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a b s t r a c t

Schröder’s methods of the first and second kind for solving a nonlinear equation f (x) = 0,
originally derived in 1870, are of great importance in the theory and practice of iteration
processes. They were rediscovered several times and expressed in different forms during
the last 130 years. It was proved in the paper of Petković and Herceg (1999) [7] that even
seven families of iteration methods for solving nonlinear equations are mutually equiva-
lent. In this paper we show that these families are also equivalent to another four families
of iteration methods and find that all of them have the origin in Schröder’s generalized
method (of the second kind) presented in 1870. In the continuation we consider Smale’s
open problem from 1994 about possible link between Schröder’s methods of the first and
second kind and state the link in a simple way.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Rediscovering some old root-finding methods is not a rarity in numerical analysis. From time to time, the already known
iteration method for solving nonlinear equations appears, derived most frequently using different ways and presented in
various forms. Our attention is restricted to the rediscovered families of rational iteration methods for solving nonlinear
equations. It is initiated by the results that appeared after the World War II (e.g., [1,2]) and recent papers (e.g., [3–6]).
We consider two families of root-finding methods for solving nonlinear equations. Both the families were derived by

E. Schröder in 1870, but his methods (of the first and second kind, in Schröder’s terminology) have been often forgotten
(or neglected). Indeed, during the last 130 years, these families were rediscovered several times. Our goal is to prove the
equivalence of the rediscovered methods with Schröder’s methods and, in this way, to complete the study on this subject
partially discussed in [7]. In the second part of this paper we are concerned with the link between thementioned Schröder’s
methods of the first and second kind.

2. The chain of equivalence of rational iteration methods

In this paper we will deal with the functional determinant
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∆m(x) = det



f ′(x)
f ′′(x)
2!

f ′′′(x)
3!

. . .
f (m)(x)
m!

f (x) f ′(x)
f ′′(x)
2!

. . .
f m−1(x)
(m− 1)!

0 f (x) f ′(x) . . .
f m−2(x)
(m− 2)!

...
...

...
. . .

...
0 0 0 . . . f ′(x)


, (1)

where f is an analytic function in the neighborhood of a (real or complex) zero α of f . The following recursive relation

∆0(x) = 1, ∆m(x) =
m∑
ν=1

(−1)ν+1
f (x)ν−1f (ν)(x)

ν!
∆m−ν(x), (2)

can be derived, see [8] and Kalantari [9] (see, also, Lemma 2.1 in [6]).
We give first the list of papers which present the families of root-finding methods with arbitrary order of convergence

having the form of rational iteration functions:
Wang’s classWm(x) [8] (1966);
Varjuhin–Kasjanjuk’s class Vm(x) [10] (1969);
Jovanović’s class Jm(x) [11] (1972);
Farmer–Loizou’s class Lm(x) [12] (1975);
Igarashi–Nagasaka’s class Im(x) [13] (1991);
Gerlach’s class Gm(x) [4] (1994);
Ford–Pennline’s class Fm(x) [5] (1996).

The short description of these families can be found in [7].
Particular iteration methods, generated by the above families, were compared using symbolic computation in the

programming package Mathematica. It was found that all families produce the same methods for each m = 2, 3, . . . , 20.
Further comparison was disabled due to very complicated expressions even for the powerful digital computers. However,
this coincidence initiated the following natural question: Are the considered families the new ones or they are mutually
equivalent?
Studying the above question, the following equivalence chain for the listed classes of iteration functions (given in

chronological order) was stated in [7]:

Wm(x) = Vm(x) = Jm(x) = Lm(x) = Im(x) = Gm(x) = Fm(x). (3)

The above chain can be expanded by inserting Kalantari–Kalantari–Nahandi’s class Bm(x) [3], introduced by

Bm(x) = x− f (x)
Dm−2(x)
Dm−1(x)

, (m ≥ 2). (4)

Actually, Dm(x) in (4) is the functional determinant given by (1), that is, Dm(x) ≡ ∆m(x), D0(x) = 1. Then the Basic Family
(in the terminology of the authors of [3]) is defined by

xk+1 = Bm(xk), (k = 0, 1, . . .) (5)

having the order m if the sought zero is simple, see [3]. Kalantari and Gerlach [6] proved the equivalence of the Gerlach
family {Gm(x)}∞m=2 to a family of iteration functions {Bm(x)}

∞

m=2. Since Gm(x) is included in the chain (3), it follows that Bm(x)
is also included.
In Concluding remark of the paper [3] it was written: ‘‘ . . . Although individual members of the family like Newton’s and

Halley’s iteration functions have been known, no closed formula for the general member of the Basic Family, nor their asymptotic
constant had been known previously . . .’’. However, we will show that the Basic Family (4) was derived in [1] about 50 years
before Kalantari et al. [3], using functional determinants too.
In 1946 Hamilton [1] introduced functional iterations using functional determinants. Let α be the zero of an analytic

function f and let x be its approximation. Hamilton determined the powers of errorw = x− α in the form

wr = (−1)r+1
∆m,r(x)
∆m(x)

+ O(wm+1) (r = 1, 2, . . . ,m),

where ∆m(x) is just the determinant given by (1). ∆m,r(x) is the determinant which is obtained from ∆m by replacing the
rth column by the column (f (x) 0 0 · · · 0)T. If r = 1 then obviously∆m,1(x) = f (x)∆m−1(x), ∆0(x) = 1. In this special case
one obtains

w =
∆m,1(x)
∆m(x)

+ O(wm+1),
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which yields

α = x− w = x−
∆m,1(x)
∆m(x)

+ O(wm+1) = x− f (x)
∆m−1(x)
∆m(x)

+ O(wm+1).

Hence Hamilton stated the family of iterative methods

xk+1 = Hm(xk) := xk − f (xk)
∆m−2(xk)
∆m−1(xk)

(= Bm(xk)) (m = 2, 3, . . . ; k = 0, 1, . . .) (6)

having the orderm. Herewe use the symbolH after Hamilton. SinceHm(x) ≡ Bm(x),we conclude that the Basic Family (4) is,
in fact, Hamilton’s family of iteration functions (6). This means that Hamilton’s class Hm(x) also belongs to the equivalence
chain (3).
In 1953 Householder [2] presented the family of iteration methods

xk+1 = Km(xk) := xk + (m− 1)

 (1/f (x))(m−2)(
1/f (x)

)(m−1)

x=xk

(m = 2, 3, . . . ; k = 0, 1, . . .) (7)

of the order m. In what follows we will show that the class Km(x) also belongs to the equivalence chain (3). Before doing
this, we give the following lemma.

Lemma 1. The following relation is valid

∆n(x) =
(−1)nf (x)n+1

n!

(
1
f (x)

)(n)
(n = 1, 2, . . .). (8)

Proof. The proof goes by induction using the recursive relation (2). The relation (8) is true for n = 1 :

∆1(x) = f ′(x) =
(−1)f (x)2

1
(−f ′(x))
f (x)2

=
(−1)f (x)2

1

(
1
f (x)

)(1)
.

Let us assume that the relation (8) is true for n = 1, 2, . . . , k. Then we use the recursive relation (2) and obtain for
n = k+ 1

∆k+1(x) =
k+1∑
r=1

(−1)r+1
f (x)r−1f (r)(x)

r!
∆k+1−r(x)

=

k+1∑
r=1

(−1)r+1
f (x)r−1f (r)(x)

r!
(−1)k+1−r

(k+ 1− r)!
f (x)k+2−r

(
1
f (x)

)(k+1−r)
=
(−1)kf (x)k+1

(k+ 1)!

k+1∑
r=1

(
k+ 1
r

)
f (r)(x)

(
1
f (x)

)(k+1−r)
=
(−1)kf (x)k+1

(k+ 1)!

(
k+1∑
r=0

(
k+ 1
r

)
f (r)(x)

(
1
f (x)

)(k+1−r)
− f (x)

(
1
f (x)

)(k+1))

=
(−1)kf (x)k+1

(k+ 1)!

((
f (x)

(
1
f (x)

))(k+1)
− f (x)

(
1
f (x)

)(k+1))

=
(−1)kf (x)k+1

(k+ 1)!

(
0− f (x)

(
1
f (x)

)(k+1))

=
(−1)k+1f (x)k+2

(k+ 1)!

(
1
f (x)

)(k+1)
.

Therefore, the relation (8) also holds for n = k+ 1 and, according to induction, it is valid for each n = 1, 2, . . .. �

Now we return to Householder’s iteration formula (7) and using (8) we obtain

Km(x) = x+ (m− 1)
(−1)m−2(m− 2)!∆m−2(x)/f (x)m−1

(−1)m−1(m− 1)!∆m−1(x)/f (x)m
= x− f (x)

∆m−2(x)
∆m−1(x)

= Hm(x),

which proves that Householder’s iteration functions Km(x) are the same as Hamilton’s iteration functions Hm(x). Hence,
Householder’s class Km(x) also belongs to the equivalence chain (3).
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We have shown above that the families of iteration functions, developed from 1946 (Hamilton [1]) to 1997 (Kalantari
et al. [3]) aremutually equivalent. However, the priority of the considered family of rational iterations goes back to Schröder
in 1870 yet. In his remarkable paper [14] (see, also, [15]) he proposed two general algorithms with arbitrary order of
convergence, referred to as the methods of the first and second kind.
Schröder [14] defined themethod of the second kind of the orderm by the iteration function

Sm(x) = x−
Rm−2(x)
Rm−1(x)

, (9)

where Rm(x) is calculated from the recursive relation

R0(x) = 1/f (x), Rk(x) =
k∑
r=1

(−1)r−1
f (r)(x)
r!f (x)

Rk−r(x) (k = 1, 2, . . .). (10)

We note that, putting

Rk(x) =
∆k(x)
f (x)k+1

(11)

in (10), the recursive relation (10) reduces to (2), while (9) becomes

Sm(x) = x−
∆m−2(x)/f (x)m−1

∆m−1(x)/f (x)m
= x− f (x)

∆m−2(x)
∆m−1(x)

= Hm(x).

In this way we further extend the equivalence chain by adding Sm(x),

Sm(x) = Hm(x) = Km(x) = Wm(x) = Vm(x) = Jm(x)
= Lm(x) = Im(x) = Gm(x) = Fm(x) = Bm(x). (12)

Therefore, we have found that even eleven rational iteration functions are mutually equivalent, having their origin in
Schröder’s classical method [14] stated in 1870.

Remark 1. According to (1), (2) and (11), the function Rk(x) involved in Schröder’s method of the second kind (9) can be
evaluated by the functional determinant

R0 = 1/f (x), Rk(x) =
1
f (x)
det


B1 B2 B3 . . . Bk
1 B1 B2 . . . Bk−1
0 1 B1 . . . Bk−2
...

...
...

. . .
...

0 0 0 . . . B1

 (k ≥ 1), (13)

where Bk(x) = f (k)(x)/(k!f (x)).

Schröder derived the iteration formula (9) using suitable development to partial fractions and restricting himself to a
rational function whose roots are sought. Today the natural approach to Schröder’s formula (9) would be through König’s
theorem [16].

Theorem 1 (König [16]). Let v(z) = c0(x)+c1(x)(z−x)+c2(x)(z−x)2+· · · be analytic function in the disk |z−x| < ρ centered
at x and v has a single pole at the point ζ belonging to this disk. If |ζ − x| < σρ < ρ , then ck(x)/ck+1(x) = ζ − x+ O(σ k+1).

Let us apply König’s theorem to root-finding methods. If α is the root of the equation f (x) = 0 nearest to x, then the
function

1
f (x− ε)

= R0(x)+ R1(x)ε + R2(x)ε2 + · · ·

has a pole at ε = x− α. If α is unique and simple, then

Rm−2(x)
Rm−1(x)

→ x− α.

Hence the iteration method (9) immediately follows. Since this approach is quite natural, many authors refer the functional
iteration (9) to as König’s method (see, e.g., [17,18]).
Let us introduce the abbreviations

u(x) =
f (x)
f ′(x)

, Cν(x) =
f (ν)(x)
ν!f ′(x)

(ν = 1, 2, . . .),
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and define

P0(x) = 1, Pm(x) = det


1 C2 C3 . . . Cm
u 1 C2 . . . Cm−1
0 u 1 . . . Cm−2
...

...
...

. . .
...

0 0 0 . . . 1

 . (14)

Comparing the determinants (13) and (14) we find Pk(x) = f (x)u(x)kRk(x). According to this we start from (9) and obtain
the following form of the Schröder method of the second kind

Sm(x) = x− u(x)
Pm−2(x)
Pm−1(x)

, (m ≥ 2). (15)

In addition, having in mind (10), we conclude that the following recursive relation is valid

Pm(x) =
m∑
ν=1

(−1)ν+1u(x)ν−1Cν(x)Pm−ν(x), C1(x) = 1, (m ≥ 1). (16)

This relation, together with (15), is convenient to generate an array of iteration methods. For example, suppressing the
argument of functions for brevity, we obtain form = 2, . . . , 7:
Newton’s method of the order 2:

S2 = x− u.

Halley’s method [19] of the order 3:

S3 = x−
u

1− C2u
.

Kiss’ method [20] of the order 4:

S4 = x−
u(1− C2u)

1− 2C2u+ C3u2
.

Kiss’ method [20] of the order 5:

S5 = x−
u(1− 2C2u+ C3u2)

1− 3C2u+ (2C3 + C22 )u2 − C4u3
.

Method of the order 6:

S6 = x−
u
[
1− 3C2u+ (2C3 + C22 )u

2
− C4u3

]
1− 4C2u+ (3C22 + 3C3)u2 − (2C2C3 + 2C4)u3 + C5u4

.

Method of the order 7:

S7 = x−
u
[
1− 4C2u+ (3C22 + 3C3)u

2
− (2C2C3 + 2C4)u3 + C5u4

]
1− 5C2u+ (6C22 + 4C3)u2 − (C

3
2 + 6C2C3 + 3C4)u3 + (C

2
3 + 2C2C4 + 2C5)u4 − C6u5

and so on. Let us note that the methods S4 and S5, often attributed to Kiss [20], can be found in Schröder’s paper [14].

3. The link between the methods of first and second kind

Schröder’smethod of the first kind [14] is often presented in the form

Em(x) = x+
m−1∑
r=1

(−1)r
f (x)r

r!
(f −1)(r)(f (x)), (17)

where f −1 is the inverse of f . The order of convergence of the method (17) is m (m ≥ 2). Let us note that in the Russian
literature the above sequence Em is attributed to Chebyshev (1837 or 1838), see Traub [23, p. 81]. However, some authors
(e.g., [21,22]) ascribes Em to Euler quoting his Opera Omnia, Ser. I, Vol. X, pp. 422–455.
The following formula is useful for the evaluation of the derivative of f −1:

(f −1)(r)(f (x)) =
Zr

(f ′)2r−1
, Zr = f ′Z ′r − (2r − 1)Zr f

′′, (Z1 = 1; r = 2, 3, . . .),

where Zr is a polynomial in f ′, f ′′, . . . , f (r), f (j) ≡ f (j)(x).
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Theorem 2 (Schröder [14]). Any root-finding algorithm Fm of the order m can be presented in the form

Fm(x) = Em(x)+ f (x)mϕm(x), (18)

where ϕm is a function bounded in α which depends on f and its derivatives.

A convenient technique for generating basic sequences Em is based on Traub’s difference–differential relation (see [23,
Lemma 5-3])

Ek+1(x) = Ek(x)−
u(x)
k
E ′(x), E2(x) = x− u(x), (k ≥ 2). (19)

According to (19) we obtain the first few Ek (omitting the argument x):

E3 = E2 − C2u2, (Chebyshev’s method),
E4 = E3 − (2C22 − C3)u

3,

E5 = E4 − (5C32 − 5C2C3 + C4)u
4,

E6 = E5 − (14C42 − 21C
2
2C3 + 6C2C4 + 3C

2
3 − C5)u

5,

E7 = E6 − (42C52 − 84C
3
2C3 + 28C

2
2C4 + 28C2C

2
3 − 7C5C2 − 7C3C4 + C6)u

6.

From the paper [3] we learn that Steven Smale posed a question of finding possible link between the Schröder method
of the second kind Sm(x) given by (9) (or the Basic Family Bm(x)) and the Schröder method of the first kind Em(x) given by
(17). Investigating this problem using experimentations, we came to the conjecture which can be expressed in the following
symbolic form:

Conjecture 1. x− truncationm−1
[
u ∗ Pm−2(u) ∗ Series

[
1/Pm−1(u), {u, 0,m− 1}

]]
= Em.

Here ∗ denotes the multiplication, Series executes the development into the power series at the point u = 0 takingm− 1
members, and truncationm−1 means that the terms in the bracket containing the powers of u higher than m− 1 should be
neglected.
We have started to investigate this conjecture using symbolic computation in the programming packageMathematica 6

in three steps:
1◦. We note that the denominator Pm−1(x) in (15) is a polynomial in u of degreem− 2,

Pm−1(x; u) = 1− φ1u+ φ2u2 + · · · + (−1)m−2φm−2um−2,

where φk = φk(C2, . . . , Ck+1) (k = 1, . . . ,m− 3), φm−2 = Cm−1. Developing the function T (x; u) = 1/Pm−1(x; u) into the
power series (about the point u = 0) and takingm− 1 members, we obtain

T (x; u) = 1+ λ1u+ λ2u2 + · · · + λm−1um−2 + O(um−1),

where λk = λk(C2, . . . , Ck+1).
2◦. We multiply

uPm−2(x; u)T (x; u) = Qm(x; u)

and neglect (in Qm(x; u)) the terms containing the powers of u higher than m − 1 to obtain the truncated Q̃m(x; u) =∑m−1
k=1 hk(x)u

k.

3◦. Since the Schröder sequence is of the form Em(x; u) = x −
∑m−1
k=1 Yk(x)u

k, where Y1 = 1 and Yk depends of
C2, . . . , Ck (k ≥ 2) (see Traub [23, p. 83]), we check the identity

Q̃m(x; u) =
m−1∑
k=1

hk(x)uk =
m−1∑
k=1

Yk(x)uk = Em(x; u) (20)

by comparing the corresponding functional coefficients hk and Yk.
We performed the above procedure and found that the identity (20) holds true form = 3, 4, . . . , 13. For example, taking

m = 6 we find by (16)

P4(x; u) = 1− 3C2u+ (C22 + 2C3)u
2
− C4u3,

P5(x; u) = 1− 4C2u+ (3C22 + 3C3)u
2
− (2C2C3 + 2C4)u3 + C5u4.

In the programming packageMathematica 6 we obtain:
Step 1◦

T (x; u) =
1

P5(x; u)
= 1+ 4C2u+ (13C22 − 3C3)u

2
+ (40C32 − 22C2C3 + 2C4)u

3

+ (121C42 − 110C
2
2C3 + 9C

2
3 + 16C2C4 − C5)u

4
+ O(u5).
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Step 2◦

Q̃6(x; u) = truncation5
[
uP4(x; u)T (x; u)

]
= u+ C2u2 + (2C22 − C3)u

3
+ (5C32 − 5C2C3 + C4)u

4

+ (14C42 − 21C
2
2C3 + 3C

2
3 + 6C2C4 − C5)u

5.

Step 3◦
We check the validity of the equality Q̃6(x; u) = E6(x; u) and conclude that it holds.
Theoretically, it is possible to verify the validity of Conjecture 1 for any specific m. However, the exponentially growing

complexity of the checking procedure for largem kept us in practice to work for largem. For this reason, we were forced to
search for a theoretical proof. This proof is given in what follows.

The sketch of the proof of Conjecture 1
Let

xk+1 = gm(xk) (k = 0, 1, . . .) (21)

define an iteration method of the order m for finding a simple zero α of a given function f (sufficiently many times
differentiable), that is,

gm(xk)− α = O((xk − α)m) = O(εmk ), (22)

where we put εk = xk − α. According to Theorem 2.2 of Traub [23, p. 20], then

gm(α) = α, g ′m(α) = · · · = g
(m−1)
m (α) = 0, g(m)m (α) 6= 0. (23)

Using the relations (23), we find by Taylor’s series

gm(xk) = α +
1
m!
g(m)m (α)εmk + O(ε

m+1
k ), (24)

g ′m(xk) =
1

(m− 1)!
g(m)m (α)εm−1k + O(εmk ). (25)

By (22), (24) and (25) we obtain
1
m
g ′m(xk)(xk − gm(xk)) =

1
m
g ′m(xk)(xk − α − (gm(xk)− α))

=
1
m!
g(m)m (α)εmk −

1
m!
g(m)m (α)ε2m−1k + O(εm+1k ),

wherefrom

1
m
g ′m(xk)(xk − gm(xk)) =

1
m!
g(m)m (α)εmk + O(ε

m+1
k ). (26)

Combining (24) and (26), we get

gm(xk)−
1
m
g ′m(xk)(xk − gm(xk)) = α + O(ε

m+1
k ). (27)

The relation (27) suggests the following iteration method

xk+1 = Ψm+1(xk) := gm(xk)−
1
m
g ′m(xk)(xk − gm(xk)). (28)

According to the relation (27), it follows immediately that the order of convergence of the iteration method (28) is m + 1.
Let us note that the iteration method (28) was previously derived in [11,24].
By virtue of Theorem 2, we have

Ψm+1 = Em+1(x)+ f (x)m+1ϕm+1(x). (29)

Taking g2(x) = E2(x) = x − u(x) and neglecting the term of higher order f (x)m+1ϕm+1(x) in (29), we conclude that the
iteration formula (28) generates the same sequence of iteration methods as the Schröder family of the first kind (17).
Regarding (29) we have particular cases

ϕ3(x) = 0, ϕ4(x) =
f ′′(x)f ′′′(x)
12f ′(x)6

−
f ′′(x)3

4f ′(x)7
,

ϕ5(x) =
23f ′′(x)2f ′′′(x)
48f ′(x)8

−
5f ′′(x)4

8f ′(x)9
−
f ′′′(x)2

48f ′(x)7
−
f ′′(x)f (4)(x)
24f ′(x)7

, etc.

The expressions of ϕm form ≥ 6 become more and more complicated. For this reason and having in mind that the iteration
formula (28) produces not only the basic sequence but also unnecessary ‘‘parasite’’ terms (members of higher order), it is
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clear that the Schröder method of the first kind (17) is considerably simpler and thus preferable in theory and practice in
comparison to the method (28).
Substituting gm(xk) = xk+1 in the second term of (28) and solving the equation

xk+1 = gm(xk)−
1
m
g ′m(xk)(xk − xk+1)

in xk+1, the following iteration method was derived in [11]:

xk+1 = xk −
xk − gm(xk)
1− 1

mg
′
m(xk)

. (30)

This method also has the order m + 1, see [11]. The methods (28) and (30) were referred in [11,24] to as the methods for
accelerating convergence. Indeed, if gm is the method of the orderm, then the methods (28) and (30) are of the orderm+ 1.
According to the equivalence chain (12), we have

Sm(x) = x−
Rm−2(x)
Rm−1(x)

= x− f (x)
∆m−2(x)
∆m−1(x)

= x− u(x)
Pm−2(x)
Pm−1(x)

≡ x−
x− gm−1(x)

1− 1
m−1g

′

m−1(x)
. (31)

Searching for a link between the Schröder methods of the first and second kind, in view of (31) and Theorem 2 it is
sufficient to consider the connection between the iteration formulas (28) and (30) (or (31)). In our analysis we assume that
xk is sufficiently close to the zero α, meaning that |εk| = |xk − α| is sufficiently small. According to (25) we conclude that
|g ′m(xk)| = O(|ε

m−1
k |) is also very small quantity so that we can apply the approximation

1
1− 1

mg
′
m(xk)

≈ 1+
1
m
g ′m(xk)

in (30). In this way we obtain the iteration formula (28). Furthermore, neglecting the higher order member f (x)m+1ϕm+1(x)
in (28) (comparewith (29)),we obtain the Schrödermethod of the first kind Em+1(x). Therefore,wehave shownConjecture 1:
The method of the first kind (17) (or (15)) is obtained from the method of the second kind (31) by the development of the

reciprocal of the denominator of (31) into the power series and constructing a polynomial in u of degree m− 1 by neglecting the
terms containing the powers of u higher than um−1 (or f m−1, according to (29)).
In fact, the construction of Em (given by (17)) from (31) or (15) is performed using the steps 1◦–3◦ presented above.
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