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Optimal accelerated SOR-like (ASOR) method
for singular symmetric saddle point problems

Xue-Ping Guo! and Apostolos Hadjidimos?

August 1, 2019

Abstract

In a recent paper a new iterative method for the solution of the nonsingular symmetric saddle
point problem was proposed [P.N. Njeru, X.-P. Guo, Accelerated SOR-like (ASOR) method for
augmented systems, BIT Numer. Math. 56 (2016), 557-571 (do0i:10.1007/s10543-015-0571-z)].
The ASOR method belongs to the family of the SOR-like methods and uses two parameters
« and w. Convergence intervals for the parameters involved were found. In the present work
we analyze and study an extension of the above problem to the singular case, and determine
optimal values for the two parameters as well as for the semi-convergence factor of the ASOR
method. Numerical results are presented to show the efficiency of the optimal singular ASOR,
method.

AMS (MOS) Subject Classifications: Primary 65F10. Secondary 65F08

Keywords: singular saddle point problem, singular augmented linear systems, accelerated SOR
method, optimal parameters, optimal semi-convergence factor

Running Title: Optimal ASOR method for singular saddle point problem

1 Introduction

Let the singular symmetric saddle point problem be defined by the linear system

1[4 200 (2)

where A € R™*™ is symmetric positive definite, B € R™*" m > n, is rank deficient, with
rank(B) = 7 < n, ()T denotes transpose, x,p € R™, y,q € R?, and let system (1.1) be consistent
that is [p?, —¢”]" € range(A) or, equivalently, ¢ € range(B”) . (Note: The right hand side matrix
equation (1.1), where the matrix B is of deficient rank, is also widely known as the augmented
linear system.)

Linear system (1.1), when A is symmetric and of full (or deficient) rank arises in various scientific
and engineering applications as, e.g., in linearly constrained quadratic programming problems, in
weighted least-squares problems, in mixed or hybrid finite element approximations of second-order
elliptic PDEs, in elasticity problems (Stokes equations) (see, e.g., [9]) and in Lagrange multipliers
methods (see, e.g., [15]), etc. It seems that the oldest methods for the solution of such problems
are the Usawa and the preconditioned Uzawa methods (see, e.g., [1], [14], [8]). For an account of
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these applications as well as for related references see, e.g., [25]. Solutions for special cases of the
linear system (1.1) have been proposed by many researchers in the area. Here we mention some
of the main works based on extensions and generalizations of the classical iterative methods like
SOR, SSOR, MSOR, etc. (see, e.g, Varga [26] or Young [31]). However, in our opinion, the most
influential works in the development of generalizations of the problem in (1.1) and of methods of
solution were the works by Golub et al. [17] and by Bai et al. [5]. In the former work, the SOR-like
method was introduced for the solution of the augmented linear system. In the same work an
excellent account of the works for the solution of the augmented linear system which had appeared
till then can be found. Also, an account of the works till 2009, generalizing the idea of the SOR-like
method [17], can be found in Zheng et al. [37]. In what follows we mention some of the main works
in the area in the last sixteen years: Golub et al. [17], Bai et al. [5], Darvishi and Hessari [13],
Bai and Wang [6], Wu et al. [27], Zheng et al. [37], Zhang and Wei [35], Zhang et al. [32], Zhang
and Shen [34], Zhou and Zhang [38], Cao et al. [11], Louka and Missirlis [20], Njeru and Guo [25],
although the list is far from being exhausted.

2 Preliminary analysis

In this section we present in a condensed form some of the basic results of the accelerated SOR-like
(ASOR) iterative method of [25], properly extended to accommodate the rank deficient matrix B
and, therefore, the singular matrix A. The ASOR method for the solution of linear system (1.1) is
based on the splitting of the matrix coefficient as follows

[ S L B e

D L U

where « is a positive real number and Q € R™ "™ is a symmetric positive definite matrix and at
the same time an approximate to the Schur complement BT A~!'B of A. Then, we apply the SOR
iterative method based on the above splitting and assume that its relaxation factor w € R\{0, 2, —a}
we obtain

[ ) 20
—q

D) ] = (D —wL) ' (1 —w)D+wU) [ ) ] +w(D—-wL)™! [ b ] . (2.2)
In view of (2.1) the iteration matrix M, of ASOR method in (2.2) becomes successively

Moy = (D—wL)_l((l—w)DerU):[(a+w)A 0 ]_I[O‘A ‘“B]

—wBT Q_T“’Q 0 Q_T“’Q
B ﬁfl_l 0 aA —wB
= M“?)%QleTAfl ﬁ@fl [ 0 Q_TwQ] (2.3)
= 2045{ﬁ Im—1 T ;w%i—wA_;B T A—1 :
eroea@ B - gueg@ B ATB

Considering (2.2) and (2.3), the ASOR method can be given by the simple two-sweep iterative
scheme below
x(k+1) = Lx(k) — OL"JWAfl(By(k) _p)7

S 2.4
y(k—l—l) — yELIc) + 22_—wa_1(BT.’L‘(k+1) _ q)' ( )



Lemma 2.1. (Lemma 1 of [25] extended): Let the parameters o and w satisfy o > 0, w €
R\{0,2,—a} and o(-) denote “eigenvalue spectrum”.

a) If A€ 0 (Maw) \ {1, ﬁ} and pt # 0 satisfies

A= 1)(2 —w)(a — aX —w)) = 2wy, (2.5)
then p € o (QleTAle) and vice versa.
b) Similarly, if A € {1 L} Co(Myy), thenu=0€c0o (QleTAle) and vice versa.

’? atw

Proof: a) For the proof of the first part of the statement, let X\ be an eigenvalue of M, , and

Ty T]T be the corresponding eigenvector, we will have

/ /
WERH
Yy Yy

Using the most suitable expression for M, ,, from (2.3), the above equation becomes

(a+w)A 0 [ aAd -wB | x
] [N sel[V] ] <

[ozA —LUB]|:$/:|_)\|:(05+W)A 0 ][x’]
0 34Q ||y | —wBT  ZEQ ||y |

Then, equating the components of the vectors of the two sides in the second equation of (2.6) and
rearranging terms we obtain

[x

(2.6)

(0 —aX—wA\)Az' =wBy  and (A —1)(2 —w)Qy =2 B2 (2.7)

In view of the assumptions on « and w, then even if we assume that A = 0, something that does not
satisfy (2.5), from the second equation of (2.7) we obtain 3’ = 0 and then from the first one we have
x' = 0, which is not possible. Hence A # 0. Note that to the same non possible result we arrive
if we consider 3/ = 0 and follow the same reasoning as before. Now, if 2/ = 0 the second equation
of (2.7) gives y' = 0 which also satisfies the first equation; hence, this is again not possible. From
the first relation in (2.7) we get x = mA”By’ , which when it is replaced into the second
equation of (2.7) gives, after a little manipulation,

_ _ A—1)(2 —w)(a—aX —w
Q lBTA lBy/: ( )( 2))\502 )yl
A=1)(2—w)(a—ar—w])

Since, y # 0, it is implied that u = is a nonzero eigenvalue of Q" 'BTA~'B
which satisfies relation (2.5).
Conversely, let p € o(Q 'BTA71B)\{0} and y” be the corresponding eigenvector. Then, (2.5)

gives

2 w?

~_1)(2 — _ _
(A )( ‘;’))\Ej; al W)‘)yu _ Q_IBTA_IBy"

which can be rewritten as

A=-1)(2-w) B w2\

— == BTA By
a— o\ — wA y



w

mA_lBy” and using the previous relation we can have

Setting z” =

A=1)(2—-w)

5 Qy" = w\BTz". (2.8)

(0 — aX —wA)Az" = wBy” and
The equality on the left and the equality on the right of (2.8) can be rewritten, respectively, as
adz” —wBy" = Ma +w)Az” and 252Qy" = AN(—wBTz"” + 22Qy"). (2.9)

Writing relations (2.9) in matrix form we take

aA —wB x” _ (a+w)d 0 x”
0 %TwQ y// - —wBT %TMQ y//

~1
a+w)A 0 aA —wB x” x x x”
[(—wB% 2—_WQ] [0 ﬂ@][y//]:A[y”]<:>Ma’w[y”]:)\[y”]
2 2
and the converse of the first part has just been proved.

b) For the proof of the second part we readily see from (2.5) that if A =1 or A = ;% then =0
while if g = 0 then either A=1or A = ﬁ Furthermore, if A = 1 then from the second equation
of (2.7) we obtain 2’ € N(B7T), with N(-) denoting “nullspace”, while from the first equation of
(2.7) we have for A~ By’ € N(B™) (or By’ € N(BT)). Therefore, as an eigenvector corresponding

T
to the eigenvalue A = 1 we can take [a:’T,y’T} , with 2’ € N(BT)\{0} and ¥’ = 0. On the other
hand, if A\ = =%~ then from the first equation of (2.7) it is 4/ € N'(B) in which case from the second

a+w

equation of (2.7) we can have, similarly Q 'BT2’ € N(B) (or BT2' € N(B)). In this case we

or

. . . T T
can take as an eigenvector corresponding to the eigenvalue A = —£—. the vector [3:’ Y ] , where
' =0 and vy € N(B)\{0}.
The proof of the converse is straightforward and is therefore omitted. O

Next we find the conditions under which, except 1 and 5, all other eigenvalues of the iteration
matrix of ASOR method are strictly less than 1 in modulus. For this we need the following lemma.

Lemma 2.2. (Lemma 6.2.1 of Young [31]): If b and c are real, then both roots of the quadratic
equation
2 —br+c=0 (2.10)

are strictly less than one in modulus if and only if
lel <1, b <1l+ec (2.11)

Theorem 2.1. (Theorem 1 of [25] extended): Let the parameters o and w satisfy the assumptions
of Lemma 2.1, then equation (2.5) can be rewritten as

«Q w — W) — w2 (6%
w8 Tg_)(f;)(almz o atw (2.12)




Except 1 and 5 yielded for =0, all other eigenvalues A of My, are strictly less than one in
modulus if and only if

(2a +w)(2 —w)
2 b

a>0 (by assumption), 0<w <2, fimax < (2.13)

w
where fimax is the mazimum eigenvalue of Q' BT AT B.

Proof: The proof is identical to that in [25] except that the statement of the theorem refers to
the eigenvalues 1 and —<— of M, , as well, while conditions (2.13) are presented in a little different

+
form. Note, however, that due to conditions (2.13) the eigenvalue A = ﬁ of M, corresponding
to p = 0 also satisfies A = ;% € (0,1). In addition, we would like to make a point regarding

the condition o > 0 and the third condition of (2.13). Solving the last condition for a we get
w(wWimax —2+w)
2(2—w)

Hmax < 2_7“’ However, since lim,,_,o- (Q_T“’) = 0 and lim,,_,o+ (Q_T‘”) = 400 it is implied that the
third relation in (2.13) holds for any possible fimax € (0, +00) and for any a > 0 provided w satisfies
fmax < 2% & w < lﬂtﬁ or, equivalently, for any w € (0, wﬁ ] € (0,2). 0

V)

< a. So the last relation holds for all & > 0 if and only if wymax — 2 +w < 0 or

3 Semi-convergence of the ASOR method

Since My, has an eigenvalue equal to 1 our ASOR iterative method cannot converge in the classical
sense (see, e.g., Varga [26], Young [31], Berman and Plemmons [7], et al.), i.e., for all right-hand
sides and all initial guesses. However, if certain conditions hold our method may semi-converge.
For semi-convergence to take place some basic conditions must hold. These are given below taken
from Berman and Plemmons [7].

Lemma 3.1. (Definition (4.8) and Ezercise (4.9) on Page 152 of Berman and Plemmons [7]): Let
T € R**5. Then T is semi-convergent if and only if each of the following conditions holds:

1. p(T) <1, where p(-) denotes spectral radius.

2. If p(T) =1 then indes(I; — T) =1 (index(Is — T) =1 & rank ((I; — T)?) = rank(I; — T)).
3. If p(T') =1 then A € o(T) with |\| =1 implies A = 1.

A lemma equivalent to Lemma 3.1 is the following.

Lemma 3.2. (Lemma 2.2 of [37]) Let H € C*! and I,_; € CE=Dx6=0 pe the identity matriz,
then the block partitioned matrix
T = [ H O ] (3.1)

L I,
is semi-convergent if either L =0 and H is semi-convergent or if p(H) < 1.
Definition 3.1. If T' of Lemma 3.1 is semi-convergent then the quantity
Y(T) = max{|A||A € o(T), A # 1} (3.2)

is called semi-convergence factor.



Lemma 3.3. Let T € R*** be semi-convergent. Then, the iterative scheme
D k) Lok =0,1,2,---, 20 e R,
semi-converges, namely

lim 2% = (I, = T)Pe+ (I, — )2, E=(I,~T)(I,—T)", (3.3)

k—o0

(see Berman and Plemmons [7], formula (6.14) on page 199), where (-)P denotes Drazin inverse
(see same reference).

Next we present a statement which will be of help in the sequel.

Lemma 3.4. Under the assumptions on its factors, the matric Q" *BTA™'B € R" "t is semi-
positive definite with index (Q_lBTA_lB) =1 and a zero eigenvalue of multiplicity n — r.

Proof: Let rank(B) = r and consider the singular value decomposition of B, following a similar
analysis to the corresponding part of Theorem 3.1 of [37] (see [16]), and let it be as follows

» 0y
B-U rn—r VT,
Om—'r,r Om—'r,n—'r
S
where
UeR™™ VT e RV, S = diag(o1,09, - ,07), (3-4)

with U and V unitary matrices and o1 > o9 > --- > g, > 0 the singular values of B. Partitioning
VTQ~'V and UT AU in conformity with the partition of ST and S, respectively, we obtain

VIQBTA'BY = (VIQ 'V)(VTBTU)UTAU)(UTBY)
- wrgtyy| B O }(UTAlU)[ ¥ Ornr ]

On—T,T‘ On—r,m—r Om—r,r Om—r,n—r

ST S
- (VTQilv)r,r (VTQilv)r,nfr E Or,mfr (35)
- (VTQilv)nfr,r (VTQilv)nfr,nfr Onfr,r Onfr,mfr

X

(UTA_lU)m—r,r (UTA_lU)m—r,m—r
VTQ='v),,.S(UTA-U), 2 Orn—r
(VTQ_lv)n—r,rz(UTA_lU)r,rz On—r,n—r

Om—r,r Om—r,n—r

(UTA—lU)m (UTA_lU)T’mfr } [ b)) Orn—r }

The last matrix above is block diagonal with its (1,1) block (VIQ~1V), . S(UT A~1U), .3 positive
definite, since it is similar to the matrix

_1 1
VIQ W) 2S(UTATU),, S(VIQ V), 2
which is symmetric positive definite, while its (2,2) block is an (n —7) x (n — ) zero matrix. These

results prove both assertions of our statement which complete the proof. O

Note: A symmeltric positive definite matrix C' € R™*" has a symmetric positive definite square
root denoted by C'2 (see, e.g., Theorem 2.2.7 of Young [31]).



Theorem 3.1. Let the parameters o and w of the ASOR method satisfy the conditions (2.13).
Then, the iteration matriz My, of the ASOR method (2.2) is semi-convergent; namely, there
exists a similarity transformation that transforms it in the form of matriz T of Lemma 3.2 whose
assumptions are satisfied. In addition, rank (M) =m +r.

Proof: The matrix M, in (2.3) can successively be written as

My, = 2 aiwlm 1 pT ;O;WAA? T 4—1
wo aw — w — —
L (a+w)(2—w)Q B I = (a+w)(2—w)Q LA™ B
_ 1-345) Im —aizAT'B (3.6)
(- 2) 25Q7'B -2 22Q ' BTATB
_ (1), —$A~'B
| A=ewQ BT I, —¢yQ 'BTATIB |’
where we have set 5
w w
= = — 3.7
b= i (37)

Consider the block diagonal matrices diag(UU”, V1) and diag(U, V') where U and V are the unitary
matrices of the singular value decomposition of U7 BV of Lemma 3.4. Then, from the last matrix
in (3.6) we form its similar matrix

vt (1— @) —¢pA~'B U _
[ VT ] [ (1-¢)wQ 'B” I, —¢ypQ 'B"A7'B ] [ 4 ] (3.8)
[ (1 =) ~¢(UTA'U)(UTBV) ‘

1= op(VTQ'V)UTBV)" L, = gp(VIQ-'V)[UTBV) (UTA'U)(UTBV) |

Next, we analyze each block element, except the (1,1) block, of the rightmost matrix in (3.8) using
Lemma 3.4. So we have:
Block element (1,2) apart from its coefficient:

T r—1 T _ (UTA_IU)T‘,T‘ (UTA_IU)T,mfr Y Or,nfr
(U A U)(U BV) - (UTA*lU)m—r,r (UTA*lU)m—r,m—r

_ (UTATWU) 2 Oy
N (UTA?lU)m—T,’/‘Z Om—r,n—r '

Om—r,r Om—r,n—r

Block element (2, 1) apart from its coefficient:
TNH—1 T T _ (VTQ_IV)T,T (VTQ_IV)r,nfr X Or,mfr
(V Q V)(U BV) - |: (VTQilv)n—r,r (VTQilv)n—r,n—r 0

_ VITQ W)X Oy
B (VTQilv)n—r,rZ On—’r,m—r )

n—r,’r On—r,m—r

Block element (2,2) apart from the unit matrix [, and the coefficient of the following product of
matrices has already been found in Lemma 3.4 and is the rightmost matrix in (3.5). Reconstructing
the rightmost matrix in (3.8) by using its four blocks and making a new repartitioning we have the



following

(]- - (b)-[r Onmf'r _¢(UTA71U)T,TE Or,nf'r
Omfr,r (]- - ¢)Im7'r _¢(UTA71U)m7T,rE Omf'r,nfr
(1-)p(VTQ=1V),, X Orm—r L —op(VIQ=V), . S(UTA D), 2 Orn—r

T=WVTQ V)uerr® Operm—r Inr — W (VTQ V) o S(UTATU)y | Ty

(3.9)
It is observed that the matrix in (3.9) is a lower block triangular matrix whose upper diagonal
block is an (m + r) x (m + r) matrix and the lower block is the I,,_, unit matrix. By virtue of
Theorem 2.1 and its proof, all the eigenvalues of the iteration matrix M, ., except 1, or equivalently,
of its similar matrix in (3.9) are strictly less than 1 in modulus. In other words, to complete our
proof we have to show that rank (M) = m+1r or by virtue of Lemma 3.2 that the upper diagonal
block of the matrix (3.9) is convergent or, equivalently, that the difference of this block from the
unit matrix I,,4, has no zero eigenvalue. For this, we form the difference

(1 - ¢)Ir Or,m—fr _¢(UTA71U)7’,7’Z
Im+r - Omfr,r (1 e CZ))Imfr _QZ)(UTA_IU)me,TE
(1-)(VTQ~V),,% Or R—r I, — (bw(VTQ’lV),,«’,,«Z(UTA’lU)mZ
. O m—r p(UTATIU),, %
= Orm—r,r PLin—r P(UTATIU) s 2 ,

_(1 - d))?v/}(VTQilv)r,rz Or,m—r ¢w(VTQ71V)T,TE(UTAilU)r,rZ
(3.10)
next we consider the determinant of the matrix in (3.10), then we multiply the first block row by

the nonsingular block matrix %(VTQ‘IV)ME, and finally add it to its third block row to
successively obtain

I ¢Ir Or,mfr ¢(UTA_1U)T‘,TZ
det Om—’r,r d)Im—’/‘ gb(UTAilU)m—r,rZ =
| A=) (VIQ V)X Oppey o0(VIQ™'WV),,S(UTATIU),, S
[ oL Opmr p(UTAIU), 5 (3.11)
det Om—rr Gy P(UTA) X =
Orr  Opmn—r ¥(VIQ™WV),,X(UTAIU),, %

¢y det (VIQ1V),.,) det((S(UTAU),, %) > 0.

The last result effectively proves that the difference we considered has no zero eigenvalue or that
the upper block of the matrix in (3.10) has no eigenvalue 1 and Lemma 3.2 applies. Hence,
rank (M) = m + r, which completes the proof of the present theorem. O

4 Optimal parameters and optimal semi-convergence factor

Since as was proved index(/y,+n—Ma,,) = 1 the ASOR method is semi-convergent. So, to determine
the parameters a and w that minimize the semi-convergence factor v(M,,,) we base our analysis
on the restrictions (2.13).

Note that (2.12) has the product of its roots ¢ = ﬁ > 0; c is also an eigenvalue of M,
corresponding to p = 0 as was noted in the second part of the proof of Lemma 2.1. The positiveness

of ¢ means that both roots A1, Ay are either real of the same sign or complex conjugate numbers.



In the former case if they are not equal one of them, say A1, will be in modulus |A1| > v/c (> |A2]).
On the other hand, in case they are equal or complex conjugate, both roots will have modulus

a+w
smallest modulus of A1, A9 is achieved if and only if the latter case is satisfied. For this to hold the

discriminant D of (2.12) for all possible © > 0 must be < 0. Hence, we require that

200 2 2
D= wip o fatw) @ oy, (4.1)
2-w(a+w) a+w a+w

M| =[] = Ve [>ce= L) This means that for any fixed pair of values for @ and w the

The right relation in (4.1) is equivalent to
40?0 — 4o+ w)(2 —wp+ (2 -w)* <0, (4.2)
whose discriminant D, is given by
D, = 64(2 — w)?a(a +w) > 0. (4.3)

Since the last discriminant is positive and the coefficient of the highest power of x4 in (4.2), 4w?, is
also positive it is implied that the inequality in (4.2) holds true for all u satisfying

(2-w) [2a +w) +2y/ala+w)]

(2 — w) [(za +w) - 2v/ala +w)}

<u< 4.4
provided the fraction on the right satisfies the restriction on u in (2.13), namely
(2 — w) [(2a+w) +2\/a(a+w)] (2 - )20+ w) s
< . .

2w? w?
The inequality in (4.5) is equivalent to
2v/a(a+w) < (2a+w) or 0< w?

which always hold.
Next, let timin and fimax be the minimum and the maximum positive eigenvalues of QleTAle ,
respectively, and then set

(2—w) [(2a+w)—2\ / a(a-l—w)]

Vmin = 50,2 5 Vmin € (07 Nmin]a (4 6)
(2—w) [(2a+w)+2\ / a(a-l—w)] )
Vmax ‘= 502 y Vmax € [Mmax: +OO)‘

Relations (4.6) guarantee that the discriminant D in (4.1) will be <0 for all x> 0. From (4.6) we
can obtain that

§ '= Vmax + Vmin = (Q—w)u(]#’

d 2(2—w)y/a(atw) (47)

‘= Vmax — Vmin = 2

s-(%—l) (2%+1) and d_z(%—1> (g)2+% (4.8)

or



Setting
2
v:=— and 0:= @ (4.9)
w w

and substituting in (4.8) we have that

s=(y—=1)(20+1) and d=2(y—1)Vd>+0. (4.10)

Then, dividing relations (4.10) by each other we obtain 2\2/% = 7, from which we get

4(s% — d*)o% + 4(s* —d*)o —d* =0
whose positive root, the other is negative, is

—\/g2 — g2
5:u. (4.11)
2vs? — d?

Substituting the value of § into any of the two relations in (4.10), say the first one, we take

= p1=— % 12241 (4.12)

= —26+ 1 s— /527d2 + 1
V&

Hence, from (4.9) we obtain that

2 2
w=--= ————F—
Y 1422’
o b =R, 2 s ST (4.13)

2v/s2—d? 14+/s2—d2 - Vs2—d2(14++/s2—d?)’

Having found the values for a and w we can readily determine these values in terms of vy, and
Umax from (4.6). Then, we eventually have that

B TSV Ty S B (a1
2\/ VmaxVmin (1 + 2\/ VmaXVmin) ’ 1+ 2\/ VmaxVmin

Using the value of ¢ = —%~ € (0,1) and the values for a and w from (4.14), the semi-convergence
factor of the iteration matrix M, is found to be

(\/l’maxfx/l’min)2 2
_ - o 2 Vmaxumin(1+2 Vm'dxl’min) _ A/Vmax—+4/Vmin 4 15
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Note that the semi-convergence factor just found in the rightmost side of (4.15) can be written

Vmax _ 1
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The latter expression is a strictly increasing function of the condition number ﬁ However, in
view of the definitions of yax and v, in (4.6) it is concluded that the best condition number will
be the smallest value of the aforementioned ratio that is ﬁ—?ﬁ which is assumed for Vpax = fimax and
Vmin = Mmin- Consequently, from (4.14) and (4.15) the optimal parameters ap and wep: and the

optimal semi-convergence factor ~y (M%pt,wopt) , respectively, are given in the following statement.

as



Theorem 4.1. Under the assumptions on the parameters o and w given in (2.13) and the de-
tailed preceding analysis, the optimal parameters cuopt, wopt and the optimal semi-convergence factor

Y (M@opt ,Wopt) are

(\/Fmax —/Fomin )2
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Qopt,Wopt
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Qopt = — VHmax—/Hmin
opt VPmax+y/Bmin

Remark 4.1. Recently a paper by one of the present authors has appeared [18], where the singular
nonsymmetric saddle point problem is “best”, and in some cases “optimally”, solved by means of
an extension of Manteuffel’s algorithm to accommodate the singular case. From its solution many
previous “best” or “optimal” results based on generalizations and extensions of SOR-like methods
can be recovered. Further work in this direction has led to fruitful results.

Remark 4.2. It seems that if we set ¢ := 55 and ¢ = 22_—"Jw as we did in (3.7), we can recover
from (4.16) the optimal results of Bai et al.’s [5] and especially those of [37] via a quite different
splitting and a quite different analysis regarding semi-convergence. This suggested that a unification
of various iterative methods for the solution of the more general singular nonsymmetric saddle point
problem was possible. Work in this direction was fruitful and some of the results have appeared

recently in [19]. (Specifically, see Remark 3.5 of [19] referring to the present work and the one in
[37]).

Remark 4.3. Work on other real problems using the results of this work and of [18] and [19] can
also extend the present one, as in [2] and [3], in the direction of the solution of non-Hermitian
positive definite matriz coefficients problems which has already begun.

5 Numerical examples

Consider the singular symmetric saddle point problem in [37] with the matrix coefficient blocks as
in (1.1) of the following specific form:

B LRT+T®I 0 212 x 212
A—[ 0 IZ®T+T®I1]€R , | even,
T = ;tridiag(—1,2, -1) € R,
B =[Bibiby) = [Bl,é} € R2PX(P+2), (5.1)
A L ®F . 1 o 0
Bl-l:F®Il]ab1—Bl[0:|a b2—31[1]7

F = ltridiag(—1,1,0) e R 0=10,0,--- ,07 e R¥*/2, 1=1[1,1,--- ,1)]T € R*/2,

Here ® denotes the Kronecker (tensor) product symbol, h = HLl is the discretization mesh size,
and J = tridiag(a, b, ¢) denotes a tridiagonal matrix with J;_; ; = a, J;; = b, Jiy1,; = c. In problem
(5.1) for appropriate even I, we have m = 2[? and n = [2 +2. Thus the total number of components

of a solution [z, yT]T eRH2is m 4+ n =312 +2.

Remark 5.1. To the best of our knowledge, Fxample 5.1 restricted to its nonsingular symmetric
part, with rank(B) = n, and without the two additional vectors by and by that make A be singular,
is Example 5.1 of [5] and was taken from [4]. The same nonsingular symmetric example was also
used in [13, 27, 32, 25, 18] and in others. Technical modification of the aforementioned example to



make A be singular, namely by adding the two vectors by and b, as in Example 5.1 above, was first
appeared in [37], subsequently in [24, 22, 29, 34, 36, 21, 38, 33, 12, 30, 19] and maybe in others.
Mainly for comparison reasons and especially because of its “popularity” made us use it too.

The preconditioning matrix @, as an approximation to the matrix BY A~ B, was chosen in four
cases as is indicated in Table 1. These cases were previously used in the parameterized Uzawa (PU)
method [37].

Table 1: Choices of the matrix Q, with Q = diag(BjTglel, ETE)

Case no. | Matrix Q | Description
1 Q A = tridiag(A)
2 Q A = diag(A)

3 tridiag(@) | A = tridiag(A)
4 tridiag(@Q) | A=A

All experiments were implemented in MATLAB (version 7.8.0.347 (R2009a)) with a machine
precision 10710, on a personal computer with 2.39 GHz central processing unit (Intel(R) Core(TM)
i7-4500U 1.80GHz), 8.00G memory and Windows 8.1 operating system. For the ASOR method,

T T
all numerical examples were started with an initial vector [3:(0) y© ] and terminated when

the current iteration satisfied ERR < e, where ¢ is a small positive number, or when a prescribed
maximum iteration number was exceeded. ERR denotes the ratio of the norm of the residual of
the iteration vector at hand over that of the initial vector. Both ERR and RES are defined by

VIl — 42 — By®|3 + g — BT2®)|3
ERR :=

<e. (5.2)
VIl = Az — By©)|3 + |lg — BTz O[3

T
(Note that if and only if the initial vector [z(O)T,y(O)T} is the zero vector then the relation for
the ERR is simplified to

Vllp = Az® — By®)|3 + g — BT2®)|]

ERR := <e.) (5.3)
Vipl3 + llall3
The norm of the residual vector RES is given by
RES = /|lp — 2®) — By®|[3 + |lg — BT=®[3. (5.4)

It is pointed out that in the examples we ran ¢ was taken to be 1075,

The right hand side vector [pT, qT]T € R™"™ is chosen such that the exact solution of the
augmented linear system (1.1) is [T y*T]T =[1,1,---,1]T ¢ R™*",

The two optimal parameters « and w, the iteration numbers (IT), the relative absolute errors
(ERR), and the residuals (RES) of the ASOR iterative method are listed with various sizes of m
and n, respectively.



Table 2: Optimal parameters: qgpe, Wopt, 1T, ERR, RES

m 128 512 1152 2048
n 66 258 o978 1026
m+n 194 770 1730 3074
Case 1 ASOR agy  0.2027 0.3041 0.3654 0.3947
wopt  0.3994 0.2498 0.1805 0.1412
IT 31 60 89 119
ERR 9.2054e-7 9.5871e-7 9.7243e-7 8.6745e-7
RES 7.147le-4 3.4522e-3 8.9944e-3 1.5888e-2
Case 2 ASOR g 0.2652 3605 0.4009 0.4232
wopt  0.3158 0.1873 0.1328 0.1029
IT 45 88 130 173
ERR  9.7984e-7 8.8686e-7 9.9007e-7 9.7045e-7
RES  7.6075e-4 3.1935e-3 9.1576e-3 1.7775e-2
Case 3 ASOR agy 0.2975 0.6331 0.9274 1.1932
Wept ~ 0.9759 1.1100 1.1910 1.2491
IT 23 35 43 o1
ERR 7.4070e-7 6.3140e-7 9.5419e-7 8.0967e-7
RES 5.7508e-4 2.2736e-3 8.8257e-3 1.4830e-2
Case 4 ASOR  agy  0.2413 0.5223 0.7700 0.9941
wopt  1.0122 1.1675 1.2556 1.3163
IT 20 29 36 42
ERR 6.3064e-7 7.9550e-7 8.6442e-7 9.0583e-7
RES 4.8963e-4 2.8645e-3 7.9953e-3 1.6591e-2




Table 3: Optimal parameters: qgpt, Wopt, 1T, ERR, RES

m 128 512 1152 2048
n 66 258 D78 1026
m-+n 194 770 1730 3074
Case 1 ASOR agy  0.2027 0.3041 0.3654 0.3947
wopt  0.3994 0.2498 0.1805 0.1412
IT 28 23 78 102
ERR 8.3875e-7 8.8004e-7 8.3319e-7  9.2187e-7
RES 1.6287e-3 1.1860e-2 3.6072e-2  4.2264e-2
Case 2 ASOR agy  0.2652 3605 0.4009 0.4232
wopt  0.3158 0.1873 0.1328 0.1029
IT 41 78 114 150
ERR 8.6141e-7 8.5660e-7 9.2067e-7  9.4488e-7
RES  1.6727e-3 1.1544e-2 3.9860e-2  9.4567e-2
Case 3 ASOR agy  0.2975 0.6331 0.9274 1.1932
wopt ~ 0.9759 1.1100 1.1910 1.2491
IT 21 30 38 44
ERR 5.6732e-7 9.3456e-7 7.25498e-7 7.9332e-7
RES 1.1016e-3 1.2446e-2 3.1409e-2  7.9398e-2
Case 4 ASOR  agy  0.2413 0.5223 0.7700 0.9941
wopt  1.0122 1.1675 1.2556 1.3163
IT 18 26 31 36
ERR 6.6097e-7 6.4547e-7 9.9802e-7  9.9032e-7
RES 1.2835e-3 8.6987e-2 4.3208e-2  9.9115e-2




Two numerical examples are worked out. One with initial vector [0,0,0,0,---,0,0]7 € R37+2
and the other with initial vector [1,0,1,0,--- ,1,0]7 € R3°+2, The results obtained as described
above are depicted in Tables 2 and 3, respectively.

Comparing the results of the present Table 2 and Table 2 of [37] one will see that the number
of iterations IT and the residuals RES obtained are identical to the accuracy used. However, if we
choose @ as in Table 3 of [37], then in view of Remark 4.2 and the reported CPU times for the same
accuracy of the residuals RES obtained in the same paper [37] are better than the corresponding
ones given by the MINRES and PMINRES methods. The former observation must not be surprising
since as is stated in Remark 4.2 our method and the one by Bai et al.’s or by Zeng et al.’s, [5] and
[37], respectively, are equivalent for the solution of the singular symmetric saddle point problem
(1.1) by the corresponding methods although our method started from a quite different splitting of
the matrix coefficient .4 and the subsequently analysis differs considerably from that in [37].

The results of Table 3 are a little less accurate than those of Table 2. However, we should not
forget that the results of Table 2 come from an initial zero vector and, therefore, its theoretical

07 ,oT"

solution is given by the expression in (3.3), where the term (1,4, — E) [x is zero while

the initial vector in the example of Table 3 is different from zero. In the latter case the initial
vector z(9) is not known and equation (3.3) has to be solved for it, after we determine limy_, oo 2k
in order to find the actual z(©) used.

6 Concluding remarks

The method of the present paper for the solution of the singular symmetric saddle point problem
(1.1) is based on the ASOR iterative method introduced by one of the present authors, as coauthor,
[25] for the solution of the nonsingular symmetric saddle point problem. We were able not only to
obtain “best” and “optimal” theoretical values for the parameters involved by the simple analysis
of Section 4 but also for the corresponding semi-convergence factor. The method of this paper,
equivalent to the one by Zheng et al. [37], as this is pointed out in Remark 4.2, started from a quite
different splitting of the matrix coefficient and the analysis to obtain the optimal results, in many
cases, follows quite different and simpler routes. The results exhibited in Tables 2 and 3 together
with the ones in Tables 3 and 4 of [37] verify the theory developed in the present work.

It should be mentioned that the preconditioners of the present work (Table 1) and especially
those of Table 3 of [37] can be used in connection with the MINRES and other Krylov subspace
methods. Especially, the extension of the present method to the solution of the singular nonsym-
metric saddle point problem (see [19]) may be more effective. In all possible directions we have also
been working,.

Last but not least we would like to raise one more issue. From Tables 2 and 3, we can observe
that the number of iterations IT in Case 1 is less than that of Case 3, while IT in Case 3 is less
than that of Case 4. Although IT in Case 4 seems to be the best, A is chosen to be A which is
neither a tridiagonal nor a diagonal matrix of A. So Case 3 may be a good “practical” choice for
obtaining the optimal parameters a and w. Two tridiagonal matrices are only needed for Q). Even
so, in order to compute the optimal parameters (4.16), the minimum and the maximum positive
eigenvalues of Q' BT A~ B are needed. This may be costly for large size problems. The choice of
“best” (or “optimal”) parameters in practice still needs further investigation and this will be one



of our future research interests, see also [23]. But when we choose some particular values for the
parameters, such as @« = 0.1, w =1, a = 0.1, w = 10 in Case 1, I'T decreases as the dimension of
the problem increases, see Figure 1, which may constitute a suggestion as regards the direction we
should follow in our future work.

number of iterations
280 T T T

a=0.1,w=1
2607 «=0.1,w=10| |

240 4

220 1 b

200 b

IT

180 1
160 1
140 4

120 \ |

100 I I I I I I

Figure 1: Performance of the ASOR method regarding the number of iterations versus the size of
the problem for two arbitrary chosen pairs of values for a and w.
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