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1. Introduction

Bill Gragg has contributed significantly to the development of numerical analysis, both through his own work and through
his encouragement of friends and colleagues. His work includes methods for the solution of ordinary differential equations,
structured eigenvalue problems, and rational approximation; see, e.g., [1-6]. In addition, Gragg has discussed the solution
of ill-posed and nonlinear problems; see [7,8]. This paper is concerned with the latter areas.

The discretization of Fredholm integral equations of the first kind with a smooth kernel, and in particular of deconvolution
problems, gives rise to linear systems of equations

Ax=b, AcR™", xecR", beR" (1)

with a matrix, whose singular values “cluster” at the origin. This makes the matrix severely ill-conditioned, possibly singular,
and of ill-determined rank. Linear systems of equations with this kind of matrix are commonly referred to as linear discrete
ill-posed problems. We allow m # nin (1).If the linear system is inconsistent, then we consider (1) a least-squares problem.

I1l-posed problems often arise when one seeks to determine the cause of an observed effect. The latter is represented by
the right-hand side b, which is typically contaminated by a measurement error e € R™. We consider the situation when the
norm of the error

e=|lel, (2)
or an estimate thereof, are available. Here and throughout this paper || - || denotes the Euclidean vector norm.

* Corresponding author.
E-mail addresses: morigi@dm.unibo.it (S. Morigi), reichel@math.kent.edu (L. Reichel), sgallari@dm.unibo.it (F. Sgallari).

0377-0427/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.02.018


http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:morigi@dm.unibo.it
mailto:reichel@math.kent.edu
mailto:sgallari@dm.unibo.it
http://dx.doi.org/10.1016/j.cam.2008.02.018

S. Morigi et al. / Journal of Computational and Applied Mathematics 233 (2010) 1288-1297 1289

Let b € R™ denote the unavailable error-free vector associated with b,ie,

b=b+e, (3)
and consider the linear system of equations with the error-free right-hand
Ax = b. (4)

This system is assumed to be consistent. We would like to compute its solution of minimal Euclidean norm, denoted by X.
Since b is not available, we seek to determine an approximation of ¥ by computing an approximate solution of the available
linear system (1).

Let A" denote the Moore-Penrose pseudo-inverse of A. Then 8 = A'b. However, due to the error e in b and the
ill-conditioning of A, the vector A'h is generally severely contaminated by propagated error and is not a meaningful
approximation of X.

The computation of a useful approximation of X can be accomplished by replacing the linear system of equations (1) by a
nearby system, whose solution is less sensitive to the error e. This replacement is commonly referred to as regularization. The
most popular regularization techniques are Tikhonov regularization and truncated iteration. The latter approach provides
an implicit replacement of A by a matrix of low rank. For instance, consider the application of the minimal residual iterative

method LSQR to the solution of (1) with initial iterate X, = 0. Denote the computed iterates by x;,j = 1,2, 3, ... ,and let
x;, be the first iterate that satisfies the inequality
|A%;, — bl < ne, (5)

where n > 1is a user-chosen constant. Then x;, is our computed approximate solution of (1) determined by truncated
iteration. Truncated iteration can be thought of as replacing the matrix A by a matrix of rank j, and determining the minimal-
norm solution of the so-obtained linear system of equations. This replacement reduces the influence of the “tiny” singular
values of A on the computed solution and allows the computation of a meaningful approximate solution of (1) in the presence
of the error e in b. Under suitable conditions x, — X as ¢ \ 0; see, e.g., [9,10] for proofs and discussions in a Hilbert space
setting.

Linear discrete ill-posed problems (1) are numerically singular due to the clustering of the singular values of A at the
origin. They therefore are numerically underdetermined. Because of this, numerical methods that impose known properties
of the desired solution ¥, such as nonnegativity, on the computed approximate solution of (1), often are able to determine
better approximations of ¥ than numerical methods that do not. This paper describes a new interior-point method for the
solution of

||AX - b” =ne, Xx= 03 (6)
where the inequality ¥ > 0 is understood component-wise. Thus, we are concerned with the computation of nonnegatively
constrained approximate solutions of (1). Large linear discrete ill-posed problems with a nonnegative solution X arise, for
instance, in image restoration. In this application, the entries of ¥ correspond to pixel values, which are nonnegative. The
numerical method of this paper easily can be modified to allow box constraints; however, for ease of discussion, we consider
nonnegativity constraints only.

Our solution scheme is inspired by the interior-point method proposed in [11] for the solution of constrained
minimization problems of the form

min ||Ax — b||, (7)

llx] <4

x>0
where A is an available estimate of ||¥||. Rojas and Steihaug [ 11] apply Tikhonov regularization to determine an approximate
solution of (7). An alternative implementation of this method, based on partial Lanczos bidiagonalization and the application
of certain Gauss-type quadrature rules to compute bounds for certain pertinent functionals, is presented in [12].

Let for the moment A = ||%||. Then the solution of the minimization problem (7) typically is an accurate approximation
of xwhen ¢, defined by (2), is small (compared to ||ﬁ|| ). However, when ¢ is not small, say ¢ = 0.1 ||13||, the computed solution
of (7) may be a poor approximation of X. This is illustrated by Example 5.2 of Section 5. The poor accuracy depends on the
fact that the constraint A in (7) is chosen independently of the norm ¢ of the error e. It is the purpose of the present paper to
develop a variant of the method presented in [11] that delivers fairly accurate approximations of ¥ also when ¢ is not small.

Large-scale linear discrete ill-posed problems with constraints arise in many applications and several different
approaches to their solution have been proposed; see, e.g., Bardsley [13], Bertero and Boccacci [14, Section 6.3], Calvetti
et al. [15], Hanke et al. [16], Kim [17], Morigi et al. [18], Nagy and Strako$ [19], and references therein, in addition to the
references already mentioned. There is presently not one best solution method for all constrained large-scale ill-posed
problems. Interior-point methods have received considerable attention in the optimization literature. We therefore believe
it to be of interest to develop numerical methods for constrained large-scale linear discrete ill-posed problems of the form
(6) based on this approach.

This paper is organized as follows. Section 2 describes an adaption of the interior-point method discussed in [11] to the
solution of (6). Section 3 discusses the approximate solution of the resulting linear systems of equations by partial Lanczos
bidiagonalization, and Section 4 describes our solution method for (6). A few computed examples are presented in Section 5
and concluding remarks can be found in Section 6.
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2. An interior-point method

This section describes a variant of the interior-point method proposed in [11] that is suited for the solution of (6). Define
forx = [£1, &, ..., &]" > 0 the function

1 n
0 = 5 e =i+ C i Y o, (8)
i=1

where ¢(y) is a positive increasing function of ¥y > 0 with ¢(0) = 0. The last term in (8) is commonly referred to as a
barrier function; we will refer to

e(y) -
x— ——lx|* —y ) logk
i=1

as amodified barrier function and to y as a barrier parameter. The purpose of the term %V) [|x]|? is to secure that the function
f, (®) is strictly convex for any fixed y > 0, even when A is not of full rank. In the computed examples, we let p(y) = y;
however, other choices of ¢(y) are also possible.

We determine an approximate solution of the constrained minimization problem (6) by approximately solving a
sequence of unconstrained minimization problems

min f, (x) (9)

for decreasing positive values of the barrier parameter y = y4, k = 0, 1,2, ... , and an initial approximate solution in the
first orthant. Since f, (X) is strictly convex for any y > 0, the minimization problem (9) has a unique solution.

We solve (9) for a given positive value of y by a trust-region-like method. Introduce the quadratic model in h of f,, in a
neighborhood of x > 0,

q,(®+h) =f,(x) +h"Vf,(x) + %hTVny (*)h,
where
Vf, @) = (ATA+ o(y)hx — A'b — yX e,
V2, ®) = ATA + () + yX 2,
X = diag[x] € R™",
c=[1,1,...,11" e R",
with I the identity matrix, and determine an approximate solution of the problem
mingq, (x + h). (10)
heRr"

Trust-region methods for the solution of (9) minimize q, over a disc ||h|| < r, where r is referred to as the trust-region
radius, and then update gq,. We will return to this aspect below.
The minimum z = x 4+ h of (10) satisfies the linear system of equations

ATA+ oI+ yX Dz =Ab +2yX " 'c (11)
with a symmetric positive definite matrix. The solution of this system is discussed in Section 3. Here we just note that we
solve (11) by a particular implementation of the conjugate gradient method and terminate the iterations, e.g., when an
iterate that satisfies the inequality (5) has been determined. Thus, our solution scheme is a truncated iterative method. This
solution method prevents the error ATe in ATh to be amplified and severely contaminate the computed approximate solution.

We remark that truncated iteration implicitly bounds the norm of the computed solution; see also the last paragraph
of Section 3 for further comments. Our solution method for (11) therefore can be interpreted as a trust-region-like method
with an implicitly defined trust-region radius. Truncated iteration has previously been applied in the context of trust-region
computations for well-posed problems by Steihaug [20]. An extension of Steihaug’s method, which exploits the connection
between partial Lanczos tridiagonalization of a symmetric matrix (the Hessian) and the conjugate gradient method, is
presented in [21]. The use of partial Lanczos tridiagonalization makes it possible to evaluate upper and lower bounds for
certain relevant quantities inexpensively during the computations; see [22].

3. Solution of the quadratic model

We discuss the computation of an approximate solution of (11) by partial Lanczos bidiagonalization. Introduce for y > 0
the positive definite diagonal matrix and vector

D, = (eI +yX ' g =2y(@X*+yh e,
and note that

limD, =0, limg, = 0. 12
o 7 y\Ogy (12)
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Let

s _[A . [b
A= e R p= e R, 13
5, . (13

Then (11) are the normal equations associated with the minimization problem
min ||Az — b|. (14)
zeR"

We compute an approximate solution of (14) by partial Lanczos bidiagonalization of the matrix A. The barrier parameter
y > 0 is kept fixed throughout this section. Its selection is discussed in Section 4.
Application of ¢ steps of Lanczos bidiagonalization to the matrix A with initial vector b yields the decompositions

AVy =Up1Coo AU, =V,C],  Uiey = b/||b|, (15)
where V, € R™* and Uy € RMEW*EHD gatisfy
ViVe=1, Ul Uy =1,

and U, € R™™*¢ consists of the first £ columns of U, ;. Throughout this paper e; denotes the jth axis vector. The matrix
C, € R“D*Ein (15) is lower bidiagonal with positive diagonal and subdiagonal entries and C, denotes the £ x ¢ leading
submatrix of C,. We assume that ¢ is sufficiently small so that the decomposition (15) with the stated properties exist, see,
e.g., Bjorck [23, Section 7.6] for more details on Lanczos bidiagonalization. Note that the range of V, is the Krylov subspace

K, (ATA, A"b) = span{A™b, (A"A)A™D, . .., (ATA)"'ATh)}.
The LSQR method is an implementation of the conjugate gradient method applied to the normal equations (11) based on
the decompositions (15); see, e.g., Bjorck [23, Section 7.6] or Paige and Saunders [24] for details on this method. Our solution
method is a minor modification of LSQR; a few auxiliary quantities are computed to facilitate the evaluation of the stopping

criteria (20) below.
The £th iterate determined by the LSQR method applied to (14) with initial approximate solution zy = 0 is of the form

zo=Viy,, Yy €R’, (16)
and satisfies

|Az, — b= min |Az—b|, 2z € X.A"A, A"D). (17)
zeXy (ATA,ATh)

Equivalently, y, satisfies

ICeye — eqllbllll = min [[Cey — eq||b]l]|. (18)
yeRrt
Let y,_, € R‘"! denote the solution of the minimization problem analogous to (18) with ¢ replaced by £ — 1. Because C;
is lower bidiagonal, the vector made up of the first £ — 1 entries of y, is a multiple of y,_1; see, e.g., Bjorck [23, Section
7.6] or Paige and Saunders [24]. This implies that only a few of the most recently generated columns of the matrices Uy 1
and V, have to be stored simultaneously in order to be able to compute the approximate solution z, of (17) from the
already available approximate solution z;_1, and to be able to carry out another Lanczos bidiagonalization step. Hence, the
storage requirement of the method is quite modest and bounded independently of the number of bidiagonalization steps
£. This makes it possible to solve large-scale problems also on fairly small computers. We note that our solution method is
mathematically equivalent to applying the conjugate gradient method to (11).
We are interested in evaluating the norm of the residual error Az, — b for increasing values of ¢ in order to determine
when to stop the iterations; cf. (5) and (6). Note that

Az, — b|*> = ||Az; — b||* + D, z¢ — g, |I*. (19)

Let C; = Qq41R¢ be a QR-factorization, i.e., Qs € RETD*E+D s orthogonal and Ry € R*+D*¢ has a leading ¢ x £ upper
triangular submatrix and vanishing last row. We represent Q,, 1 as a product of £ Givens rotations. The left-hand side of (19)
can be evaluated inexpensively by computing the right-hand side of

IlAz; — b||* = |ICeye — erlIbIl||* = |€]Qes1ec411* 1B

When e?Qgeg is available, the number of arithmetic floating point operations required to determine eIQlHegH is bounded
independently of £. This follows from the representation of Q;, and Q.4 in terms of Givens rotations.

We turn to the evaluation of the rightmost term in (19). Assuming that D, z,_; has been computed, we can evaluate D, z,
in only O (n) arithmetic floating point operations, with the number of operations bounded independently of ¢, by using the
representation (16) and the fact that the leading subvector of y, of size £ — 1 is a multiple of the vector y,_. Thus, for each
increase of ¢ by one, we can compute ||Az; — b|| in @ (n) arithmetic floating point operations, with the number of operations
bounded independently of ¢.
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The dominating computational work for large-scale problems for the method described is the evaluation of matrix-vector
products; each Lanczos bidiagonalization step requires the evaluation of one matrix-vector product with A and one with
AT, Therefore, we would like to keep the number of Lanczos bidiagonalization steps £ small. We seek to achieve this by not
increasing £ when this does not give a reduction in the norm of the residual error ||Az, — b|| or when a residual error of norm
smaller than or equal to ne has been found. Thus, we let £ be the smallest integer, such that

Az, — b|| < ||Az¢+1 — bll or [|Az; — b|| < ne. (20)

The fact that the iterates z, are computed by a minimal residual method (LSQR) applied to (14) and the properties (12) secure
the existence of an iterate that satisfies the right-hand side inequality of (20) for all y > 0 sufficiently small.

The norm of the iterates z, determined by LSQR grows strictly with £; see Steihaug [20] or Hestenes and Stiefel [25]. The
termination criteria (20) are equivalent to requiring that ||z;|| < r for a suitably chosen constant r. Our solution scheme
for (14) and (11), therefore may be considered a trust-region-like method with an implicitly defined trust-region radius.

4. The solution method

We are in a position to discuss the choice of initial approximate solution, the updating of approximate solutions, the
choice of barrier parameter values, and the stopping criteria. First we determine an approximate solution of (1) ignoring the
nonnegativity constraint. Thus, we apply LSQR with initial iterate X, = 0 to (1) and choose the first iterate, x;,, that yields a
residual error of norm at most ne as our approximate solution; cf. (5). Let ¥ denote the orthogonal projection of x;, onto
the first orthant, i.e., we obtain ¥© from x;, by setting all negative entries to zero. If x© satisfies (6), then we are done;
otherwise we proceed as follows.

Let & be a fairly small positive constant in relation to the norm of the desired solution &. Determine the vector x® from
x© by setting all entries smaller than § in ¥© to §. Let

X = diag[x®]. (21)

We consider ¥®) the current approximate solution of (6), and determine a new approximate solution, z,, by application of
LSQR to (14). The purpose of considering %, rather than ¥, the current approximate solution is to obtain an invertible
matrix X and avoid computing with matrices X! of very large norm. Moreover, tiny entries in the available approximate
solution can force the correction to be tiny, which may yield slow convergence of the interior-point method. This can be
seen as follows. The computed approximate solution z, of (14) satisfies (20) but may have negative components. Following
Rojas and Steihaug [11], we define

h=2z —x9 (22)
and compute the new candidate solution

x© = x® 1 gn (23)
of (6). The constant 8 > 0 is chosen so that ¥ > 0; we let

elx®

B = min { 1,0.9995 min ~—— ¢ . (24)
ej-.rzlgo |ejh|
1<j<n

Itis clear that if ¥® has a tiny component, then the correction Sh might be tiny as well, and this may slow down convergence.
We therefore should not choose § > 0 too small.

If the vector x© given by (23) satisfies (6), then we are done; otherwise we repeat the computations described above,
i.e., we set all components of ¥© smaller than § to § in order to obtain the new vector ¥, define the matrix X by (21), and
compute a new candidate solution of (6) by solving (14) in the manner just described.

We determine the initial value of the barrier parameter from

_ 1w

, (25)
n

where
w©@ = ATp — ATAxO| o =0.01.

Rojas and Steihaug [11] present a heuristic justification for (25) in the context of their method. An analogous justification
can be provided in the context of the minimization problem (6). For each subsequent solution of (14), we divide the available
value of y by 10. This has worked well for many examples.

Standard results for trust-region methods show convergence to the solution of (9) for fixed y > 0 if a suitable sequence
of trust-region radii is selected when solving (10), or equivalently, if appropriate many Lanczos bidiagonalization steps ¢ are
used to solve each one of the sequence of linear systems of Eq. (11); see, e.g.,[21,26,20]. Convergence results for interior-point
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methods and, in particular, barrier function methods, as y > 0 decreases, show that these methods are able to determine
a solution of (6). The existence of such a solution follows from Eqs. (2)-(4), ¥ > 0, and > 1; see, e.g., [26] for results on
interior-point and barrier function methods.

These results for trust-region and barrier function methods provide heuristic support for the scheme presented. However,
a full theoretical justification remains to be developed. An analysis has to take into account that we do not want to compute
an exact solution of (6). In fact, the residual error b — Az; for any approximate solution z; generated during the computations
must not be of norm significantly smaller than ne, because this typically would cause severe propagation of the error e into
the computed approximate solution. The contribution of the present paper is to present an algorithm that often is able to
compute a meaningful solution of (6) with a fairly small number of matrix-vector product evaluations. We have achieved
this, e.g., by using the stopping criteria (20) for the iterations, which have the effect that, generally, the computational effort
decreases when ¢ increases. This is illustrated in Example 5.2 below.

Kim [17] recently presented a theoretical study of an iterative method for the solution of linear discrete ill-posed
problems with a constraint. However, the computed examples reported in [17] show the method to require a large number
of matrix-vector product evaluations. Therefore, the development of alternative approaches that require less computational
effort is of interest.

The following algorithm summarizes the computations required by our method. The function max{x, a} for x =
[X1, %2, ..., x,]T € R" and « € R yields an n-vector, whose jth entry is max{x;, o} for1 <j<n

Algorithm 1 (Interior Point Method).
Input: A, b, &, 6, n;
Output: approximate solution x of (1);
Determine the unconstrained solution x;, of (5) by j. steps of LSQR;
x© = max{x;_, 0};
Define y according to (25);
while x© does not satisfy (6) do
x® = max{x©, §};
Compute the solution z, of (17) by application of £ steps of LSQR;

X0 = X0 4 ';Sh, where 8 is computed by (24);

y = y/10;
end while
x:=x0;

5. Computed examples

This section illustrates the performance of our interior-point method. The matrices in all examples are of ill-determined
rank. All computations are carried out in Matlab with about 16 significant decimal digits.

Example 5.1. Consider the Fredholm integral equation of the first kind

6
/ k(t,0)x(o)do = b(t), —6=<71 <6, (26)
—6
discussed in [27]. Its solution, kernel, and right-hand side are given by
T .
x(o) = 1+ cos (50) , if|o| <‘3, 27)
0, otherwise,

k(t,0) =x(t —0),

b(z) = (6 —|t)) (1 + % cos (%r)) + % sin (%|T|) .

We discretize the integral equation (26) with the Matlab code phillips from the program package Regularization Tools in [28].
Discretization by a Galerkin method with 300 orthonormal box functions as test and trial functions yields a symmetric
indefinite matrix A € R309%3% The code also provides a discretization of the solution (27). We consider this discretization

the exact solution & € R3% and compute the right-hand side vector b = Ak of (4). An error vector e with normally distributed
zero-mean random entries is added to b, cf. (3), to give the right-hand side b of (1). The relative error

o lel
bl

is referred to as the noise level. In the present example, the error vector e is scaled to yield the noise level p = 5 - 1073, We
assume that the noise level is known accurately and therefore choose the parameter 1 in (6) close to unity; specifically, we
letn = 1.02.

(28)
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Fig. 1. Example 5.1: (a) Computed solution ¥ (dashed red graph) and solution & of the error-free system (4) (continuous blue graph), (b) blow-up of ¥
(dashed red graph), % (continuous blue graph), and of the approximate solution x©) obtained by projecting the computed unconstrained solution of (5)
onto the first orthant (dash-dotted black graph). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

Table 1

Example 5.2: Relative errors and number of matrix-vector product evaluations required by the method of the present paper for two noise levels.

o Mat.-Vec. prod. IX — x| /[IX]|
1x 107! 22 7.76 x 1072
1x 1072 34 1.43 x 1072
Table 2

Example 5.2: Relative errors and number of matrix-vector product evaluations required by the method described in [12] for two noise levels.

p) Mat.-Vec. prod. X — XI/[1
1x 107! 267 1.07 x 107!
1x 1072 118 2.29 x 1072

We first solve the unconstrained problem and terminate the iterations as soon as the inequality (5) is satisfied. This yields
the vector x;,, which has negative components. Setting these to zero gives x©,

Let § = 1- 1072 and determine the vector ¥® from x©. A correction of x® is obtained by solving (14). This gives a new
vector, which we correct in the manner described until a solution of (6) has been found. We denote this solution by x. It has
relative error ||X — X||/||X|| = 7.67 x 1073, Fig. 1 displays %, ¥©, and . The figure shows & to be a better approximation of ¥
than x©. The computation of % requires the evaluation of 52 matrix-vector products with the matrices Aor AT. 0O

Example 5.2. We modify the above example by increasing the norm of the error e in the right-hand side b. Thus, let A and
b be the same as in Example 5.1, and let the error vector e have normally distributed zero-mean random entries, scaled to
give noise levels 0.1 or 0.01; cf. (28). The right-hand side b of (1) is defined by (3).

Table 1 reports the performance of the method of the present paper. The error in the computed solution decreases with
the noise level p. The table also displays the number of matrix-vector product evaluations with A or AT required to determine
the computed solution. This number is seen to increase when p decreases. This is typical, because the smaller the value of
p, the more the residual error has to be reduced during the solution of (14); compare also to results for the noise level
p =5 x 1073 reported in Example 5.1.

Table 2 shows the performance of the method described in [12]. This method does not assume knowledge of an estimate
of the norm of the error in the right-hand side of (1). Instead, one assumes that an estimate of the norm of the desired
solution is available, i.e., we supply A = ||X| and solve the constrained minimization problem (7). The table shows the
relative error in the computed approximate solutions and the number of matrix-vector product evaluations required for
two noise levels. The method in [12] is seen to determine worse approximations of X and require the evaluation of more
matrix-vector products than the method of the present paper.

This example is typical for large noise levels. A related example, with similar performance, when the nonnegativity
constraint is ignored in (7) is presented in [29, Example 4.1]. We conclude that the methods described in [12,11] should not
be applied when the error e in the right-hand side b is not small. However, we note that the computed examples reported
in[12] show the method discussed there to perform well when the error e is small, and the method is found to require fewer
matrix-vector product evaluations than the method in[11]. O
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Fig. 2. Example 5.3: noise- and blur-free image.

Table 3

Example 5.3: Noise level in the available contaminated images represented by b and shown in Fig. 3(a)-6(a), parameters sigma and band for the function
blur, relative error in the restored images represented by X and shown in Fig. 3(b)- 6(b), the number of matrix-vector product evaluations required for the
restoration, and PSNR-values for the restored images.

p Sigma Band [1x — X||/[1X]| Mat.-Vec. prod. PSNR Figure
1 x 1072 1 3 3.48 x 1072 35 24.71 3
1x 1072 3 3 5.61 x 1072 9 24.65 4
1x 107" 3 3 9.92 x 1072 15 23.59 5
1x 1072 3 5 8.16 x 1072 15 25.18 6

Example 5.3. We are concerned with the restoration of images that have been contaminated by noise and blur. We would
like to determine approximations of the noise- and blur-free image shown in Fig. 2. This image is assumed not to be available.
It is represented by 128 x 128 pixel values, which when ordered lexicographically define the vector X € R128,

The blur in the contaminated images is generated by the blurring operator A € R128°%128* defined by the Matlab function
blur in [28]. This function determines a banded block Toeplitz matrix with banded Toeplitz blocks, which models blurring
by a Gaussian point spread function. The variance of the point spread function is sigma?, where sigma is a user-specified
parameter for the function blur. The parameter band specifies the half-bandwidth for the Toeplitz blocks. The larger the
parameters band and sigma, the more the original image is smeared out by the blurring operator. The vector b = A%
represents the (unavailable) blurred noise-free image. The right-hand side of (1), defined by (3), represents the available
image contaminated by blur and noise. The noise e is normally distributed with zero mean and scaled to correspond to the
different noise levels specified in Table 3.

We let n = 1.001 and § = 1 x 1073, Table 3 displays results achieved for different blurring operators and noise levels.
The corresponding contaminated and restored images are shown in Figs. 3-6. The restored images are represented by the
computed solutions % of (6). In all examples, the norm of the error in the computed solutions X is smaller than the norm of
the error in the approximate solutions ¥© determined by projecting the computed unconstrained solution x;. of (5) onto
the first orthant. The table also shows the Peak Signal-to-Noise Ratio (PSNR) for the computed solutions X defined by

255
PSNR = 20log;yg ——— dB. (29)

llx — x|
This quantity often is used to measure image quality. Large PSNR-values indicate better restoration. O
6. Conclusion
This paper presents an interior-point method designed for problems for which an estimate for the error in the right-hand
side b is available. The computed examples show the method to require a fairly small number of matrix-vector product

evaluations. The storage requirement is modest, just a few vectors in addition to the storage needed to represent A and A”.
The computational effort decreases with increasing noise level.
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Fig. 6. Example 5.3: (a) contaminated image with noise level 1 x 1072 and parameter values band = 5 and sigma = 3 for the function blur, (b) restored
image.
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