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1. Introduction

In this paper we use the following conventional notation.

C™ ™ denotes the set of all m x n matrices, and C**" is the subset of C™*", such that any matrix A € C["™*" has rank r.
U, is the set of n x n unitary matrices.

For any matrixA € C™ ", rank(A), R(A), A" and AT are the rank, the range, the conjugate transpose and the Moore-Penrose
pseudo-inverse of A, respectively. || - || is the Euclidian vector norm, or the corresponding subordinate matrix norm, || - ||f is
the Frobenius matrix norm.

For a matrix A € C™*", denote

Pr=1—AAT, Py =1-AlA

In the literature, there have been many articles studying perturbations of subspaces, such as eigen-spaces, singular
subspaces, and canonical subspaces, see, e.g., in [5,1,10,11,18-21,13-15,6,7,12,23,26].

In some generalized least squares problems, such as the least squares-total least squares problem (LS-TLS) [4,16,17,9,
24], the equality constrained least squares problem (LSE) [3,22], and the constrained total least squares problem (CTLS) [2,
23], the situation becomes more complicated.

The idea of the LS-TLS problem [4,16,17,9,24] is as follows. For a given 1 x 2 block matrix G; = (A, B) and an integer r
with rank(A) < r < rank(G,), find a matrix B replacing B in Gy, such that rank(A, B) = r and

I(A.B) — (A.B)llr = min [(A.B) — A.B)].
rank(A,B)=
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which is equivalent to that, for the integer p, = r — rank(A), find a matrix B replacing B, such that rank(PALE) = p, and

IPyB—PyBlp= min [PyB— PyBl. (1.1)
rank(Pj‘B):pz

Therefore, to obtain the matrix B, we need to use the singular value decomposition (SVD) of the matrix P;-B, only retain p;

largest singular values and set all other small singular values zero to obtain PALB. To analyze the perturbation bounds of the

LS-TLS problem, we need to study the perturbation bounds of the matrix PALB, and the column and row subspaces of PALE
which we call the constrained subspaces related to the matrix G;. For detailed derivation of the LS-TLS problem, we refer
to [4,16,9].

Similarly, the idea of the rank deficient LSE problem [22] is as follows. For a given 2 x 1 block matrix G, = (’é)and an

integer ps, find a matrix C replacing C in G, such that rank(CP;,) = ps and

ICP — CPyllr = min  [|CPyy — CPyllr. (12)

rank(EPj_, )=p3

Therefore, to obtain the matrix C, we need to use the SVD of CPALH, only retain ps largest singular values and set all other
small singular values zero to obtain EPALH. To analyze the perturbation bounds of the rank deficient LSE problem, we need to
study the perturbation bounds of the matrix CPALH, and the column and row subspaces of EPALH which we call the constrained
subspaces related to the matrix G,. For detailed derivation of the rank deficient LSE problem, we refer to [22].

The idea of the CTLS problem [2,23] is as follows. For a given 2 x 2 block matrix G3 = (/é [B)) and an integer p, find a

matrix D replacing D in Gs, such that rank(PySsP;:,,) = p and

IPySaPyy — PySaPuulle = min  [|PySaPoy — Py SaPoy lIF. (1.3)
rank(l’ﬁSAP’\;H):p

where

M=P{B, N=CPjy, Py=I—NN', Po, =I-MM,

S4=D—CA'B, S,=D—CAB, S,=D-—CAB.
Therefore, to obtain the matrix D, we need to use the SVD of PﬁSAPﬁH, only retain p largest singular values and set all other
small singular values zero to obtain P,#§AP$H .To analyze the perturbation bounds of the CTLS problem, we need to study the

perturbation bounds of the matrix Py SsP-,,, and the column and row subspaces of Py SaP,, which we call the constrained

subspaces related to the matrix Gs. For detailed derivation of the CTLS problem, we refer to [2,23].

Perturbation estimates for the above generalized LS problems have been discussed, but to our knowledge, in the literature
there has been no article discussing perturbations for the constrained subspaces of the above mentioned problems.

In this paper we will study the perturbations for the constrained subspaces. The paper is arranged as follows. In Section 2,
we provide some preliminary results which are needed for our analysis; Section 3, we derive the perturbation bounds of
constrained subspaces for 1 x 2 and 2 x 1 block matrices; in Section 4, we derive the perturbation bounds of constrained
subspaces for an 2 x 2 block matrix; finally in Section 5, we conclude the paper with some remarks.

2. Preliminaries
In this section we mention the following results which are needed for our further discussion.
Lemma 2.1 (CSD [8]). Suppose W € U,. Partition W as
W= Wi W) n
Wy Wxn) n (2.1
1 G

withry + 1, = ¢1 + ¢, = n. Then

_(u; 0\(Di D\ (Ve o
W= (0 Uz) <D21 Dzz) ( o vi) (2.2)
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U; € ]Ur], U; € Urz,V1 (S] UC1’V2 (S] UCz,

I off
C S
D11 | Dy Oc I
= , 2.3
( Dy ‘ Dy, 0Os I (2.3)
S —C
I o¢
where O¢ and Os are zero matrices with appropriate sizes,
C =diag(ci, ¢z, ...,y 1>c1202--->20>0,
S =diag(s1, 82, ...,8), 0<s;<s<--- <5< 1,

and C, S satisfy
Ct4+8*=1.

By applying the CSD in Lemma 2.1, one can easily have the following assertions [11,20,25].

Lemma 2.2. Suppose that A, Aecmm,
(1) If rank(A) = rank(ﬁ), then PAPf‘ and PALPAT have the same singular values, thus

IPAP5 || = [P Pl (2.4)
(2) If ||[Pa — P3|l < 1, then rank(A) = rank(ﬁ), and

IPa — P3ll = IPAPs || = [IP;PAll. (2.5)
(3) If rank(A) > rank(ﬁ), then

IPAPEI| > [Py P3ll. (2.6)

3. Perturbation analysis for the constrained subspaces of 1 x 2 and 2 x 1 block matrices

Consider the perturbation between constrained subspaces of the 1 x 2 block matrices
G=@AB, G =@AB), (3.1)

where A, A=A+ AA € Cp ™M, B,B = B+ AB € C™<"2, We first take the SVD of A, then take the SVD of M = P;B.Fora
chosen integer p, < rank(M) we obtain the decomposition of G; as

A 0| Bu B\ /yn 0
Gi=U; |0 O|By O ( 6 V”) , (3.2)
0 0| 0 B3y 2
where Uy € Up, Vi € Uy, V2 € Uy,, Ay = diag(o1(A), 02(A), ..., 0y, (A)), with 01(A) > 02(A) > - - - > op, (A) the nonzero

singular values of A, By = diag(o1(M), ..., 0,,(M)), B3, = dlag(ap2+1(M) ., 01(M)), with o, (M) > 2 o5 M) >
op,+1(M) > -+ > 0y(M) (I = min{m — p, n,}) the singular values of M.
Similarly, we have

 __f(An O En Bi» vHooo
Gi=Ui[ 0 0By 0 (6 ?H> (3.3)

0 0| 0 By 2
whereﬁ1,V1,V2 are unitarymatrices En d1ag(o1 (A) az(A) , Op, (A)) with oy (A) oz(A) op1 (K) the nonzero
singular values ofA 821 = diag(oy (M) , Op,y (M)) B32 = dlag(opzﬂ(M) ol(M)) with o (M) - > oy(M) the

singular values of M.
For i = 1, 2, partition U;, U1 and V; V as follows,

Up = (U1, Ui, Uiz), Vi = (Vi1 Vi), Vo = (Var, Vo),
Up = (U1, U2, Upz), Vi = (Vi1, Vi), Vo = (Var, Vo). (3.4)
pP1, P2, M pi1, Ny, P2,y
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where m = m — p; — p, 11 = ny — py,and n, = ny — p,. Then
A=UnAnVy, M = (Uyy, Uy3)diag(Ba1, B2)V,',
M = (U, Uss)diag(By1, Bo)Vi,

and

B=AATB+ UpBy Ve, B =AAB+ UpByVH, (35)
PiB = UyyBy Vi, PELB = Up2B V3.

In order to derive the perturbation bounds for the constrained subspaces, ||U UL, — Glzﬁ;;n and ||V VI — ’\721V2”] I, we
first need to derive the perturbation bounds of the subspaces for the matrix A, as mentioned below.

Lemma 3.1. Suppose that the matrices G; = (A, B),a = (Z, §) e C™ M+ gre defined in (3.1) with rank(A) = rank(ﬁ) =
p1, the decompositions of Gy, Gy arein (3.2)-(3.3). Then

dist(R(A). R(A)) < min { ||(ﬁ12,a13)HAAVn I 11Uz, Uss)! AAVy, I }

ap, (A) ’ oy, (A)
. ~ (3.6)
~ Ui AAV Ui AAV
dist(R(A™), RGA)) < min | 1AVl UG AVLITL
op, (A) op, (A)
Proof. From (3.2)-(3.3), the SVD of A and A have the following forms,
A = Uydiag(An, 0,0)Vy = UpAn Vi,
A = Uydiag(A11, 0, 0)V}' = UpAn Vi,
so dist(R(A), R(A)) = [|Uy;UH, — Uy UM ||. Therefore,
dist(R(A), RA)) = [|Uf (UnUPy — Ui U U |
0 UjUn UjiUs
= || -Ukuy, 0 0
-ultuy, 0 0
= max {|Uf, Urz, Ups) I, l|(Usa, Uss) Ul
= U (U2, Urs) | = Il U1z, Uss)" U . (3.7)
From the identities
A =A—A=UpAnV" — UpALVE,
(Usz, Ups)! AAVyy = —(Ung, Us)"UpAvs,
(Urz, Ui)" AAVy = (Urz, Ups)"UiAn,
we observe that
(Urz, Ups)! Uy = —(Una, ala)HAAVnAﬂ], (3.8)

(Urz, Up2)"Un = (Usa, U13)HAA"711217]1~
From the above equalities, we obtain the first estimate in (3.6). The second inequality in (3.6) can be derived similarly. O

We now derive perturbation bounds for the constrained subspaces of the matrix PALE defined in (3.5).

Theorem 3.2. Under the conditions of Lemma 3.1, if furthermore, for a chosen integer p, < rank(M), o, (M) — 0p,41(M) >

2|AM|| (AM = M — M), then for the matrices B and B defined in (3.5), rank(P;B) = rank(PA%ﬁ) = p,, and we have the
following estimates,

o U" AAV UH AAV,
||U12U{-'2 _ U12U¥2|| < min I 12 1l _ m ’ I 12 A11” + M2 _ ’
op, (A) 0p, (M) — 0p,41(M) 0p, (A) 0p, (M) — 0y 41(M) (39)
A 12

Va1 VB — Vo VA || < min - , 1,
2 2 Oy (M) — Gy 11(M) " 0, (M) — 51 (M)
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where

o B[l AAV; | ~ IB12 [[[1UY, AAVy4 |
n = max { | UL ABVy || + ————2—— ), [ IUBLABVy,|| + ———— 22—~ | 1,
oy, @A) 0, (A)

- 1B 11U AAVy | A Bz | UY, AAV:4 |
no = max { [ [|U%ABVy, || + BTN Uk ABV,, || 4+ 22 T
Upl(A) Gpl(A)

(3.10)

Proof. By the perturbation analysis of the singular values,
Gy (M) = 0, 11(M) > 0, (M) — 041 (M) — [ AM]| > 0,
0p, (M) — 0p,41(M) > 0p, (M) — 0p,+1(M) — [|AM|| > O,
Oy (M) — 0y 1 (M) > 0, (M) — 0,21 (M) — 2| AM]| > 0.
Therefore, both By; and By, are nonsingular, rank(P;-B) = rank(PEKE) = p,. Notice that
|U1UY, — 612/0{12 | = IIUy (Uy2U, — 61265{2)61 Il
therefore, by applying Lemma 2.2 we observe that

L ~UfU, o 0
IUnUfy, — UnpUbll = ||| —UUn 0 0
0 Ubu, UlhUs

(U1, Uss)Ur2 || = U, (Un1, Us3) . (3.11)

Also,
IVa1V3h — VarVai | = [1V3i Vol = (V35 Van . (3.12)
From (3.8) we can derive

_ UHAAV
R e il L
op, (A)

From the identity AB = B—Band (3.2)-(3.5),

U AAV ||

N TS =
l Op, (A)

i=2,3. (3.13)

B = Uy1B11Vjh + Ui2B Vi, + U11B12Vy + UrsB3, Vi,

B = U;1BVit + UpBy V2 + UBiaVi, + UisBs Vi,
we observe that

UL ABVyy = UlLUiByy + Ui UrBay — B3V Var,

UM ABVyy = By Vi Voy — U Uy By — U U 3Bs,.
Combining the above equalities and (3.8), we obtain

U U1,By1 = U ABVyy — UM AAV AL By + Bsp VI Vg,

By Vi Vay = U ABVy, — UL, AAV1AL] Bry + UL, Us3Bs,.
Therefore, we observe that

05, MDIUBUL || < 11 4 05, 1 (M) [V3Vas [, (3.14)
05, MDIIV3Vaa |l < 11+ 05, 1 (MU Uss .

So

||U{-'3i]\12|| S ——=-m M
0p, (M) 0p, (M)

= 1 Op,+1(M) =
VHVy|| < ——= 4 B + Oyt (M) | VE V- ,
V51 Vazll o, (B1) ('71 ) (11 + 0,1 (M) V3 Va2 )

(i + 0p2+1(M)||Uf'3U12||)> ,
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and from above inequalities we have that

m

0y (M) — 0, 11 (M)
m

Op, (M) - Up2+1(M)

In a similar manner, we have

He
lUBUR] <

(3.15)

TH
(IVoiVaall <

M2

Op, (M) - 0p2+1(M) ’
12

0p, (M) — 0, .1 (M)

TTH
U302l <

_ (3.16)
V5Vl <

From the inequalities derived in (3.11)-(3.13) and (3.15)-(3.16), we obtain the desired estimates of the theorem. O

Remark 3.1. From (3.9)-(3.10) we observe that, the perturbation bounds for the constrained subspaces of the matrix PALE
are more complicated than those for the matrix A. Also, these bounds are realistic in the sense that, one can find a example
that the true perturbations are close to these perturbation bounds.

The following corollary is the direct conclusion of Theorem 3.2.

Corollary 3.3. Under the notation and the conditions of Theorem 3.2, if furthermore, rank(IVI) = rank(M) = p,, then

distR(M). R(W)) < min |UR,AAVy | m_ ||U1H2A11V11|| 2
Op, A Op, (M) Op, (A) Op, (M)

(3.17)

istR(M™), R(M™)) < mi n_ 1
dist(R(M™), R( ))<m‘"igp2(M)’0pz(M)}

Proof. We only need to set oy,,.1(M) = apzﬂ(lﬁ) =0in(3.9). 0O

Remark 3.2. When considering the LS-TLS problem, we supposeZis the perturbation of A. If rank(’A\) # rank(A), then small
perturbation in A can cause very large errors of the LS-TLS solutions. So we need to enforce the condition rank(A) = rank(A).
The perturbation bounds derived in Theorem 3.2 and Corollary 3.3 can be applied to estimate the perturbations in the LS-TLS
problem and the CTLS problem.

Now we consider the perturbation bounds of the constrained subspaces of

-~

G, = <2> G = <g> (3.18)

where A, A=A+ AA € cph C C=C+ AC € C"*" N = C(I — A'A), N = C(I — AtA). Then similar to the analysis for

G; and 61, we have the following decompositions of G, and 62,

A1q 0 0
c:z=<U1 O) 0 90 9 vi (3.19)
0 U Ci C2 O v
G 0 G

where Uy, Uy, V; are unitary matrices, Aj; = diag(o1(A), 02(A), ..., 0p,(A)), with 01(A) > 02(A) > --- > oy, (A) the
nonzero singular values of A, Ci; = diag(o1(N), ..., 0p;(N)), Co3 = diag(op,+1(N), ..., 01(N)), with oy (N) > --- > o1(N)
the singular values of N,

Ay 0 0
- 0 0 0 0 |
g = <U1 Q) B vH, (3.20)
0 U, En Ci2 /9

G 0 G
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where f]}, ﬁz,Vl are unitary matrices, Zn diag(o4 (A) O'z(A) , Op, (,/4\)) With o1 (1/4\) > 02(74\) >
nonzero singular values ofA Clz = diag(o; (N) , Opg (N)) C23 = dlag(0p3+1(N) ., 01(N)), with o1 (N)
the singular values of N.Fori = 1, partition Uj;, U and Vi Vl as follows,

U1 = (Ui, Un2), Uy = (Uz1, U2), Vi = (V11, V12, V13),

Uy = Ui, U, Uy = Un, Unp), Vi = (Vi, Vi, Vig), (3:21)
p1, My p3, My p1,p3,m
where m; = my — py, My = My — p3,and m = m — p; — ps.
Then

rank(G,) = rank(A) + rank(N), rank(az) = rank(ﬁ) + rank(ﬁ),

A= UnAnVy, N = Updiag(Crz, Co3) (Vi2, Vi3)",

ﬁ = ﬁzdiag@z, 623)6/\]27 V13)H,
and

C=CA'A+UnCppVH,  C=CAA+ Uy CraVhh, (322
CPfy = UnCiaViy,  CPE = UnCiaVi.

Notice that G5 and GQ are 1 x 2 block matrices. Therefore, by using exactly the same procedure, we have the following
results.

Theorem 3.4. Suppose that the matrices G, 62 are defined in (3.18), the decompositions of G, 61 arein (3.19)-(3.21). Suppose
that rank(A) = rank(A) = = D1, and a chosen integer ps satisfying ps < rank(N).If 0p; (N)—0p,41(N) > 2||[AN|| (AN = N—N),

then rank(C P H) = rank(CP H) = ps, and we have the following estimates,

U AAV U 1AAV
IViaVh — T | < min Il 12l _m I 12l n Na _
p, (A) 0py (N) — Opy11 (N)’ Op, (A) 0p;(N) — 0p;11(N) (3.23)
. 13 14
U Uy — U Uy} |l < min = ) =,
“ “ 0ps(N) = 0y 11(N) " 03 (N) — 0 11(N)
where
~ C U 1AAV ~ C U 1AAV
ns = max { 135 ACVys| + ICu Il 13l (vt acvu) + |Can |11l Vs ’
UP1 (A) UPI (A) (3 24)
- Cu [[IUH AAV ~ Cot 11T AAV '
na = max | [ 1U ACTS5 + ICaall1] Vs (15t acvil + Gl 12l .
pl (A) Up1 (A)
Furthermore, when rank(ﬁ) = rank(N) = ps, then
. - . ns N4
dist(R(N), R(N)) < min 2 ,
Gp3(N) UP3(N) (3 25)
~ UH AAV, U AAV '
distRIN). RAVM)) < min U7 12|l 7)3A Il 12|l un
Op, (A) Ops (N) Op, (A) Ops (N)

Remark 3.3. For the rank deficient LSE problem, we suppose that A is the perturbation of A. If rank(ﬁ) # rank(A), even
when the perturbations are very small, the perturbation of the LSE solution will be very large [22,25]. Therefore, we need to
enforce the condition rank(A) = rank(A).
4. Perturbation analysis for the constrained subspaces of 2 x 2 block matrix
Demmel [2], Wei [23] studied the perturbations of the 2 x 2 block matrix
Gr — A B my
3= C D my (4])

ny, ny
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in which only the sub-matrix D can be changed. let

N = cPL

M = P;B, ol

and suppose that

(4.2)

p1 = rank(A), p2 =rank(M) and p3 = rank(N). (4.3)

It can be shown [2,23] that there exist unitary matrices Uy, U,, V; and V5, such that

Al|B
o= (ehp)
Ay 0 0

0 0 O
(U 0 0 0 0
“\o U, 0

0

Bi1 Bn

By O H

0 0 (Vé V‘L) ,
‘ D11 Dr2 2
Dy1 Dap

(4.4)

where
An = diag(o1(A), 02(A), . .., op, (A)),
By = diag(o1(M), 02(M), ..., op, (M),
Ciz = diag(o1(N), 02(N), . ..., ops (N)),
and
> 0(A) = -+ 2 05(A) >0,
o1(M) > 02(M) > -+ > 0, (M) > 0,
> 03(N) > op,(N) > 0,
are respectively the nonzero singular values of A, M and N. Partition Uj;, V; as follows fori = 1, 2:
Ur = (U1, U2, Upz), Uz = (Un1, U2),
D1, P2, My D3, my
Vi = (Vir, Viz, Viz), Vo = (Va1, Vo),
D1, P3, M D2, 1
where m; = my — p; — p2, My = My — p3, Ny = Ny — p; — P3, N = Ny — p,. Then from (4.3)-(4.5), one has that [23]
A=UpAnVy,  Pr=I1—-UnUf,  Pyan, =1— ViV,

> -
> ...
(4.5)

M =PiB=UpBuVf, I—MM=1-VyVii =Vy,VvH
N = CPyuny = UpCpaVyy, I —NNT =1—UpUj| = UpUy,.
So one carries out from (4.3)-(4.6) that
(I = NNT)C = UpCy Vit (4.7)

Let (/;\3 = G3 + AGj be the perturbed version of G3, withA = A + AA,§ =B+ AB,E = C + AC, D=D + AD. We now
enforce the conditions

(4.6)

B(I — M'M) = Uy1B1,Vj,

p1= rank(ﬁ), D2 = rank(1\71) and p; = rank(ﬁ). (4.8)
Then 63 has the following decomposition
- AlB
G=|—=T=
C|D
An 0 0| By B
—~ 0 0 O0|By O ~ (4.9)
(U 0 0 0 0|0 O i 0
0 U,) | = = == Vi)’
Ci Gz 0Dy Dy
C21 0 0 D21 D22

where

An = diag(o1(A), 02 A), . .., 0, (),
By = diag(o1 (M), o3(M), ... ., 0, (M)),
Ci2 = diag(o1(N), 02(N), ..., 0y, (N)),
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and
01(A) > 02(A) > -+ > 0, (A) > 0,
a1(M) > o2(M) > - > 0, (M) > 0,

o1(N) > 0s(N) = -+ > 0, (N) > 0,
are respectively the nonzero singular values of ;\\ M and N. Fori = 1, 2, partition a V, as follows,

U = (Ui1, Uz, Uz), Uy = (UzL,Uzz)

p1, P2, My p3, My (4.10)
Vi = Vi1, Vi2, Vi3), Vo = (Va1, Vo).
D1, P3, D2, >
Then from (4.8)-(4.10), one has that
A=UnAnVy, Py =1-UnUf, Py =1-VyVy,
M =PiB=UpBnVy;, [1—MM=I-VyVj=VyVy, (4.11)
N =CPy; = UnCpaV3y, I —NN'=1—UyUj; = UpUL,.
Therefore,
B(I —M'™M) = UpBp,Vl, (I — NNT)C = Uy, Gy VI, (4.12)

Theorem 4.1. Let G; and 63 and their decompositions be in (4.4) and (4.8), respectively, with A=A+ AA, B=B+ AB,
C=C+ AC,D=D+ AD. Let

D; = (I —NNHD = cA'BY(1 — MTM),

Dy = (I —NNT)[D — CA*B)(I — M™M). (4.13)
If

rank(A) = rank(?\\), rank(M) = rank(1\71),

rank(N) = rank(ﬁ), (4.14)
then

IDy — Dyl < U, ADVay || + [US,CAY ABVy | + [|US,CAT AAATBV, || + (| U3, ACAT BV, |

+1[[US,(D — CA'B) | + ol (D — CATB)Van . (4.15)

where

. U 2
w1 = Mmin =, s
{O'pz(M) GPZ(M) }

(4.16)
. 3 14
Wy =min4§y ——, )
{ Ops (N) Ops (N) }
N1, 12 are defined in Theorem 3.2, and ns, n4 are defined in Theorem 3.4.
Proof. From the formulations of D, and 51 in (4.13),
IDy —Dill < I — NN') (AD — CATAB — C(A" — A")B — ACAB) (1 — MTM)||
+ 1 = NNY(D — CA'BY(MTM — MTM)|| + ||(NNT — NNT)(D — CA'B)(I — MTM)||. (4.17)

Notice that [19]
AT — AT = —ATAAAT +AT(I — AAT) — (I — ATA)AT,
SO

(I — NNHC(A" — ANB(I — MTM) = —(I — NNT)CAT AAATB(I — MTM),
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because (I — AAT)B = M and C(I — A'A) = N. Notice that
[—MM =1—VuVfi = VyVih, [—NN' =1 — Uy Uf, = UpUl,
I WM = 1 — U0 = TV 1= RN' =1 — 0,0, = Oy 01,
Therefore, in (4.17) by applying Corollary 3.3 and Theorem 3.4, we obtain the desired estimates of the theorem. O

Remark 4.1. Obviously, the estimates derived in Theorem 4.1 is sharper than that in Theorem 3.1 of [23]. In Remark 3.2 of
[23] Wei mentioned that Demmel in formula (x), p. 206 of [2] just considered the simplest case that both G3 and G5 can be

transformed into the standard forms as in (4.4) and (4.9) with the same pairs of unitary matrices <U' Uz) and (V' Vz)' In

this case MTM = MM and NN* = NN', and the estimate in Theorem 3.1 of [23] reduces to that obtained in p. 206 of [2]. In

Example 3.1 of [23] it is obvious that the estimates in [2] is not valid in general case.

Theorem 4.2. Under the notation and conditions in Theorem 4.1, furthermore, suppose that the SVD of D, and 51 are respectively
Dy = (Zy, Zy)diag(Ty, To) (Wq, W)", (4.18)

Dy = (Zy, Zy)diag(Ty, To) (Wq, W),

where I; = min{m, — ps3, n; — p2}, Z,Z w, W are unitary matrices, Z1,Z, Wy, Wl are respectively the first p columns of
Z,Z,W,W,

Ty = diag(o1(Dy), ..., 0p(D1)), T, = diag(op1(D1), ..., 01,(D1)),
Ty = diag(o1(Dy), ..., 0p(D1)), T, = diag(op11(D1), ..., 01,(D1)),
01(D1) = -+ =2 0p(D1) > 0py1(Dy) = -+ = 01,(D1)
01(D1) =2 -+ 2 0p(D1) > 0pr1(D1) = -+ 2 0, (Dy)

are the singular values of D, and 51, respectively. If ,(D1) — 0p41(D1) > 2||AD4|, then

R e n@
2.2} — Z,Z7|| < min{ ~ , ~ } ;
0p(D1) — 0p41(D1) 0p(D1) — 0p11(D1) (4.19)
R (D e :
[Wiw] — w,w{| gmin{ ~ , ~ }
0p(D1) — 0p1(D1)  0p(D1) — 0py1(D1)
where
1) _ “~H H A7
n’ = max {||Z; ADiWa |, |Z; ADW |},
IZi' ADI W1l 12, AD Wi} (4.20)

n® = max {1z} AD\Ws |, |IZ§ ADyW4 I} .
Proof/.\ From the pertErbation analysis of the singular values, with the conditions of the theorem, we have o,(D;) —
0p+1(D1) > 0and 6,(D1) — 0p41(D1) > 0. Furthermore, from the formulas in (4.18),

ZIAD\W, = Z0Z, T, — T,WH W,

ZHADIW, = T WHW, — Z1Z,T,.

Therefore,

~ 1 ~ —~
1ZyZ1 | < —— [1Z) AD1W || 4 011 (D) W3 Wi l]
O'p(Dl)

~ 1 ~ —~
Wi wa|| < B0 [I1Z]! ADYW, || + 0p 11 (DD 121 Z 1] .

O'p 1
and
= 1 ~ oD o =
1221l < —=— {IIZf ADyW || + o (121 ADsWa | + 0,1 (D12 221§
O'p(D1) Gp(Dl)
0p(D1)?* — 0ps1(D1)? | s 0p(D1) + 0p41(D1)
27 < ey,
Up(Dl) op(Dl)
o) ||ZZH/Z\1|| < ——1M______In a similar manner, we also have ||’Z\§’Z] | < ———2—— Notice that from Lemma 2.2,

L op(D1)—0op1(D1) " op(D1)—0p41(D1)°
||ZfZl I = ||/Z\2”Zl I, we then obtain the first inequality in (4.19). The second one in (4.19) can be derived similarly. O
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5. Concluding remarks

In this paper, we have deduced the perturbation bounds of some constrained subspaces that relate to the matrices Gy, G,
and Gs. In a separate paper, we will study the perturbation analysis of the LS-TLS, LSE, and CTLS problems using the bounds
obtained in this paper.
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