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Abstract

The variational iteration method is used to solve three kinds of nonlinear partial differential equations, coupled nonlinear reaction
diffusion equations, Hirota–Satsuma coupled KdV system and Drinefel’d–Sokolov–Wilson equations. Numerical solutions obtained
by the variational iteration method are compared with the exact solutions, revealing that the obtained solutions are of high accuracy.
He’s variational iteration method is introduced to overcome the difficulty arising in calculating Adomian polynomial in Adomian
method. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical
physics.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Large varieties of physical, chemical, and biological phenomena are governed by nonlinear evolution equations.
The importance of obtaining the exact solutions, if available, of those nonlinear equations facilitates the verification
of numerical solvers and aids in the stability analysis of solutions. Analytical solutions to nonlinear partial differential
equations play an important role in nonlinear science, especially in nonlinear physical science since they can provide
much physical information and more insight into the physical aspects of the problem and thus lead to further applications.
Many authors mainly had paid attention to study solutions of nonlinear equations by using various methods, such as,
inverse scattering method [3], homotopy perturbation method [13], modified Lindstedt–Poincaré method [15,21], and
variational iteration methods [1,4,5,18,19,23–26]. The reaction diffusion equations (RDEs) have recently attracted
considerable attention, partly due to their occurrence in many fields of science, in physics as well as in chemistry or
biology, partly due to their interesting features and rich variety of properties of their solutions [30]. The evaluations
of dynamics quantities are governed by nonlinear partial differential equation. The processes of diffusion and reaction
each play essential roles in the dynamics of many systems, e.g., in many systems [6,28,29].
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The variational iteration method was first proposed by He [9–12] and was successfully applied to autonomous
ordinary differential equations by He [14], to nonlinear polycrystalline solids [22], and other fields. The combination of
a perturbation method, variational iteration method, method of variation of constants and averaging method established
an approximate solution of one degree of freedom weakly nonlinear system in [7]. The variational iteration method
has many merits and has much advantages over the tanh method [27].

The motivation of this paper is to extend the analysis of the variational iteration method proposed by He [2,9–12,16,17]
to solve three different types of nonlinear equations, namely, the coupled nonlinear RDEs, Hirota–Satsuma coupled
KdV system, and Drinefel’d–Sokolov–Wilson equations.

The rest of this paper is arranged as follows: In Section 2, we simply provide the mathematical framework of the
variational iteration method. In Section 3, in order to illustrate the method, three models in physics are investigated.
Finally, some conclusion and discussion are provided.

2. Methods and its applications

For the purpose of illustration of the methodology to the proposed method, using variational iteration method, we
begin by considering a differential equation in the formal form,

Lu + Nu = g(x), (1)

where L is a linear operator, N a nonlinear operator, and g(x) an inhomogeneous term.
According to the variational iteration method, we can construct a correct functional as follows:

un+1(x) = un(x) +
∫ x

0
�{Lun(�) + Nũn(�) − g(�)} d�, (2)

where � is a general Lagrangian multiplier [9–12], which can be identified optimally via the variational theory, the
subscript n denotes the nth order approximation, ũn is considered as a restricted variation [9–12], or see then He’s
monographs [16,17] i.e., �ũn = 0.

3. Applications

In this section, the extended variational iteration method is used to find approximate solutions of three kinds of
equations in mathematical physics, namely, the coupled nonlinear RDEs, Hirota–Satsuma coupled KdV system, and
Drinefel’d–Sokolov–Wilson equations, and compared with that obtained by other methods.

3.1. Example 1: coupled nonlinear RDEs

Let us first consider the coupled nonlinear RDE [20]

�u

�t
= �

�x

(
A

�u

�x

)
+ Cu + Gu, (3)

where

A = A(u), C = C(u), G = G(u), u =
[
u

v

]
, A =

[
a1
a2

]
, C =

[
c1
c2

]
, G =

[
g1
g2

]
. (4)

Eq. (3), of the type known as RDE, has attracted considerable attention because of its various applications in science
and its interesting features from a mathematical point of view.

Consider the set of coupled equations describing the evaluation of two interacting populations by choosing

u =
[
u

v

]
, A =

[
k

k

]
, C =

[
uv

u2

]
, G =

[−Bu

Bu

]
. (5)
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From Eq. (5), we get the following system of PDEs as:

�u

�t
= k

�2u

�x2 + u2v − Bu, (6)

�v

�t
= k

�2v

�x2 − u2v + Bu, (7)

where B is a constant and k is the diffusion coefficient for the concentration of u and v with the initial conditions [20]

u(x, 0) = A1 + A1 tanh(cx), v(x, 0) = A′
0 − A1 tanh(cx), (8)

where A1 = 1 and A′
0 = 1.5.

To solve the system of Eqs. (6), (7) by means of variational iteration method, we construct a correctional functional
which reads

un+1(x, t) = un(x, t) +
∫ t

0
�1{unt − kunxx − ũ2

nvn + Bun} d�, (9)

vn+1(x, t) = vn(x, t) +
∫ t

0
�2{vnt − kvnxx + ũ2

nvn − Bun} d�, (10)

where �1 and �2 are general Lagrangian multipliers are to be determined later, and ũ2
nvn, denotes restricted variations

i.e., � ũ2
nvn = 0. With the aid of the above correction functional stationary, we obtain

�′
1(�) = 0, �′

2(�) = 0, (11a)

1 + �1(�)��=t = 0, 1 + �2(�)��=t = 0. (11b)

Eqs. (11a) are called Lagrange–Euler equations, and Eqs. (11b), one natural boundary conditions.
The Lagrange multipliers, therefore, can be identified as �1 =�2 =−1, and the following variational iteration formula

are given by:

un+1(x, t) = un(x, t) −
∫ t

0
{unt − kunxx − u2

nvn + Bun} d�, (12)

vn+1(x, t) = vn(x, t) −
∫ t

0
{vnt − kvnxx + u2

nvn − Bun} d�. (13)

We start with initial approximations u(x, 0) and v(x, 0) given by Eq. (8) with the above iteration formula (12), (13),
we get

u1(x, t) = 1 + tanh cx + t

2
− 2tc2 tanh cx + 2tc2 tanh3 cx + t tanh cx − t

2
tanh2 cx − t tanh3 cx, (14)

v1(x, t) = 3

2
− tanh cx − t

2
+ 2tc2 tanh cx − 2tc2 tanh3 cx − t tanh cx + t

2
tanh2 cx + t tanh3 cx, (15)

u2(x, t) =
{

1 + t

2
− 0.03t4 − 0.04t3 + 0.25t2 − t2c2

2

}
+ tanh(cx){−2tc2 + 0.25t2 + 0.33t3c2 − 0.4t3

− 0.187t4 + 0.37t4c2 + 8t2c4 − 5t2c2 + 1 + t}

+ tanh2(cx)

{
−3

2
t2 − 1.08t3 − 0.28t4 + 1.5t4c2 − 0.67t3c4

+2.67t3c2 − 1.5t4c3t4 + 3t2c2 − 0.5t

}
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+ tanh3 (cx){2tc2 − 0.17t3 − 1.7t2 + 3.33t3c2 + 2t4c6

+ 0.312t4 − 4t3c4 + 3.37t4c2 − 3t4c4 − 20t2c4 + 14t2c2 − t}
+ tanh4(cx){−5.33t3c2 + 2.29t3 + 1.03t4 + 4.5t4c4 − 4.5t4c2 + 1.25t2 + 1.3t3c4 − 2.5t2c2}

+ tanh5(cx)

{
3

2
t3 − 9t2c2 + 3t2

2
+ 0.187t4 − 7.66t3c2 + 7.99t3c4

−6t4c6 − 3.37t4c2 + 9t4c4 + 12t2c4
}

+ tanh6(cx){−1.166t3 − 1.09t4 + 2.66t3c2 − 0.66t3c4 + 4.5t4c2 − 4.5t4c4}
+ tanh7(cx){4t3c4 − 0.99t3 − 5.6t4 − 9t4c4 + 6t4c6 + 4t3c2 + 4.125t4c2}

+ tanh8(cx)

{
−3

2
t4c2 + 3

2
t4c4 + 0.375t4

}
+ tanh9(cx){0.25t4 − 2t4c6 − 1.5t4c2 + 3t4c4}, (16)

v2(x, t) =
{

1.5 − t

2
+ 0.03t4 + 0.04t3 − 0.25t2 + t2c2

2

}

+ tanh(cx){2tc2 − 0.25t2 − 0.33t3c2 + 0.4t3 + 0.187t4 − 0.37t4c2 − 8t2c4 + 5t2c2 − 1 − t}

+ tanh2(cx)

{
3

2
t2 + 1.08t3 + 0.28t4 − 1.5t4c2 + 0.67t3c4

−2.67t3c2 + 1.5t4c3t4 − 3t2c2 + 0.5t

}

+ tanh3 (cx){−2tc2 + 0.17t3 + 1.7t2 − 3.33t3c2 − 2t4c6

− 0.312t4 + 4t3c4 − 3.37t4c2 + 3t4c4 + 20t2c4 − 14t2c2 + t}
+ tanh4(cx){5.33t3c2 − 2.29t3 − 1.03t4 − 4.5t4c4 + 4.5t4c2 − 1.25t2 − 1.3t3c4 + 2.5t2c2}

+ tanh5(cx)

{
−3

2
t3 + 9t2c2 − 3t2

2
− 0.187t4 + 7.66t3c2

− 7.99t3c4 + 6t4c6 + 3.37t4c2 − 9t4c4 − 12t2c4
}

+ tanh6(cx){1.166t3 + 1.09t4 − 2.66t3c2 + 0.66t3c4 − 4.5t4c2 + 4.5t4c4}
+ tanh7(cx){−4t3c4 + 0.99t3 + 5.6t4 + 9t4c4 − 6t4c6 − 4t3c2 − 4.125t4c2}

+ tanh8(cx)

{
3

2
t4c2 − 3

2
t4c4 − 0.375t4

}
+ tanh9(cx){−0.25t4 + 2t4c6 + 1.5t4c2 − 3t4c4}. (17)

The remaining components of un(x, t) and vn(x, t) can be completely determined such that each term is determined
by the previous terms using Eqs. (12), (13).

It is to be noted that the exact solutions of u(x, t) and v(x, t) are given by [20]

u(x, t) = A1(1 + tanh(c(x − �t))), v(x, t) = A′
0 − A1 tanh(c(x − �t)), (18)

where c and � are constants.
The behavior of the approximate solutions obtained by variational iteration method with the exact solutions (Eqs.

(18)) for different values of times is shown in Figs. 1(a) and (b). The comparison shows that the two solutions obtained
are in excellent agreement.
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Fig. 1. (a) The numerical solution of u(x, t) obtained by variational iteration method with different values of time with the fixed values of c = � = 1.
The numerical solution of v(x, t) obtained by variational iteration method with different values of time with the fixed values of c = � = 1. (b) The
exact solution of u(x, t) (Eq. (18)) with different values of time with the fixed values of c = � = 1. The exact solution of v(x, t) (Eq. (18)) with
different values of time with the fixed values of c = � = 1.

3.2. Example 2: Hirota–Satsuma coupled KdV System

A second instructive example is the model introduced by [8]

ut − 1
2uxxx + 3uux − 3(vw)x = 0, (19)

vt + vxxx − 3uvx = 0, (20)

wt + wxxx − 3uwx = 0, (21)

with initial conditions [8]

u(x, 0) = 1
3 (� − 2k2) + 2k2 tanh2(kx), (22)

v(x, 0) = −4k2C0(� + k2)

3C2
1

+ 4k2(� + k2)

3C1
tanh(kx), (23)

w(x, 0) = C0 + C1 tanh(kx), (24)

where C0, �, and C1 are constants.
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In the same manner, to solve Eqs. (19)–(21) by means of variational iteration method, we construct a correctional
functional which reads

un+1(x, t) = un(x, t) +
∫ t

0
�1

{
unt − 1

2
unxxx + 3ũnunx − 3(ṽnwn)x

}
d�, (25)

vn+1(x, t) = vn(x, t) +
∫ t

0
�2{vnt + vnxxx − 3ũnvnx} d�, (26)

wn+1(x, t) = wn(x, t) +
∫ t

0
�3{wnt + wnxxx − 3ũnwnx} d�, (27)

where �1, �2, and �3 are general Lagrangian multipliers, and ũnunx , (ṽnwn)x, ũnvnx , and ũnwnx denotes restricted
variations i.e., �ũnunx = �(ũnvn)x = �ṽnvnx = 0.

The Lagrange multipliers, therefore, can be identified as

�1 = �2 = �3 = −1. (28)

Substituting Eq. (28) into Eqs. (25)–(27), we obtain

un+1(x, t) = un(x, t) −
∫ t

0

{
unt − 1

2
unxxx + 3ununx − 3(vnwn)x

}
d�, (29)

vn+1(x, t) = vn(x, t) −
∫ t

0
{vnt + vnxxx − 3unvnx} d�, (30)

wn+1(x, t) = wn(x, t) −
∫ t

0
{wnt + wnxxx − 3unwnx} d�. (31)

With the aid of the initial approximations given by Eqs. (22)–(24) and the iteration formula ( 29)–(31), we get the
other rest of components as follows:

u1(x, t) = −2
cosh x + 2t sinh x

cosh3 x
, (32)

v1(x, t) = cosh2 x + cosh x + t sinh x

cosh2 x
, (33)

w1(x, t) = 2

(−cosh2 x + cosh x + t sinh x

cosh2 x

)
, (34)

u2(x, t) = −2

cosh7 x
(cosh5 x − 3t2 cosh3 x + 2t sinh x cosh4 x + 2t3 sinh x cosh4 x

− 20t3 sinh x cosh2 x + 2t2 cosh5 x + 24t3 sinh x), (35)

v2(x, t) = 1

cosh6 x
(cosh5 x + 4t3 cosh2 x sinh x − 8t3 sinh x + t sinh x cosh4 x

+ t2 cosh5 x − 2t2 cosh3 x + 2 cosh6 x), (36)

w2(x, t) = 1

cosh6 x
(2 cosh5 x + t2 cosh5 x − 2t2 cosh3 x + 2t sinh x cosh4 x

+ 8t3 cosh2 x sinh x − 2 cosh6 x − 16t3 sinh x), (37)

and so on, the rest of components of un(x, t), vn(x, t), and wn(x, t) can be directly evaluated via Eqs. (29)–(31).
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Fig. 2. (a) The numerical solution of u(x, t) obtained by variational iteration method with different values of time with the fixed values of
C0 = C1 = k = � = 1. The numerical solution of v(x, t) obtained by variational iteration method with different values of time with the fixed
values of C0 =C1 =k =�=1. The numerical solution of w(x, t) obtained by variational iteration method with different values of time with the fixed
values of C0 =C1 = k =�=1. (b) The exact solution of u(x, t) (Eq. (22)) with different values of time with the fixed values of C0 =C1 = k =�=1.
The exact solution of v(x, t) (Eq. (23)) with different values of time with the fixed values of C0 = C1 = k = � = 1. The exact solution of w(x, t)

(Eq. (24)) with different values of time with the fixed values of C0 = C1 = k = � = 1.

It is noted that the exact solutions u(x, t), v(x, t), and w(x, t) are given by [8]

u(x, t) = 1
3 (� − 2k2) + 2k2 tanh2(k(x + �t)), (38)

v(x, t) = −4k2C0(� + k2)

3C2
1

+ 4k2(� + k2)

3C1
tanh(k(x + �t)), (39)

w(x, t) = C0 + C1 tanh(k(x + �t)). (40)

The behavior of the approximate solutions obtained by variational iteration method with the exact solutions
(Eqs. (38)–(40)) for different values of times is shown in Figs. 2(a) and (b).

3.3. Example 3: Drinefel’d–Sokolov–Wilson equations

The Drinefel’d–Sokolov–Wilson equations [31] read

ut + pvvx = 0, (41)

vt + qvxxx + ruvx + suxv = 0, (42)

where p, q, r , and s are arbitrary constants, and the initial conditions of u and v are given by

u(x, 0) = 2 sech2 x, v(x, 0) = 2 sech x. (43)
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Fig. 3. (a) The numerical solution u(x, t) obtained by variational iteration method with different values of time. The numerical solution of v(x, t)

obtained by variational iteration method with different values of time. (b) The exact solution of u(x, t) with different values of time. The exact
solution of v(x, t) (Eq. (43)) with different values of time.

Similarly as before, to solve Eqs. (41), (42) using the variational iteration method, we consider

un+1(x, t) = un(x, t) +
∫ t

0
�1{unt + pṽnvnx} d�, (44)

vn+1(x, t) = vn(x, t) +
∫ t

0
�2{vnt + qvnxxx + rũnvnx + sũnxvn} d�, (45)

where �1 and �2 are general Lagrange multipliers, and ṽnvnx , ũnvnx , and ũnxvn denotes restricted variations i.e.,
�ṽnvnx = �ũnvnx = �ũnxvn = 0.

By means of the above correction functional with fixed values of (p = q = r = 1), we get

1 + �1(�)��=t = 0, 1 + �2(�)��=t = 0, (46)

�′
1(�) = 0, �′

2(�) = 0. (47)

In this case, the Lagrange multipliers, therefore, can be identified as

�1 = �2 = −1. (48)
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Inserting Eq. (48) into Eqs. (44), (45), we have

un+1(x, t) = un(x, t) −
∫ t

0
{unt + vnvnx} d�, (49)

vn+1(x, t) = vn(x, t) −
∫ t

0
{vnt + vnxxx + unvnx + unxvn} d�. (50)

Identifying the zero components of u(x, 0) and v(x, 0), the remaining components can be determined as follows:

u1(x, t) = 2
cosh x + 2t sinh x

cosh3 x
, (51)

v1(x, t) = 2
cosh x + 2t sinh x

cosh2 x
, (52)

u2(x, t) = 2

3 cosh5 x

(
3 cosh3 x + 6t sinh x cosh2 x + 2t3 sinh x cosh2 x

−4t3 sinh x + 6t2 cosh3 x − 9t2 cosh x

)
, (53)

v2(x, t) = 1

3 cosh6 x

(
6 cosh5 x + 6t sinh x cosh4 x + 3t2 cosh5 x

−6t2 cosh3 x + 24t3 sinh x cosh2 x − 40t3 sinh x

)
, (54)

the rest of components of un(x, t) and vn(x, t) are obtained with the aid of Eqs. (44), (45).
The exact solutions of u(x, t) and v(x, t) [31] read

u(x, t) = 2 sech2(x − t), v(x, t) = 2 sech(x − t). (55)

The graphical behavior of the approximate solutions obtained by variational iteration method with the exact solutions
(Eqs. (55)) for different values of times is shown in Figs. 3(a) and (b).

4. Conclusions

In this paper, the extended variational iteration method is used to find the approximate solutions of the three kinds of
equations which are chosen to illustrate this method in mathematical physics. The validity of the method has been suc-
cessful by applying it for the nonlinear RDEs, Hirota–Satsuma coupled KdV system, and Drinefel’d–Sokolov–Wilson
equations. The approximate solutions obtained by the variation iteration method are compared with the exact solutions.
The results show that the variational iteration method is a powerful mathematical tool for finding the exact and numer-
ical solutions of nonlinear equations. In our work we use the Maple Package to calculate the series obtained from the
variational iteration method.

Finally, it is worthwhile to mention that the method is straightforward and concise, and it can also be applied to other
nonlinear evolution equations in mathematical physics. This is our task in the future work.
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