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Abstract 

Fitzsimons, C.J., A class of finite-element methods for singularly perturbed second-order differential equations, 
Journal of Computational and Applied Mathematics 34 (1991) 269-280. 

Standard Gale&in finite-element methods give poor accuracy when applied to second-order elliptic problems 
with a significant convective term. An upwind finite element was introduced to overcome this difficulty for 
constant-coefficient problems with zero-source term. This paper extends the use of this type of element to 
variable-coefficient problems with nonzero-source term by introducing a class of general&d upwind elements, 
called comparison-upwind finite elements. Two elements from this class are presented in detail. In this paper, we 
obtain nodal error estimates and global L’ and L2 error estimates for both methods. Finally, some numerical 
results are presented which demonstrate the methods’ accuracy. 

Keywork Numerical analysis, singularly perturbed problems, Petrov-Galerkin methods, uniform convergence. 

1. Introduction 

We consider a family of Petrov-Galerkin finite-element methods for singularly perturbed 
two-point boundary value problems for second-order, linear, ordinary differential equations of 
the form 

E?./‘(X) + a(x)u’(x) - d(x)u(x) ‘f(X), E > 0, (1.1) 
U(0) = (Y, U(1) = p, x E [o, 11, (1.2) 

where a(x), d(x) and f( ) x are sufficiently smooth functions and E is a small parameter. In this 
paper we introduce a family of methods for the nonselfadjoint problem when 

a(x) + 0, d(x) = 0, (1.3) 
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and we show numerically that the elements can also be applied when d(x) is not everywhere 
zero. 

For problems of this type, the error on a fixed, uniform mesh for standard Petrov-Gale&in 
methods increases as the parameter tends to zero. In contrast to this, the methods which we 
present in this paper are uniformly convergent in the following sense: if the singular perturbation 
parameter is denoted by E and the finite-element mesh parameter by h, then the norm of the 
error in the approximate solution to the problem is bounded above by the error constant C 
multiplied by some positive power p of h. If C and p are independent of both h and e, then the 
method is said to be uniform of p th order with respect to the chosen norm. 

Several authors have already proposed piecewise polynomial finite-element methods for the 
solution of (l.l), (1.2). The concept of the hinged finite element, which is piecewise linear within 
each element, is introduced in [lo]. References [12-141 and [5,6] develop the hinged element 
further. In [2] the upwind finite element is introduced for the problem subject to (1.3) and with 
zero-source term. This element is extended to two dimensions in [8]. 

The finite-element solution of (l.l), (1.2) subject to (1.3) is obtained by determining the 
numerical solution uh to the corresponding weak formulation of the problem: 

--E(Uh’, u’) + (a&, u) = (f, u), Vu E Th, (1.4) 

uh(0)=cq Jql) =P, (1-5) 

where Th is a finite-dimensional subspace of the test space spanned by { 4 -}y=i. 
IJ 

The solution uh 
is in Sh a finite-dimensional subspace of the trial space spanned by { +i}i=l. It is written 

Uh = 5 ui~;(x). 
i=l 

The discrete form of (1.4), (1.5) is 

0 -6) 

0 -7) 

The trial and test basis functions are chosen to have local support and (1.7) yields a tridiagonal 
system whose solution is the coefficients in (1.6). 

We refer the reader to [2,8] for a detailed discussion of the upwind element. Here, we outline 
the element as an introduction to the family of elements developed in this paper. The trial 
functions in (1.7) are chosen to be standard piecewise linear or hat functions. The test functions 
have the following form: 

Gjtx) = 

i 

Gj(X) +YF(X-Xj-l>, xE [xj-l? xj]y 

+j(x) -YF(x-xj), x E xj9 xj+1] 9 I 
0 3) 

where 4 is the corresponding trial function, y = coth p - l/p, p = ah/(2c) and F(x) = 3x(x - 
h)/h2. We note that for constant-coefficient problems, with this choice of element, the exact 
solution to (l.l), (1.2) is obtained at the nodes. 

The upwind element is optimal, in the sense that the exact solution at the nodes is found, for 
the solution of constant-coefficient problems. To apply it to variable coefficient problems we use 
the upwind method to solve the comparison problem to (l.l), (1.2). In solving a linear problem 
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of this form, it is known that for a(x), d(x) and f(x) sufficiently smooth, the essential 
behaviour of the solution u(x) is given by the solution U(x) to the comparison problem 

~ii”(X) +&(x) =j(x), E > 0, 

u(0) = (Y, u(1) = p, x E [O, II > 
(I -9) 

- _ 
where a, d, f are piecewise polynomial approximations to a, d, f, respectively. For a discussion 
of why the solution to (1.9) approximates accurately the solution to (l.l), (1.2), we refer the 
reader to [1,12]. 

The rest of the paper is organised as follows. In the next section we introduce two members of 
the comparison-upwind family of methods. A nonstandard quadrature rule used in the evalua- 
tion of the inner-products in (1.4) is explained. In Section 3 we derive local and global error 
estimates for the two methods presented here. The first is uniformly convergent to first order at 
the nodes while the second is uniformly convergent to second order. We derive L’ and L2 error 
estimates for both methods. In Section 4 numerical results are presented for some test problems. 
These indicate that the methods are applicable to a wider class of problems than the theory 
shows. In the final section we outline the extension of the method to two dimensions. 

2. Comparison-upwind finite-element methods 

We extend the upwind finite-element method discussed in the previous section to problems 
with variable coefficients and nonzero right-hand side of the form 

fU”(X)+u(X)U’(X)=f(X), O<x<l, (2-I) 
u(0) = (Y, u(I) = P, (2.2) 

where E > 0, a(x) is strictly positive and may vary and f(x) is not necessarily identically zero. 
We introduce two finite-element methods, which we call comparison-upwind, the first of which is 
uniformly convergent of order h at the nodes and the second of which is uniformly convergent of 
order h2 at the nodes. We denote them CUl and CU2, respectively. The comparison-upwind 
element results from the application of the upwind element to the comparison problem (1.9) 
corresponding to (2.1), (2.2). We retain the definition of trial functions, and the formal definition 
of test functions for the upwind elements. For each of the new methods we make a different 
choice of the parameter y. Furthermore, motivated by the discussion in [6] we employ a 
nonstandard quadrature rule to evaluate the inner-products in the Petrov-Galerkin discretisation 
of (2.1) (2.2). We encounter inner-products of the form (85, v)~, where 5 and 77 are piecewise 
linear or piecewise constant functions, g is a smooth function and the subscript j denotes 
integration on the interval [ x/_~, xj] = Ii_ These inner-products are evaluated by the following, 
nonstandard, quadrature rule: 

(85, rl)j"Ej(t, 77)j, (2.3) 

where the remaining inner-products are evaluated exactly and where (u, JJ)~ = JX~_,uu dx. The 
quantity jjj is chosen to approximate g on Ii so that 

Sx’ (g(x) - g,) dx ~ Ch”(xj - Xi-,). 
X,-l 

(2-4 
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Applying the quadrature rule (2.3) in (1.7) is equivalent to applying a standard rule to the 
comparison problem. In the next section we see that the choice of jjj in (2.4) determines the local 
accuracy of the method for the choices presented in this paper. Next we define the test function 
and its associated parameters for both methods. 

The test function for CUl is defined by 

#jCx> = 

i 

+j(x) +YjF(x-xj-,)7 XE [xj-lP xj]> 

Qjj.(x) - YjFcx - xi>, x E Ixj, Xj+l] 9 
(2.5) 

where yj = coth pj - l/pi, pi = iijh/(2c) and Zj = a( xi). Putting 6 =f( xj) we employ the 
following nonstandard quadrature rules in (1.7): 

(“Gi, $j)=zj(+:7 $j)Y (l-7 Ic;.)=J,(lY #j)* 

The test function for CU2 is defined by 

(2.6) 

#j(x) = 
i 

+j(x) +YjF(x-xj-l)> XE [xj-l, xj]> 

+j(x) - YjF(x - xj)9 x E [xj7 xj+l]9 
(2.7) 

y, = coth pj - l/ p pj=Zjh/(2~) and Zj=~(~(~j_l)+~(~j)). Putting &=i(f(Xj-i)+f(xj))Y j, 
we employ the following nonstandard quadrature rules in (1.7): 

( a+i’, #j) = ‘j(+iY #j)j + iij+l(+i7 #j) j+lT w3) 

(J-7 #j) =f,(lY +j) j +fi+l(ly Gj> j+l’ (2.9) 

3. Error estimates 

Throughout this discussion, C and Ci are used to denote generic constants independent of h 

and E unless this dependence is explicitly stated. The same constant symbol need not necessarily 
denote the same value in different parts of a proof. We begin by proving the nodal order of 
convergence of CUl and CU2. 

Theorem 3.1.(a) max 1 u(xj) - z.?(x~._~) 1 < Chfor CUl; 
(b) max 1 u(xj) - u~(x~_~) 1 G Ch2 for CU2. 

Proof. (a) For this choice of test function, (1.7) generates the Il’in difference scheme [9] 
‘ 

tz - 
h2 pi cothp,-~)u,_,-2(~p;cothp,)ui+(~p~cothpi+~)s+~=~, (3.1) 

i=l ,..., N- 1, uo=ff, u,=p, 

which he proved to be uniformly convergent of first order at the nodes. 
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(b) For this choice of test function, (1.7) generates the El-Mistikawy and Werle difference 
scheme [4] 

- 

‘0th Pj+ Pj+l ‘0th Pj+,) + 
aj+l - aj 

‘Jh Uj 

‘,+I = t(l - Yj)f, + $(I+ Yj+l)f,+l> (3.2) 

j=l ,..., N- 1, uo=(Y, uhl=p, 

which is proved to be uniformly convergent of second order at the nodes in [7]. •I 

The remainder of this section is devoted to obtaining global L’ and L2 error estimates for 
CUl and CU2. In what follows we make use of the following theorem from [14]. 

Theorem 3.2. Suppose 1 u(x,) - uh(xj) 1 < Ch, Vj, where u is the solution of (2-l), (2.2) and uh is 
any finite-element solution; then 

IIu-uhIIp<Ch iff 

F Iuj-uj_,I”II~j(X-Xj-~)-~j(X)llPqj~Chp, 
j=l 

(3 *3) 

where Gj are the trial functions of uh and 

Ei(x) = ’ - exP(-‘jx/c) 
1 - exp( -Zjh/r) . 

Proof. See [14]. Cl 

From this theorem we see that in order to estimate the global L2 error it suffices to examine 

5 l”j-uj-11211Ej-~jIl~j~ 
j=l 

For the methods under consideration the trial functions are just hat functions. We use the 
following result to place an upper bound on the global L2 error estimate for the comparison-up- 
wind methods. 

Lemma 3.3. If the trial functions are chosen to be hat functions, then there is no C independent of h 
and 6, such that 

II u - uh 11 2 < Ch. (3.4) 

Proof. Theorem 3.2 from [12] states that no one-hinged trial function exists such that (3.4) is 
true. The hat function may be characterised as a one-hinged trial function whose two parameters 
of position, Oj and A”, are the same. q 

In fact, we derive error estimates for uh with respect to U, the solution of the comparison 
problem (1.9), and then we use the following lemma to obtain the desired results. 
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Lemma 3.4. Suppose that ( a(x) - Z(x) 1 < Ch” and 1 f(x) -f(x) 1 < Ch”, Vx E [0, 11, and 

then 

(a) IIu-Ull,~Ch”; 

(b) IIr.k$.,<Ch”, l<p<oo. 

Proof. (a) See [12, Theorem 2.11, which is adapted from [l]. 

(b) ]]u-Z]];=~*]z~~]~ dx<,$]u-G]I,‘dx= I]u-ii]lJ. 

Therefore ]I u - U I( p G I] u - U ]I m < Ch”. 0 

We wish to prove the following global error estimate for the comparison-upwind methods. 

Theorem 3.5. If the trial functions are hat functions, and the test functions are CUl or CU2, then 

(a) there is a constant C, independent of h and e, such that 

II u - uh II 2 < Chl’*; 

(b) if h -=K c, then 

1) u - uh II 2 < Ch. 

In order to prove this theorem we require the following lemmas. 

Lemma 3.6. Let 

dx’ 

then (a) I Qj I < C,, i = 1, 2; 
(b) for e fixed, and greater than zero, 

limei=;, i=1,2. 
h-0 

Proof. (a) We use I /if(x) dx I G (b - a) sUpoGX<b I f(x) 1. Because f’(x) > 0 for both Q, and 
Q2, and both are well-defined at 0 and 1, the result follows. 

(b) We use 

where a, b, y,, y, are finite and f( x, y) is a continuous function. Applying this, we have 

I 
dx= 

J 
‘x2 dx=f, 

0 

* 
dx= ‘x*dx=$. J •I 

0 
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In the rest of this discussion, when the meaning is obvious, we use A = maxi Zj and 
a = mini 7ij. 

Lemma 3.7. If the associated difference scheme is either (3.1) or (3.2), then 

Iu~-.uj-11 <Cl exp(-(j-l)p,,)(l--xp(-p,,,))+C,h, 

where pti, = ah/c and p,,, = Ah/e. 

Proof. See [12, Appendix B]. 0 

Proof. Using Lemma 3.7, we 

f I”j-uj-J/2< 

Lemma 3.8. 

+ c 1 -exp(-0) 

2 1 - exp(k,) 
(I - exp(-p,,,))h + C,h. 

have 

E (Ci exp( - (j - l>Pmi*)(l - exd -Pm,,)) + C2h)’ 

/=I /=I 

= 5 (Cl exp(-2(j- l)Pti,)(l -exd-pmA2 
j=l 

+C2 exp(-(j-l)~~,)(l --4-pm,,))h+C,h2) 

= Ci(I - exp(-pm,JJ2 t exP(-2(j_l)P,i,) 
j=l 

+ C2(1 - exp(-pm,)) 5 exp(-(j- lhk,) + Gh2N. 

j=l 

The result follows by the summing the series, and noting that hN = 1. •I 

Lemma 3.9.(a) For c fixed, 

is uniformly bounded. 

Proof. (a) If we obtain the series expansion in h, and let h + 0, the result follows. 
(b) Unless the denominator vanishes, it is clear that the expression is bounded. It remains to 

evaluate the expression as h + 0. A simple calculation yields 

p$-exP(-PInJ) 
2 

i 

1 - exp( -2a/e) 
1_exp(_2p ) =o* o 

nun i 
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We now present the proof of Theorem 3.5. 

Proof of Theorem 3.5.(a) Using Lemmas 3.6-3.9, we have 

+ C,(c, h)h* + C,h*. (3.5) 

Using Lemma 3.9(b), we have, by inspection, 

]I U - uh I] 2 < C2h1’*, (3.6) 

where C, is a constant independent of h and E. Using Lemma 3.4 we have 

]I u - U ]I 2 < Ch < Clhl’*. (3.7) 

Combining equations (3.6), (3.7), we obtain the result by using the triangle inequality: 

I] u - uh ]( 2 < I] u - U (1 2 -t ]I ii - uh ]I 2 < C,hl’* + C2h1’* = Ch”*. 

(b) Using Lemmas 3.6 and 3.9, and inspecting equation (3.5), we obtain, for h -s+z c, 

IIu-uhl12<Ch. 

The result follows from Lemma 3.4 and the triangle inequality. •I 

We now obtain a global I,’ error estimate which is uniformly accurate to first order. We 
require Lemmas 3.4, 3.7 and the following lemma. 

Lemma 3.10. Let Ej and $j be as previously defined. Then there is a constant C, independent of h 
and E, such that 

II E, - +j II l,j G Ch* 

1 - exp( -Zjx/t) 
1 -exp(-pj) -; dx 

h 1 1-exPC-PjY) = 

/I 0 1- exP(-pj) 
-y dy, Y=;, 

= 
h 

/ 

11- exP(-Pj_Y) 

o l-exp(-pi) -ydy. 

We can remove the absolute value symbol because the first expression in the integrand is a 
concave function on [0, l] whose value at zero is positive, and whose value at one is one, and so 
the whole function is always positive. Evaluating the integral, we obtain 

IIEj-+jllI,j=h l_exi(_p.) -d-i 
J J 
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Now 

lim G(p,) = 4 - 4 = 0, 
P,‘O 

lim G(+)=l-$=i. 
P, - 00 

To obtain the result it remains to show that G’( pi) > 0 on [0, cc) because then G( p,) is a 
nondecreasing function on [0, cc) with range [0, i], and thus is uniformly bounded: 

G’(p,) = -$ - "P(-Pj) 

/ (1 - eXP( -pi))’ ’ 
Now, 

eXP(Pj)(l -eXP(-Pj))2=eXP(Pj) +eXP(-Pj)-2 

=2cosh(p,)-2=pf+ 

so, 

Thus, G’( pj) 2 0 and the result follows. q 

Theorem 3.11. If the trial functions are hat functions, and the test functions are defined by (2.5) or 
(2.7), then there is a constant C, independent of h and E, such that 

I/u-uUhljl < Ch. 

Proof. We obtain the estimate by examining 

5 I”j-uj-lI llEj-Gjll*,j* 
j=l 

Once we have this estimate, the result follows from Lemma 3.4 and the triangle inequality. Using 
Lemmas 3.7 and 3.10 we have 

x(1- exd-Pmax)) + C2h)C3h 
= C,h(l- exd-p,,J) 

i 

N 

x ,FIexP(-(j- ‘)Pxnin) 

< C,h + C,h = Ch. 
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We have ]]U - uh I] 1 < C,h. By Lemma 3.4, 1) u - U ]I 1 < C,h. Thus, 

I]u-~~))i < Ilu-U/i + JI’C-U~))~ ,<Ch. 0 

The above estimates, i.e., Theorems 3.5 and 3.11, are true for the constant-coefficient problem 
also. We know (cf. 112, Theorem 3.2]), that a uniform, global L2 error estimate of first order is 
not possible for the constant-coefficient problem. In [12] a first-order L2 error estimate for the 
hinged element is obtained for the case e -=z h. This is due to the fact that the hinged test 
functions are piecewise linear, and so the method is independent of the choice of trial functions 
provided that they have the usual properties at the nodes, i.e., 

B,(U, u) = --E(U’, u’) + a(u’, u) 

= H.U& + e( u, u”) + izUUI,, - z( u, u”) 

= EUU I ao + auu I ao_ 

For the comparison-upwind methods, the inner-products involving the second derivative of the 
test functions do not vanish and so a similar estimate cannot be obtained. 

4. Numerical results 

We present numerical results for a sample problem of type (l.l), (1.2) subject to (1.3). We 
present a table displaying the experimental rate of uniform convergence at the nodes, and a table 
of the maximum nodal difference between the values of the approximate solution evaluated on 
two successive meshes, for a fixed value of e. The table for determining the experimental rate of 
uniform convergence is compiled using the following method, which is based on that in [3]. We 
solve each problem for each; = 2-“, n = 1,. . . ,14, and for each h = 2-k, 
the maximum nodal difference M,,< by 

Mh,c = 1 h 
h/2 m,ax uj - u2j , l<j<N. 

Then, by the general convergence theorem [ll], if the method is uniform 

Mh,c G Ch*, 

where C is a constant independent of h and E. Introducing the quantity 

R, = max Mh,=, 
c 

we obtain the following estimate for p: 

k= 2,..., 9. We define 

(4.1) 

of order p, we have 

(4.2) 

(4.3) 

The significance of M,,c is that it indicates whether or not mesh refinement significantly affects 
the accuracy of the approximate solution at a given stage of the computation. Large values of 
M,_ often indicate that the mesh is too coarse and further refinement is necessary. Mh,c is not 
large for the types of elements considered in this paper. 
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Table 1 
Rate of uniform convergence at the nodes 

Values of h 

Hat 
Hinge 
CUl 
cu2 

$ & & A i&i 

0.07 0.27 0.59 0.59 0.15 
1.90 1.96 1.99 1.99 1.81 
0.90 0.96 0.98 0.99 1.00 
1.90 1.96 1.99 1.99 2.00 

Table 2 
Maximum nodal difference for c = & 

Values of h 

Hat 
Hinge 
CUl 
cu2 

a L A 1 16 64 A 

9.6.10’ 6.2.10’ 3.8*10° 2.8.10’ 1.8.10’ 
9.7.10-4 2.6.10-4 6.6.10-5 1.7.10-5 4.8.10-6 
2.3.10-* 1.3*10-2 6.5.10-3 3.3.10-3 1.7.10-3 
9.7.10-4 2.6-10-4 6.6.10-5 1.6-10-5 3.8.10-6 

The methods considered in this paper differ only in the choice of test function. In the tables of 
results, we refer to the methods by CUl and CU2. We compare these methods against a standard 
finite-element method, denoted Hut, and a hinged Petrov-Galerkin method [6], denoted Hinge. 
Our test problem is 

624”(x) + (1 +x*)24’(x) = -(ex + x2), (4.4) 

u(0) = -1, u(l) = 0. 

The results in Tables 1 and 2 demonstrate how the order of approximation to the comparison 
functions to the coefficients affects the results, and how poor the results obtained by the 
standard are. They also show the comparability between Hinge and CU2; the results for method 
CU2 are slightly superior because the coefficients of its test functions are simpler to compute. 

5. Discussion 

We have extended the upwind finite-element method to variable-coefficient problems in one 
dimension. In Section 3, some of the results from the theory for hinged Petrov-Gale&in 
elements were used. The elements CUl and CU2 provide an attractive alternative to the hinged 
elements because of their ease of implementation. Unlike the hinged methods, the parameters are 
readily computed for these elements. CUl and CU2 provide the same uniform rate of nodal 
convergence at a fraction of the computational cost. For example, to solve the set of problems 
from which Table 1 is distilled, they are approximately six times faster. 

We intend to investigate in the future the extension of the comparison-upwind method to 
two-dimensional problems. The method used will mirror the extension of the original element of 
Christie [2] to two dimensions in [8]. This investigation will form the basis of a future report. 
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