral particle trans-
port. Here we additionally present the treatment of the Fokker-Planck continu-
ous scatter term through an application of the symmetric interior penalty (SIP)
method to the unit sphere. Note that this discretization is also compatible with
the use of adaptive mesh refinement [15, 16]. The angular discretization can
be refined both anisotropically (focusing on certain directions more than oth-
ers) and heterogeneously (with different angular discretizations in various parts
of the spatial domain). Neither is addressed by the alternative space-angle DG
method proposed recently by Aubin et al. [2]; it’s especially unclear how it could
support heterogeneous refinement.

This paper is structured as follows. In section 2 we describe the Fokker-
Planck equation and its discretization in a single energy group. We pay par-
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ticular attention to the formulation of the basis functions, the spherical SIP
method, and the spatial streaming term. We briefly describe the solution algo-
rithm used for solving the linear systems. Section 3 illustrates our methodology
with three examples of varying complexity, ranging from purely angular de-
pendent to a three-dimensional Fermi pencil-beam case related to radiotherapy
applications. Finally, conclusions are drawn and a discussion is given in Section
4.

2 Discretization of the Fokker-Planck transport
equation

2.1 The Fokker-Planck equation

In this paper we study the time-independent, mono-energetic Fokker-Planck
equation for particle transport, given by

Ωi
∂ϕ

∂xi
− α

2
∆sϕ+ Σaϕ = S, x ∈ E, Ω ∈ S2 , (1)

where x is the position, Ω is the unit direction vector, ϕ = ϕ (x,Ω) is the
angular flux and S = S (x,Ω) is an external source. The summation over
repeated indices is implied and we use Cartesian coordinates for both x and
Ω. The spherical Laplacian is ∆s := ∂si ∂

s
i , where ∂s is the spherical gradient

operator with components

∂si =
∂

∂Ωi
− ΩiΩj

∂

∂Ωj
. (2)

Note that ∂s acts tangential to the unit sphere, i.e.: Ωi∂
s
i = 0. The diffusion

constant α = α(x) ≥ 0 is called the (macroscopic) transport cross section or
momentum transfer, while Σa = Σa(x) ≥ 0 is the macroscopic absorption cross
section.

Equation 1 models cases where the direction vector undergoes a series of
small deviations as the particle travels through the medium. The angular diffu-
sion term (α/2)∆sϕ approximates this random walk of Ω over S2. The model is
often used for charged particles, which have a large number of Coulomb inter-
action with nuclei with small deflections in each collision. The Fokker-Planck
approximation is valid in the limit where the angular deflection tends to zero,
while the product of angular deflection and collision frequency is kept constant.
See [5, 6] for a detailed derivation of equation 1 and an examination of its
validity.

Ultimately, the quantity of interest is the scalar flux φ, which is the zeroth
moment of ϕ:

φ := 〈1, ϕ〉S2 . (3)

Here

〈a, b〉H :=

∫

H

ab (4)
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denotes the standard inner product over a domain H. The first moments,

ji := 〈Ωi, ϕ〉S2 , (5)

are the components of the angular current density. An important property of
the angular diffusion operator −(1/2)∆s is that it preserves particles and the
angular current density (see e.g. [22]). Specifically,

〈1,−(1/2)∆sϕ〉S2 = 0 , (6)

〈Ωi,−(1/2)∆sϕ〉S2 = ji . (7)

Taking appropriate inner products of equation 1 and using the properties above
yields

φ =
1

Σa

(
〈1, S〉S2 −

∂ji
∂xi

)
, (8)

ji =
1

Σa + α

(
〈Ωi, S〉S2 −

∂

∂xm
〈ΩiΩm, ϕ〉S2

)
. (9)

Note that 1 and Ωi are spherical harmonics of order zero and one respectively. In
general, one could consider an arbitrary spherical harmonic Ylm of order l. The
corresponding lth moment 〈Ylm, ϕ〉S2 can always be expressed in terms of the
spatial derivatives of the (l+1)th moments.1 Ideally the conservative properties
6 and 7 also hold discretely.

2.2 Angular diffusion operator

In this section we focus on pure angular dependence, i.e. without spatial stream-
ing. In this case, the transport equation reduces to

−α
2

∆su+ Σau = f(Ω) , (10)

where u = u (Ω) is the unknown and α ≥ 0, Σa > 0 are arbitrary constants.
The boundary of a sphere is empty, so the absorption term (Σau) is necessary to
ensure that there is a unique solution for all f . This type of surface partial differ-
ential equation occurs in several fields and there are many numerical approaches.
Several authors (e.g.: [29, 19]) have suggested finite volume discretizations for
the spherical Laplacian. There is also considerable experience with continuous
finite elements on general surfaces [11] and unit spheres in particular [17]. Due
to their continuous nature, these approaches are incompatible with our treat-
ment of the spatial streaming term. We therefore employ discontinuous basis
functions on the sphere, which also simplifies anisotropic refinement. Section
2.2.1 describes how the discrete solution vector is mapped to the solution space.
The numerical weak formulation is discussed in section 2.2.2.

2.2.1 The angular solution space

To construct the angular solution space, the sphere is meshed into angular
elements. To distinguish from the spatial mesh, we refer to an angular element

1To show this explicitly, take an inner product of equation 1 with Ylm. Expand the angular
flux into spherical harmonics. Recall that Ylm is an eigenfunction of ∆s. Finally, note that
ΩiYlm is a (linear combination of) spherical harmonic(s) of order l + 1 [20].
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Figure 1: An example of an anisotropically refined spherical mesh.

as a ‘patch’ and to an angular face as an ‘arc’. We choose a simple tessellation
with spherical triangles, so that each patch is bounded by three arcs. The
initial coarsest mesh consists of the octants of the sphere. Each patch can then
be refined by bisecting the great circle segments that make up its boundary, and
connecting the midpoints with new great circle segments. Figure 1 displays a
possible mesh. A patch is said to be of level l if we need to refine l times to
obtain it. In a uniformly refined mesh, the patches asymptotically attain the
same shape and size as their level increases [4].

The angular solution space is spanned by a set of basis functions, each of
which has support on a single element in the mesh. Let Ψj(Ω) be the basis
functions on a patch p. It is convenient to express them as

Ψi(Ω) = Cijbj(Ω) , (11)

where C is a square nonsingular coefficient matrix. The span is determined by
the choice of the functions bj(Ω). The coefficients Cij must be chosen such that
the local mass matrix

Mij := 〈Ψi,Ψj〉p (12)

is well-conditioned. This is desirable for DG basis functions in general [24, p.
347-348]. Equations 33 through 35 explicitly show that M should be easy to
invert.

There are no non-constant linear functions on S2, so the choice of basis
functions is not obvious. We consider two options:

Ω-functions are linear in the components of Ω. That is,

b =

[
1
Ω

]
∈ R4 . (13)

The spherical gradient is

∂siΨj = (δim − ΩiΩm)Cjn
∂

∂Ωm
bn . (14)
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Kópházi and Lathouwers [14] showed that Cij = δij leads to problematic
rounding errors for the Ω-functions. Instead, we set C such that

Ψi(V
(j)) = δij , Ψi(ΩT ) = 0, for i = 1, 2, 3 ,

Ψ4(V(j)) = 0, Ψ4(ΩT ) = 1 ,
(15)

where {V(j)}3j=1 are the vertices of p and

ΩT :=
V(1) + V(2) + V(3)

∣∣∣
∣∣∣V(1) + V(2) + V(3)

∣∣∣
∣∣∣
2

. (16)

Equations 11 and 13 are substituted into equations 15 to obtain a dense
linear system that is solved for C.

octa-functions are linear on the octahedron. They are based on the parametriza-
tion in appendix A.1. The basis is linear on a reference triangle Kref ∈ R2

(equation 48), and mapped to p via an intermediate flat triangle Z that
lies on the octahedron. Specifically, given a k ∈ Kref ,

b =




k1

k2

1− k1 − k2


 ∈ R3 . (17)

The spherical gradient is derived in section A.2 and given by equation 61.

We place Z on the octahedron, as this is the only choice for which the
basis on p can be expressed as a linear combination of the bases on the
daughters of p, creating a hierarchic structure. This is a desirable property
when spatial streaming is introduced in section 2.3. In our experience,
setting Cij = δij yields well-conditioned local mass matrices (equation 12)
on all patches on all levels of angular refinement.

We note that both types of basis functions can be extended to higher orders in
a simple manner, though we did not pursue this possibility here.

2.2.2 A spherical SIP formulation

The combination of a discontinuous angular solution space and a spherical
Laplace operator suggests an application of a discontinuous Galerkin interior
penalty method to the unit sphere. Fortunately, thoroughly analyzed finite ele-
ment methods for Euclidean spaces carry over naturally to the spherical domain.
This is because integration by parts on a patch p is the same as on a Euclidean
element. That is, for sufficiently smooth functions v and w,

〈v, ∂si ∂siw〉p = 〈v, n[p]i∂
s
iw〉∂p − 〈∂si v, ∂siw〉p , (18)

where the outward unit normal n[p] is tangential to the sphere [11].
Take an inner product of equation 10 with a test function v and integrate

by parts to find the discrete weak form

Find u` ∈ S`, such that, for all v ∈ S`,

α

2


∑

p∈P`

〈∂si u`, ∂si v〉p +
∑

a∈A`

b[a](u`, v)


+ Σa 〈u`, v〉S2 = 〈f, v〉S2 , (19)
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where S` is the angular solution space, P` is the angular mesh with characteristic
length scale `, and A` is the set of arcs in P`. We consider only the symmetric
interior penalty (SIP) method [24, 8], where the bilinear operator b[a] : v, w ∈
(S`×S`)→ R is defined as follows. For all a ∈ A`, define a characteristic length
scale `a and choose an arbitrary but fixed ordering of its neighboring patches
p1 and p2. Denote by n[a] the normal vector that points from p1 to p2. Define
the jump and averaging operators by

J·Ka := ·|p1 − ·|p2 and {·}a :=
1

2

(
·|p1 + ·|p2

)
(20)

respectively. On vectors they act component-wise. Now

b[a](v, w) :=−
〈
JwKa, n[a]i {∂si v}a

〉
a
−
〈
JvKa, n[a]i {∂siw}a

〉
a

+
η

`a
〈JvKa, JwKa〉a ,

(21)

where η is the penalty parameter.
The penalty parameter should be large enough to ensure coercivity of the

bilinear form, but high values degrade the quality of the solution and increase
the condition number of the linear system [24]. We follow Shahbazi [26] and
Epshteyn and Rivière [12], who recommend η = 3 for linear basis functions on
meshes with equilateral triangles. Note that our patches asymptotically become
flat as the angular refinement increases. We set `a equal to the length of a.
We have successfully tested the SIP method with these parameters extensively
on various angular meshes, including randomly refined meshes where adjacent
patches can have a difference in angular refinement of up to 4 levels.

There are myriad other DG discretizations of the poisson equation, including
the local DG (LDG) method [7], various interior penalty (IP) methods [1] and
the cell-centered Galerkin (ccG) method [9]. The advantages of SIP method
include its compact stencil and optimal convergence rate for all orders of basis
functions. The adjoint consistency of the SIP method enables adaptive mesh
refinement in future work.

An attractive property of the discretization is that it is locally conservative,
as can be seen by substituting one of the basis functions for v in equation 19
[24, p. 142]. This means that the numerical scheme satisfies the property in
equation 6 if the solution space contains a constant function, which is always
the case. Equation 7 also holds discretely if Ω lies in the solution space, which
is true for every angular mesh with Ω-functions.

2.3 Spatial streaming

This section describes the DG method for the full space-angle problem given by
equation 1 on a spatial domain E with two types of boundary conditions:

Dirichlet: ϕ (x,Ω) = ϕD (x,Ω) for Ω · nE < 0 , (22)

reflective: ϕ (x,Ω) = ϕ
(
x,Ωrefl

)
for Ω · nE < 0 , (23)

where nE is the outward normal of E and Ωrefl := Ω − 2(Ω · nE)nE is the
reflection of Ω in the boundary.
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The solution space is constructed as follows. Let Th be the spatial mesh
with characteristic length h. The set of faces that border an element j ∈ Th is
F[j]. Denote by n[f ] the normal of face f , pointing in an arbitrary but fixed
direction. For simplicity, every face is assumed flat: its normal is constant. On
each element j we define spatial basis functions Φ[j]l = Φ[j]l(x), which span all
polynomials up to order p with support on j. Each element j is equipped with
an angular mesh P(j). On each patch q ∈ P(j), we define the angular basis
functions Ψ[q]m = Ψ[q]m(Ω), as explained in section 2.2.1. We use the same
type of angular basis functions on all patches in all angular meshes. The set of
arcs that border patch q is A[q]. Within an element k and patch p, the solution
space is spanned by the products of spatial and angular basis functions. In other
words, the numerical solution is of the form

ϕh (x,Ω) =
∑

k∈Th
Φ[k]i(x)

∑

p∈P(k)

Ψ[p]d(Ω) c[k,p]id (24)

where c[k,p]id are the solution coefficients on a patch p in the angular mesh of
element k. We emphasize that each element can have its own angular mesh,
and all elements and patches can be refined locally.

To derive a weak form, we take an inner product of equation 1 with a
basis function Φ[j]l(x)Ψ[q]m(Ω). Substituting the continuous product solution
ϕ(x,Ω) = R(x)Q(Ω), the angular diffusion term becomes

〈
−α

2
∆sRQ, Φ[j]lΨ[q]m

〉
E×S2

=
〈α

2
R, Φ[j]l

〉
j

〈
−∆sQ, Ψ[q]m

〉
q

=
〈α

2
R, Φ[j]l

〉
j


〈∂sξQ, ∂sξΨ[q]m

〉
q
−
∑

a∈A[q]

〈
n[q]ξ∂

s
ξQ, Ψ[q]m

〉
a


 ,

(25)

where we integrated by parts in Ω in the last equality. To derive a discrete weak
form we substitute ϕ = ϕh. On an element j this means R(x)Q(Ω) = Φ[j]iχ[j]i,
where

χ[j]i = χ[j]i(Ω) =
∑

p∈P(j)

Ψ[p]d(Ω) c[j,p]id (26)

is the angular flux on element j that corresponds to the spatial basis function
Φ[j]i(x) (compare to equation 24). We replace the boundary term in equation
25 with the SIP boundary operator given by equation 21, ending up with the
term

〈α
2

Φ[j]i,Φ[j]l

〉
j


〈∂sξΨ[q]d, ∂

s
ξΨ[q]m

〉
q
c[j,q]id +

∑

a∈A[q]

b[a]

(
χ[j]i, Ψ[q]m

)

 .

We proceed in a similar manner for the spatial streaming term in equation 1,
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integrating by parts in x (see also [14]). The result is

−
〈

Φ[j]i,
∂

∂xξ
Φ[j]l

〉

j

〈
ΩξΨ[q]d,Ψ[q]m

〉
q
c[j,q]id +

∑

f∈F[j]

Υ[f,j,q]lm

+
〈α

2
Φ[j]i,Φ[j]l

〉
j


〈∂sξΨ[q]d, ∂

s
ξΨ[q]m

〉
p
c[j,q]id +

∑

a∈A[q]

b[a]

(
χ[j]i, Ψ[q]m

)



+
〈
ΣaΦ[j]i,Φ[j]l

〉
j

〈
Ψ[q]d,Ψ[q]m

〉
q
c[j,q]id

=
〈
S,Φ[j]lΨ[q]m

〉
j×q .

(27)
The boundary term Υ[f,j,q] arose from integrating by parts in x and still

needs to be discretized. It represents the effect of spatial streaming though a
face f on patch q ∈ P(j). It couples the patch q with all overlapping patches in
the angular mesh of the neighbor of j at face f . It therefore has the form

Υ[f,j,q]lm =
∑

q′∈∧(q,P(j′f ))

(
S−[f,j]liF

−
[f,q,q′]md c[j′f ,q′]id

+ S+
[f,j]liF

+
[f,q,q′]md c[j,q]id

)
,

(28)

where

S−[f,j]li :=
〈

Ψ[j]l,Ψ[j′f ]i

〉
f

, (29)

S+
[f,j]li

:=
〈
Ψ[j]l,Ψ[j]i

〉
f

, (30)

j′f is the neighbor of j at face f , and ∧
(
q,P(j′f )

)
is the set of all patches

in P(j′f ) that overlap with q. From the perspective of q, the terms involving

F−[f,q,q′] and F+
[f,q,q′] respectively represent inflow and outflow across face f .

We define F±[f,q,q′] in accordance with the conservative upwinded numerical

flux suggested by Kópházi and Lathouwers [14]. The term

A[f,q]md :=
〈
n[f ] ·Ω Ψ[q]d,Ψ[q]m

〉
q

. (31)

arises naturally from the partial integration that led to equation 27. For ex-
ample, if there is only inflow (so F+

[f,q,q′] = 0), and the patches q and q′ have

the same level, then F−[f,q,q′] = A[f,q]md. To separate inflow and outflow in the

general case, we perform an eigenvalue decomposition of A[f,q] where

M[q,p]md :=
〈
Ψ[q]m,Ψ[p]d

〉
q

(32)

is the metric. That is, we determine the unique matrix P[f,q] such that

A[f,q] = M[q,q]

(
PGP−1

)
[f,q]

, (33)

where G[f,q] is a diagonal matrix. Let

A±[f,q] := M[q,q]

(
PG±P−1

)
[f,q]

, (34)
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where G− (resp. G+) is constructed by replacing the positive (resp. negative)
values in G with zeros, so that G = G− + G+ and A = A− + A+. We also
introduce

L[q,q′] := M[q,q′]M
−1
[q′,q′] and H[q,q′] := M−1

[q,q]M[q,q′] . (35)

These operators are Galerkin projections, with L[q,q′] mapping from a coarse
patch q to a finer patch q′, and H[q,q′] mapping from a fine patch q to a coarser
patch q′. Note that the Galerkin projections are exact if the basis on a patch
can be expressed as a linear combination of the bases on its daughters. For the
definition of F±[f,q,q′], Kópházi and Lathouwers [14] considered separate cases,

depending on the difference in the levels of angular refinement of the patches
q and q′. The results can be summarized in an insightful way by rewriting
equation 28 as

Υ[f,j,q]lm =
∑

q′∈∧(q,P(j′f ))

(
S−[f,j]li

(
L[q,s]A

−
[f,s]H[s,q′]

)
md

c[j′f ,q′]id

+ S+
[f,j]li

(
L[q,s]A

+
[f,s]H[s,q]

)
md

c[j,q]id

)

s=min(q,q′)

.

(36)
Here s = min(q, q′) is the smaller of the two patches (that is, the one with the
highest level of angular refinement). The first term in the products (S±[f,j]) is

the usual finite element term that arises from an integration of the governing
equation. The term L[q,s] translates the result from the angular basis on q to

the angular basis on s, the smallest of the patches, where A±[f,s] separates the

incoming and outgoing flux. Finally, H[s,q′] maps back from s to q′. If the patch
q is larger than the patches from/to which the flux streams, then the upwinding
scheme is performed by summing over the contributions in smaller patches in

∧
(
q,P(j′f )

)
. This ensures a symmetry in the upwinding scheme between two

patches that are not of equal size, making the numerical method conservative.
The generalized eigenvalue decomposition in equation 33 can be avoided if

n[f ] · Ω has a constant sign for all Ω ∈ q, because then either G−[f,q] = 0 or

G+
[f,q] = 0. Specifically,

F−[f,q,q′] = L[q,s]A[f,s]H[s,q′] , F+
[f,q,q′] = 0 , if Ω · n[f ] < 0 for all Ω ∈ q,

(37)

F+
[f,q,q′] = L[q,s]A[f,s]H[s,q] , F−[f,q,q′] = 0 , if Ω · n[f ] > 0 for all Ω ∈ q,

(38)

where s = min(q, q′). Physically, these are cases where there is either no inflow
or no outflow through q. As the angular meshes are refined, the patches be-
come flatter, and the percentage of patches that require an explicit eigenvalue
decomposition drops sharply.

A practical implementation of the weak form (equation 27) is facilitated
by the fact that the spatial and angular integrals are split. If we store them
as matrices, then all contributions to the global linear system are Kronecker
products of the spatial and angular integral matrices. The required memory is
limited by storing the angular integrals on a ‘master sphere’, which is an angular
discretization that contains all patches in all angular meshes.
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2.4 Solution Strategy

In discrete ordinates discretizations of the Boltzmann equation, one tradition-
ally uses source iteration to converge the equations. In this method, the scatter
source is based on the currently known solution and thereafter the angular so-
lution is updated by performing a transport sweep where the equations are
inverted with the scatter source fixed. This procedure is effective when the
scatter-ratio is not too large. For highly diffusive media, there are accelera-
tion methods such as DSA, leading to unconditionally effective schemes when
combined with Krylov subspace methods [28].

In the present angular discretization that is based on finite element basis
functions on the sphere, the Riemann procedure is used to determine the di-
rectionality of information crossing the element faces. The elements can be
mutually dependent, so there is no straightforward ordering of spatial elements
that makes the linear system (block) triangular. In previous work [14] we de-
vised a solution strategy that is based on an approximate sweep that was found
to be effective in the test problems. The method constructs sweep orderings that
correspond to an S2 direction set. Each direction is associated with an octant
of the sphere and the patches it contains. For each direction, the spatial ele-
ments are visited in the prescribed order. On each spatial element, the angular
patches corresponding to the direction (octant) are sequentially visited and the
local linear systems are solved for. This sweep-based method is compatible with
the discretization where patches are locally decoupled from other patches due to
the use of discontinuous angular basis functions, contrary to other methods such
as spherical harmonics and wavelets. To a large extent this approach retains the
high efficiency associated with sweep algorithms to our angular finite element
discretization. Details can be found in [14]. The sweep-based algorithm is used
as a preconditioner to a Krylov subspace method (BiCGSTAB) to construct a
robust method. We iterate until the L2-norm of the residual of the linear system
is at most 10−12 times the L2-norm of the right hand side.

In the present work, the spherical diffusion operator is added to the equation,
which adds coupling between patches. For increasing values of the transport
cross section, α, this deteriorates the efficiency of the algorithm. Improving the
efficiency by using a more suitable preconditioner that captures the diffusive
coupling between patches is likely to perform better. Here, we concentrate on
the discretization and postpone solver improvements to future work.

3 Numerical examples

To illustrate our Fokker-Planck discretization technique, we have applied the
method to three problems: (i) a purely angular manufactured solution without
spatial streaming, (ii) a manufactured solution that depends on both space and
angle and (iii) a three-dimensional Fermi pencil beam problem.
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Table 1: Results of the spherical SIP method on uniformly refined meshes P`
with the exact solution 39. The error e` is given by equation 40. The order of
convergence on P` is estimated with a comparison with the result on P2`.
The last column lists the order of convergence of a component of the current.

Ω-functions octa-functions

card(P`) e`
order
of e`

e`
order
of e`

order of
|〈Ω3, u`〉S2 − j3|

8 · 40 2.288e−1 - 2.462e−1 - -
8 · 41 8.853e−2 1.37 1.271e−1 0.95 5.60
8 · 42 2.268e−2 1.96 3.528e−2 1.85 1.40
8 · 43 5.802e−3 1.97 9.100e−3 1.95 1.71
8 · 44 1.455e−3 2.00 2.305e−3 1.98 1.98
8 · 45 3.611e−4 2.01 5.818e−4 1.99 2.00

3.1 A purely angular problem

We used the method outlined in section 2.2 to obtain a numerical solution for
equation 10, where the source term f was set such that the exact solution is

u = Y00 − Y21 + Y30

=
1√
4π

(
1− 15Ω1Ω2 +

1

2

√
7
(
Ω1

(
2Ω1

2 − 3Ω2 − 3Ω3
2
)))

,
(39)

where Ylm(Ω) are the normalized real spherical harmonics, i.e.: 〈Ylm, Yl′m′〉S2 =
δll′δmm′ . We set Σa = 1/10 and α = 1/4. We used a direct solver for the linear
system. The relative global L2-error on a mesh S` is defined by

e` :=
|u` − u|S2
|u|S2

, (40)

Here | · |H denotes the norm on a domain H that corresponds to the inner
product in equation 4. Table 1 lists the errors for both types of basis functions.
We observe the expected second order convergence for both basis function sets.
The two types of basis functions have an approximately equal error per degree
of freedom, with the Ω-functions being slightly more efficient. The numerical
angular current density (equation 5) is exact for the Ω-functions and therefore
not listed. For the octa-functions it converges quadratically. In general, the
convergence is slower on coarse meshes for two reasons. First, the solution
is insufficiently smooth within the patches. Second, the basis functions are
approximately linear only on small patches. The octa-functions in particular
can have highly irregular shapes on large patches.

We performed several more tests with different positive values for α and Σa
and various manufactured solutions. The results were similar to those in table
1.

3.2 A two-dimensional problem

To study the convergence of the numerical scheme with spatial streaming from
section 2.3, we performed a series of simulations where the exact solution is

12



Table 2: Orders of convergence for the 2D problem of section 3.2 on the finest
spatial mesh (h = 0.0038) as the angular mesh is refined. The order for an
angular mesh P` is estimated with a comparison with the error on P2`.

Ω-functions octa-functions

card(P`)
order of eang

h,` order of escal
h,` order of eang

h,` order of escal
h,`

8 · 41 1.34 2.56 0.91 2.32
8 · 42 1.97 2.50 1.86 2.12
8 · 43 1.96 1.15 1.95 1.90

known. We set Σa = 10, α = 1 and set the source and the boundary conditions
such that the solution is quadratic in both space and angle:

ϕ(x,Ω) = x1(1− x1)x2(1− x2)
(
4 + Ω1 + 2Ω2 + 3Ω1

2
)

. (41)

The spatial domain is E = (0, 1)2. The spatial mesh is unstructured and consists
of triangles of approximately equal size and shape with basis functions of order
p = 1. We define the characteristic mesh length as h = card(Th)−1/2. We use
the same homogeneously refined angular mesh for all elements and vary the
level of angular refinement. For an angular mesh P`, the relative L2-error of the
angular flux is

eang
h,` :=

|ϕh − ϕ|T×S2
|ϕ|T×S2

(42)

and the relative L2-error of the scalar flux is

escal
h,` :=

|φh − φ|T
|φ|T

. (43)

We use the solution method described in section 2.3.
Figure 2 shows the relative L2-errors of the angular flux and the scalar flux

for various angular refinement levels l. The orders of convergence on the finest
spatial mesh are tabulated in table 2. We observe the same second order conver-
gence in the angular discretization as in the previous test case. The convergence
clearly saturates at high angular refinements, where the spatial discretization
affects the errors significantly. The errors are roughly an order of magnitude
lower for the scalar flux than for the angular flux, and consequently saturation
occurs much sooner for the scalar flux. The order of convergence between levels
0 and 1 in figure 2a indicates that the angular flux is poorly resolved on these
angular meshes. Nevertheless, the scalar flux (figure 2b) does show immedi-
ate second order convergence as the level increases from 0. Interestingly, the
scalar flux initially converges faster than with second order, especially for the
Ω-functions.

3.3 Three-dimensional Fermi pencil beam

Our final problem is a three-dimensional Fermi pencil-beam calculation. In ra-
diotherapy applications, physical pencil beams are used to deliver the radiation.
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Figure 2: Convergence to exact solution (equation 41) as the angular mesh is
refined on various spatial meshes with characteristic length h. The triangles
indicate ideal second order convergence in the angular discretization.
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A frequently used model for treatment planning (optimization) is the use of
the Fermi pencil-beam model which is an approximation to the Fokker-Planck
model. The mathematical problem is as follows: Consider the half-infinite do-
main x1 > 0, with

ϕ = δ(x2)δ(x3)
δ(1− Ω1)

2π
, for x1 = 0 and Ω1 > 0 , (44)

where δ(·) is the Dirac delta function. In the absence of absorption (i.e.: Σa =
0), the Fermi pencil beam approximation is

ϕ ≈ ϕF =
3

π2α2x1
4

exp

(
− 2

α

(
Ω2

2 + Ω3
2

x1
− 3

Ω2x2 + Ω3x3

x1
2

+ 3
x2

2 + x3
2

x1
3

))
.

(45)

This approximation is derived under the assumption of small-angle scattering.
Since ϕ is small everywhere except when Ω2

2 + Ω3
2 � 1, an approximate scalar

flux can be found by extending the range of integration to Ω2,Ω3 ∈ R, yielding

φF ≈
∫

R2

ϕF d(Ω2,Ω3) =
3

2παx1
3

exp

(
− 3

2α

x2
2 + x3

2

x1
3

)
. (46)

The reader is refered to Börgers and Larsen [5] for a more in-depth discussion
of the pencil-beam model and the Fermi approximation.

In practical applications, the physical pencil beam has a finite width at
the entrance, which can be modeled as a set of mathematical pencil beams
with varying weights. To avoid the singularity of the pencil-beam model in
our calculation, we exclude points close to x1 = 0 and limit the computational
domain to

3/10 < x1 < 1; 0 < x2, x3 < 2/5 . (47)

We employ Dirichlet boundary conditions ϕD = ϕF on x1 = 3/10, reflective
conditions on x2 = 0 and x3 = 0 and vacuum conditions on all other boundary
faces. We set Σa = 0 and α = 1/10.

Figure 3 shows the numerical scalar flux in the domain. The unstructured
tetrahedral mesh was generated by the Gmsh software library [13]. The highest
resolution is located near the central axis of the beam and near the inlet region.
The angular mesh is shown in figure 4; it is the same for all spatial elements.
It is refined near the Ω1-pole to capture the forward nature of the radiation
problem.

Figure 5 shows the numerical scalar flux along the axis x2 = x3 = 0. It
is clearly in agreement with the Fermi prediction, verifying the ability of the
numerical scheme to capture forward-peaked solutions and scatter. The error
is highest near the inlet boundary (x1 = 3/10), suggesting that the error is due
to the spatial mesh. Our mesh refinement studies confirm this: increasing the
angular refinement did not significantly impact the numerical solution.

Although the Fermi approximation is highly accurate near the axis, it incor-
rectly predicts that the integral of the scalar flux over the lateral plane is con-
stant. Specifically, the approximation in equation 46 implies

∫
R2 φ

F d(x2, x3) =
1, which we would not have found, had we integrated the angular flux in equa-
tion 45 exactly. Figure 6 shows the lateral integrals as a function of penetration
depth. Unlike the Fermi prediction, the lateral integrals for the numerical scalar
flux increase with x1 due to a nonzero scattering angle, as expected.
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Figure 3: Numerical scalar flux for the Fermi case of section 3.3. The spatial
mesh has 17,530 elements. Note the logarithmic scaling in the color map. Small
values are left out. There were negative values far from the axis.

Figure 4: Angular mesh for the Fermi case of section 3.3. It has 56 elements. In
this image the arcs are drawn as straight lines instead of great circle segments.
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Figure 5: Comparison of Fermi prediction (φF) and numerical value (φh) of the
scalar flux along the axis x2 = x3 = 0 for the case of section 3.3.

4 Conclusions and Discussion

We have presented a new method for the discretization of the Fokker-Planck
equation using discontinuous finite elements in both space and angle. The nov-
elty of the method lies in the use of the symmetric interior penalty method on the
spherical surface. With this choice we are able to refine the angular mesh both
anisotropically and heterogeneously with a hierarchical set of angular elements,
focusing on the points in phase-space that matter most. This contrasts with
the standard discrete ordinates method, which cannot be refined hierarchically
or anisotropically. Even a product quadrature set, which can focus on a par-
ticular pole in the problem, does not have the flexibility of the present scheme.
Our method shows promise for radiotherapy applications where multiple beam
angles are used and need to be resolved. In this way we expect to obtain (near)
Monte-Carlo quality dose distributions at reduced cost and without statistical
uncertainty.

In the present work we focus on the discretization method and the rate of
convergence of the obtained solution. We used two types of angular basis func-
tions, octa-functions and Ω-functions, both of which conserve particles exactly.
The example problems show the discretization to be second order accurate in
angle, which is sufficient for practical application. The results in section 3.2
show that the order of convergence for the scalar flux is greater than 2, even
when the angular flux is not yet converged. The scalar flux seems to converge
particularly fast for the Ω-functions, probably because they preserve the angular
current density exactly, unlike the octa-functions.
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Figure 6: Integrals of the scalar flux over lateral planes in the domain for the
Fermi case of section 3.3. Due to the limited size of our domain, the values drop
at large penetration depths, where the scalar flux at the boundaries x2 = 2/5
and x3 = 2/5 is no longer negligible.
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We plan to address the solution algorithm in future work. Source-iteration
is known to be ineffective for the type of forward-peaked scatter that we study
[27]. Therefore our solution methodology is not the most effective when the
momentum transfer is strong. In the cases where it is, the Fokker-Planck equa-
tion is dominated by the spherical Laplacian and the efficacy of the sweep-based
algorithm decreases. A multigrid method in angle should be effective for the an-
gular diffusion. Such a solution method is perfectly in line with our hierarchical
tessellation of the sphere.

We will also investigate automated spatial and angular refinement and the
use of higher order angular functions. Other future work will focus on topics
that are of interest for real-life radiotherapy applications. This includes an
efficient energy discretization. Also, it’s not easy to deal with Dirichlet boundary
conditions for highly peaked external beams. It would be better to use a first
collision source algorithm. Finally, we expect the same numerical scheme to be
effective for more general forward-peaked scatter kernels for charged particles,
not just the Fokker-Planck approximation.

A Details of octa-functions

A.1 Parameterization of a spherical triangle

This section details a family of bijections between a reference element

Kref := {k ∈ R2 : k1 > 0, k2 > 0, k1 + k2 < 1} (48)

and an arbitrary spherical triangle V with vertices {V(p)}3p=1, defined as the
open set of all Ω ∈ S2 that satisfy

sign
(
V(m) ·

(
V(n) ×V(k)

))
= sign

(
Ω ·
(
V(n) ×V(k)

))
6= 0 (49)

for all permutations of {m,n, k}. Note that this definition excludes singular

spherical triangles: the vertices {V(p)}3p=1 must not lie on a single great circle.
In words, V is the smallest subset of S2 whose boundary consists of the three
great circle segments that intersect V(1), V(2) and V(3). The bijection Kref ↔ V
is via an intermediate flat triangle Z ∈ R3 with vertices {Z(p)}3p=1. Specifically,

the affine relation between a point k = [k1, k2]T ∈ Kref and a point z ∈ Z is

zi = Z
(1)
i +

(
Z

(2)
i − Z

(1)
i

)
k1 +

(
Z

(3)
i − Z

(1)
i

)
k2

= Z
(1)
i +Dijkj ,

(50)

where D :=
((

Z(2) − Z(1)
)
,
(
Z(3) − Z(1)

))
∈ R3×2. The bijection between z

and Ω ∈ V is

Ω =
1

z
z , (51)

where z := ||z||2 =
√

z · z, as illustrated in figure 7. Obviously the vertices of Z
must satisfy V(i) =

∣∣∣∣Z(i)
∣∣∣∣−1

2
Z(i). Such a bijection between Kref and V allows

one to define an angular basis functions in terms of a local variable k ∈ Kref,
such as for the octa-functions in equation 17.
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Figure 7: A flat triangle Z with a corresponding spherical triangle V.

A.2 Spherical gradient of octa-functions

In this section we derive the spherical gradient of a function g = g(k) that is
defined in terms of the local coordinate k. We provide an explicit expression
for ∂zj/∂Ωi and ∂kj/∂zi in the equation

∂si g = (δim − ΩiΩm)
∂zn
∂Ωm

∂kq
∂zn

∂g

∂kq
. (52)

From equation 51,

∂Ωj
∂zi

=
1

z
(δij − ΩiΩj) , (53)

and so (∂Ωj/∂zi)Ωj = 0, which implies that the matrix with coefficients ∂Ωj/∂zi
is singular. Therefore the inverse Jacobian ∂zj/∂Ωi cannot be obtained in the
usual manner. That is,

∂zm
∂Ωi

∂Ωj
∂zm

6= δij 6=
∂Ωm
∂zi

∂zj
∂Ωm

, (54)

which is a consequence of the fact that Ω and z are constrained. Equation 51 is
inverted instead. Let n be a normal of Z, so that dist(Z,0) = n · z = n ·Z(i) is
constant for all z ∈ Z. Take an inner product of equation 51 with n to obtain

zj =
dist(Z,0)

Ω · n Ωj . (55)

It follows that

∂zj
∂Ωi

=
dist(Z,0)

Ω · n

(
δij −

1

Ω · n niΩj

)
. (56)

Note that

Ωm
∂

∂Ωm
zi = 0 , (57)
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as one would expect geometrically.
There are two degrees of freedom in Kref and three equations in 50, so we

can solve for k in several nonequivalent ways, the most convenient of which is
to left-multiply by (DᵀD)−1Dᵀ ∈ R2×3. (DᵀD is always invertible, because Z
is nonsingular.) This yields

kj =
(
(DᵀD)−1Dᵀ)

ji

(
zi − Z(1)

i

)
. (58)

The advantage of this particular representation is that the derivative with re-
spect to z becomes straightforward:

∂kj
∂zi

=
(
(DᵀD)−1Dᵀ)

ji
=
(
D(DᵀD)−1

)
ij

. (59)

Interestingly, this is not a unique solution: given a displacement dzi, there are
infinitely many matrices ∂kj/∂zi with which the resulting displacements dkj =
(∂kj/∂zi) dzi can be computed correctly. This is because D doesn’t have full
row rank, which in turn results from the fact that equation 50 is overdetermined
if k is the unknown. The matrices ∂kj/∂zi give different values for (∂kj/∂zi)ni,
which, due to the constraint z ∈ Z ⇒ n · dz = 0, is inconsequential for the
following results.

Substituting equations 56, 57 and 59 in 52, we find

∂si g =
dist(Z,0)

Ω · n

(
δim −

1

Ω · n niΩm

)(
D(DᵀD)−1

)
mn

∂

∂kn
g . (60)

This can be simplified for the octa-functions described in section 2.2.1. The
vertices Z(i) are in the same octant and on the octahedron, so that the normal
of Z has components ni = (1/

√
3) sign(zi) = (1/

√
3) sign(Ωi). This implies

dist(Z,0) = 1/
√

3 and n · Ω = ‖|Ω||1/
√

3. Also, ||Ω||1 = 1/z. The spherical
gradient becomes

∂siΨj =
1

z
(δim − sign(zi)zm)

(
D(DᵀD)−1

)
mn

Cjq
∂bq
∂kn

, (61)

where we used equation 11.
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