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a b s t r a c t

We derive a sufficient condition by means of which one can recover a scale-limited signal
from the knowledge of a truncated version of it in a stable manner following the canvas
introduced by Donoho and Stark (1989) [4]. The proof follows from simple computations
involving the Zak transform, well-known in solid-state physics. Geometric harmonics
(in the terminology of Coifman and Lafon (2006) [22]) for scale-limited subspaces of
L2(R) are also displayed for several test-cases. Finally, some algorithms are studied for the
treatment of zero-angle problems.
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1. Introduction

1.1. Preliminaries

The problem of signal recovery and extrapolation can be formalized in the following way.

• A signal ismodeled as a function s of the variable t (usually standing for time) belonging to a certain closed linear subspace
V of a (separable) Hilbert space H , in general L2(R).

• Only a fraction r of s is observed: there is a set T (not necessarily an interval) such that for every t ∈ T , r(t) = 0,
expressing the fact that the corresponding information has been lost. If χA stands for the characteristic function of the
set A, one can write r = (1 − χT )s.

• Worse, the observations can be corrupted by a noise ν, which is nonetheless assumed to be small in L2(R). In this last
case, one observes r̃ = r + ν.

One can define two orthogonal projections depending on ‘‘the hole’’ T and V :

P : L2(R) → V , Q : f ∈ L2(R) → fχT .

We clearly cannot assume that P is compact: since it is idempotent, consider B the unit ball of the closed linear subspace V .
If P is a compact operator, then B = P (B) is compact, and this implies that V is finite-dimensional which is too restrictive.
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We now deduce a ‘‘truncation operator’’, the projection T :

T : L2(R) → L2(R), f → (1 − χT )f .

It is assumed that QP is a compact operator (but not necessarily T P ). As s ∈ V ,P s = s, the observations rewrite:

r = T s = T P s = (Id − Q)P s, r̃ = T P s + ν. (1.1)

However, one can observe that, thanks again to the assumption P s = s, one has moreover:

r = T P s = (Id − Q)P s = (Id − QP )s, r̃ = (Id − QP )s + ν. (1.2)

Actually, from this simple calculation, one can make the following important remarks.

• QP is a compact operator onH = L2(R) as long as |T | is finite1; hence its range is not closed and zero is an accumulation
point in its spectrum. Eigenvalues can also display a very sharp decay rate depending on the smoothness of the functions
in V (see e.g. [1,2]).

• the operator Id − QP defined on L2(R) is a Fredholm operator with closed range and finite-dimensional null-space; its
restriction to V coincides with T P = (Id − Q)P .

The Fredholm alternative applied to Id − QP : V → L2(R) ensures that its range, ran(Id − QP ), is closed in L2(R)
and ran(Id − QP ) = ker(Id − PQ)⊥. Moreover, the null-space ker(Id − QP ) is at most of finite dimension and in case
ker(Id − QP ) = {0}, ran(Id − QP ) = L2(R), thus the Eqs. (1.2) are invertible. Hence one switches from the potentially
ill-posed inverse problem of trying to solve directly the equation T P s = r (see e.g. [3]) to the stable one (Id − QP )s = r .
More precisely:

Theorem 1. Let V and T be such that the operator norm ‖QP‖ < 1: in the noise-free case, any s ∈ V can be fully recovered
from r, i.e. ker(Id − QP ) = {0} and (Id − QP )−1r = s. In the noisy case, the stability estimate holds:

‖s − (Id − QP )−1 r̃‖L2(R) ≤
‖ν‖L2(R)

1 − ‖QP‖
. (1.3)

The proof can be found in [4] (Theorem 4) and [5] (Corollary 1). The estimate (1.3) shows that the noise is at most amplified
by a factor (1 − ‖QP‖)−1; it is henceforth a convenient strategy to rely on the Fredholm operator Id − QP to perform
signal recovery/extrapolation. However, for s ∉ V , the solution of (Id − QP )s = r and T P s = r will clearly differ. As
a consequence of Theorem 1, (Id − QP )−1 can be computed (at least, theoretically) via an iterative scheme, the so-called
Neumann series:

(Id − QP )−1
=

∞−
k=0

(QP )k. (1.4)

This is usually called the Gerchberg–Papoulis (GP) algorithm [6,7] or the Alternating Projections (AP) method. The practical
performance can be improved by following the results in e.g. [8–10]. The so-called ‘‘Generalized Gerchberg–Papoulis’’
algorithm studied in [11–14] reduces to the Alternating Projections method with the choice of a given multi-resolution
subspace V = VJ of scale-limited functions, for some scale parameter J ∈ N.

Corollary 1. Under the hypotheses of Theorem 1, let sℓ =
∑ℓ

k=0(QP )kr. The following error estimate holds (linear convergence
of Alternating Projections):

‖s − sℓ‖L2(R) ≤ ‖QP‖
ℓ
‖s − r‖L2(R). (1.5)

Proof. In the present case, the approximation sℓ satisfies the relation s0 = r, sk+1
= r + QP sk. Hence sk+1

− s =

(Id − Q)s + QP sk − s = QP (sk − s); the result (1.5) follows. �

Similar algorithms are alsowidely used in the context of irregular sampling, see for instance [15–17], which addresses the
related issue of reconstructing a function belonging to a subspace V starting from a collection of point-wise observations;
these results can be seen as an extreme example of the large-sieve stability estimates proved in [18].

1 The finiteness hypothesis for themeasure of T can be understood through the simple example of the ‘‘sliding bumps’’: let ϕ be a C∞ function supported
in [−1, 1], and define the sequence ϕn(t) = ϕ(t − n)which is bounded in e.g. any Sobolev space Hs(R). Since it ‘‘escapes at infinity’’, it converges weakly
to zero but clearly not strongly; one cannot hope to have QP compact for general unbounded T .
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1.2. Objectives and outline of the paper

We are partly motivated by the question raised in the paper [11] (bottom of page 229): ‘‘we assume that the observation
of the signal f inside the interval [−T , T ] can uniquely determine the value of f up to [−Π,Π] in the time domain. Given
T , the Π value will depend on the regularity of the signal and the scale parameters J . The mathematical relationship between
these parameters is still open’’. To the best of our knowledge, it is still unanswered; in the present paper, we thus propose
to establish that under a rather simple criterion based on the Hilbert–Schmidt operator norm of the composite of two
orthogonal projections, [4], stable recovery is possible by means of the iterative techniques presented in [13].

This paper is therefore organized as follows. In Section 2, we recall the subspaces of L2(R) which will be useful in the
paper, namely the Paley–Wiener space of band-limited functions and the multi-resolution analysis; technical results about
the composition product of two orthogonal projections in Hilbert space are also recalled, including the characterization
through theminimal canonical angle between subspaces. In Section 3,we derive our Donoho–Stark criterion for stable signal
recovery by computing the Hilbert–Schmidt norm of the product of projections PQ by taking advantage of the structure
of Reproducing Kernel Hilbert spaces; some consequences are obtained by using abstract results from [19]; numerical
simulations following original ideas from [20] are displayed in Section 3.4. In Section 4, we exploit the fact that a Fredholm
operator has a closed range to study iterative algorithms for singular operators (see [2,21]) in the context of signal recovery
with a zero-angle problem (that is, when ‖QP‖ = 1); non-uniqueness is resolved by working with the ‘‘minimum-norm
least squares’’ solution. Final conclusions are drawn in Section 5. Appendices A and B contain auxiliary results about a
technical lemma and the Zak transform.

Signal recovery can be performed through the use of Slepian and Pollak’s Prolate Spheroidal Wave functions (PSWF) but
numerically this yields an unstable ill-posed inversion; several fixes have been proposed to stabilize this approach, like [3]
and the more recent ‘‘geometric harmonics’’ by Coifman and Lafon [22]. Several generalizations are proposed in [23,24].
Extrapolation in discrete wavelet subspaces has been developed in a series of papers [13,14,11,12] by computing ‘‘wavelet
geometric harmonics’’; in [20], early computations show the different behaviorwhen one passes from a band-limited scaling
function to another one with compact support. One idea contained in [4] is to compute explicitly an operator norm in order
to get a sufficient condition ensuring that (1.2) is invertible and the results of [5] can be applied; several developments have
been published recently, see [25,26]. A very original and seemingly unknown paper conducting wavelet extrapolation and
comparing it to theMNLS algorithms of [3] is [27]. The Donoho–Stark criterion is studied in the context of irregular sampling
in [6], see also [17]. Some elements dealing with Compressed Sensing and the product of two orthogonal projections are
given in [28] and also [29], especially Section 5.

2. Band-limited and scale-limited extrapolations

2.1. Paley–Wiener space and Multi-Resolution Analysis (MRA)

In themajority of applications (except for [23,26,24]), V stands for a space of band-limited or scale-limited functions. For
any f ∈ L2(R), we normalize its Fourier–Plancherel transform F : L2(R) → L2(R) as

∀ξ ∈ R, [F f ](ξ) = f̂ (ξ) =

∫
R
f (t) exp(−2iπ tξ)dt.

It follows that a function f is said to be band-limited as soon as there existsω > 0 such that f̂ (ξ) = 0 for any ξ with |ξ | > ω.
We can therefore introduce the Paley–Wiener space:

PWω(R) = {f ∈ L2(R) such that f̂ (ξ) = 0 for |ξ | > ω}.

The Paley–Wiener theorem states that functions belonging to PWω(R) can be extended to thewhole complex plane as entire
functions of exponential type:

f ∈ PWω(R) ⇒ ∀z ∈ C, |f (z)| ≤ sup
t∈R

|f (t)| exp(ω|ℑ(z)|).

As a consequence of analytic continuation theory for functions of one complex variable, the knowledge of such a function
restricted to any arbitrary interval of R allows us to deduce all its remaining values in C. Thus band-limited extrapolation
corresponds to the choice V = PWω(R). Next, we introduce briefly the concept of Multi-Resolution Analysis (MRA)
(see e.g. [30] for details).

Definition 1. A sequence of nested subspaces Vj is called a Multi-Resolution Analysis of L2(R) if: {0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂

V1 ⊂ · · · ⊂ L2(R). Moreover, the following properties must hold:

• for all f ∈ L2(R), ‖PVj f − f ‖L2 → 0 as j → +∞ also, PVj f → 0 as j → −∞;
• if f (t) ∈ Vj, then f (t/2) ∈ Vj−1 and for all k ∈ Z, f (t − 2jk) ∈ Vj;
• there exists a shift-invariant orthonormal base of V0 given by the scaling function φn(t) = φ(t − n) for n ∈ Z.
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In this definition, PVj stands for the orthogonal projector onto the subspace Vj. Intuitively, it asks for the Vj’s to be linear
subspaces of L2(R) with increasing temporal resolution: when j decreases, functions in Vj tend to become constants.
Oppositely, when j increases, they are allowed to oscillate with high instantaneous frequency. The wavelet spaces Wj are
defined as the orthogonal complement of Vj inside Vj+1, which means: for all j ∈ Z, Vj+1 = Vj ⊕Wj. From φn, the base of V0,
one can deduce a base of Vj by simple dilatation,

φj,n(t) =

√

2jφn(2jt) =

√

2jφ(2jt − n). (2.1)

Thus, the orthogonal projection of f onto the scale-limited subspace Vj reads

PVj f =

−
n∈Z

⟨f , φj,n⟩φj,n, ⟨f , φj,n⟩ =

∫
R
f (t)φj,n(t).dt, (2.2)

which is the best approximation of f in Vj in the least-squares sense.

2.2. Composite of two projections in Hilbert space and stable recovery

In all of the following, we shall use the following notation for the norm of any bounded operator T : H → H,H being
a separable Hilbert space,

‖T‖
.
= sup

f∈H

‖Tf ‖H

‖f ‖H

.

Moreover, ker T and ran(T )will stand for its null-space and its range, respectively. Very general results about the structure
of the composition of two orthogonal projections in Hilbert space are given in [31].

Lemma 1. Let H be a Hilbert space and PA, PB be two orthogonal projections onto A, B which are two closed linear subspaces of
H . Then there holds:

‖PAPB‖ = ‖PBPA‖ ≤ 1. (2.3)

Indeed, the proof of the Lemma (put forward in the Appendix) shows a bit more: we actually have that ‖PAPB‖2
=

‖PBPA‖2
= ρ(PAPBPA) = ρ(PBPAPB), the spectral radius.

Lemma 2. Under the hypotheses of Lemma 1, there holds moreover

‖PAPB‖ = sup
f∈B

‖PAf ‖H

‖f ‖H

= sup
f∈A

‖PBf ‖H

‖f ‖H

= ‖PBPA‖. (2.4)

Proof. By definition, the operator norm of PAPB : H → H reads

‖PAPB‖ = sup
f∈H

‖PAPBf ‖H

‖f ‖H

.

Since PB is an orthogonal projection, one can split H = B⊕ B⊥ such that f = PBf + (Id− PB)f and ‖f ‖2
H = ‖PBf ‖2

H +‖(Id−

PB)f ‖2
H . This yields

‖PAPB‖2
= sup

f∈H

‖PAPB(PBf )‖2
H

‖PBf ‖2
H + ‖(Id − PB)f ‖2

H

,

and this expression is clearly maximized for f ∈ B. The same reasoning can be made with PA and Lemma 1 allows us to
conclude. �

At this level, it is of critical importance to be able to estimate as accurately as possible the quantity ‖QP‖which controls
both the invertibility of Id−QP but also the error estimates (1.3) and (1.5). In both cases, the condition ‖QP‖ < 1 expresses
the fact that there exists no function belonging to V whose L2 norm is not affected when being truncated to R \ T because

‖QP‖ = sup
f∈L2(R)

‖QP f ‖L2(R)

‖f ‖L2(R)
= sup

f∈L2(R)

‖QP f ‖L2(R)

‖P f ‖L2(R)
= sup

g∈V

‖Qg‖L2(R)

‖g‖L2(R)
.

For instance, if one considers scale-limited extrapolationwith the so-called discontinuousHaar basis (φ(t) = χ[0,1](t)), then
‖QP‖ = 1 for T = [2−Jk, 2−J(k + 1)], V = VJ and any k ∈ Z, hence stable recovery cannot be performed; see, however,
the computations with this scaling function in [22]. In sharp contrast, if the scaling function φ is chosen to be a band-limited
function (see [13], or the ‘‘prolate spheroidal wavelets’’ in [32]), then ‖QP‖ < 1 because φ belongs to a Paley–Wiener space
(see Theorem 4 in [13]). In [25], the authors proved the following result (see Theorem 2, page 340), which is a consequence
of [4,5].
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Theorem 2 (See [25]). Let V = PWω for a given ω > 0 and T an arbitrary measurable and bounded set of R; then Eq. (1.2) is
always invertible, that is, ‖QPω‖ < 1.

We cannot expect such a strong result in the case V = Vj, a more general subspace belonging to a MRA of L2(R); especially,
as soon as the scaling function φ has compact support and |T | is large enough, it is possible to find non-trivial functions
f ∈ Vj such that ‖Qf ‖ = ‖f ‖.

2.3. Geometric interpretation of the composition of projections

Definition 2. Let A, B be two linear subspaces in a Hilbert space H ; the number 0 ≤ θ(A, B) ≤
π
2 is called the minimal

canonical angle between A and B and satisfies

cos θ(A, B) = sup
a∈A,b∈B

|(a, b)|
‖a‖ ‖b‖

.
= cos(A, B). (2.5)

In particular, cos θ(A, B) = 1 when A ⊂ Bwhich is precisely the situation one wants to absolutely avoid in the context of
an extrapolation problem because it means that, as they stand, the lacunary and possibly noised observations perfectly fit
into the space of functions containing the original signal. In this case, there is no hope for recovery by means of alternating
projections because ran PA ⊂ ran PB implies PAPB = PBPA = PA and ‖PA‖ = 1. Now, we can give a small result concerning
an interpretation of the quantities involved in Lemma 1 as the cosine of linear subspaces in a general setting.

Lemma 3. Under the hypotheses of Lemma 1, there holds ‖PAPB‖2
= cos2(A, B).

Proof. Thanks to (3) in the proof of Lemma1,we have that ‖PAPB‖2
= ρ(PBPAPB) and since PBPAPB is self-adjoint this implies:

ρ(PBPAPB) = ‖PBPAPB‖
= sup

u∈H, ‖u‖≤1
|(PBPAPBu, u)|

= sup
u∈H

(PAPBu, PBu)
‖u‖2

H

= sup
u∈H

(P2
APBu, PBu)
‖u‖2

H

= sup
b∈B

(PAb, PAb)
‖b‖2

H

= sup
b∈B

sup
a∈A

(a, b)2

‖a‖2
H‖b‖2

H

= cos2(A, B).

We used that PA, PB are self-adjoint, idempotent and have unit operator norm. �

The next statement already appears elsewhere, see for instance Theorem 2.1 in [33] or [34,5]. Part of it is proved in the
standard textbook [35], pages 21–22.

Theorem 3 (See [34,33]). Let A, B be two closed linear subspaces of a Hilbert space H ; the following statements are equivalent:

(1) cos(A, B) < 1;
(2) A + B is closed in H , i.e. A + B = A + B and A ∩ B = {0};
(3) there exists C > 0 such that for all a, b ∈ A × B, ‖a‖ + ‖b‖ ≤ C‖a + b‖.

Clearly, statement (1) implies that A ∩ B = {0}: otherwise it would suffice to pick v ∈ A ∩ B, thus PAPBv = v and 1 is an
eigenvalue of PAPB. In the context of band-limited extrapolation, the condition A∩B = {0} has a rather clear meaning: since
A stands for the subspace of functions supported on T and B for the one of band-limited functions, by the Paley–Wiener
theorem, it is equivalent to the statement that no non-zero analytic function can vanish on a positive measure interval of R.

3. Reproducing the kernel Hilbert space approach to estimate ‖QP‖

We start with a classical definition (see [36,37] for more details):
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Definition 3. A (separable) Hilbert spaceH is called a Reproducing kernel Hilbert space (RKHS) of functions R → R if for any
t ∈ R, there exists a continuous function K(., t) ∈ H , called the reproducing kernel, which satisfies

∀t ∈ R, K(., t) ∈ H; ∀(t, f ) ∈ R × H, f (t) = ⟨f , K(., t)⟩ =

∫
K(s, t)f (s).ds.

In other words, the point evaluation f → f (t) is continuous as an application H → R. The Riesz representation theorem
guarantees, for every t ∈ R, that the function K(., t) is unique.

The main point here is that, under mild assumptions and for H = L2(R), the spaces V of interest for band-limited and
scale-limited extrapolation are RKHS.

Theorem 4 (See [38,37]). 1. For any ω ∈ R+, the Paley–Wiener subspace PWω(R) of L2(R) is an RKHS with the Shannon kernel
Kω(s, t) =

 ω
−ω

exp(2iπξ(t − s)).dξ =
sin 2πω(s−t)
π(s−t) .

2. If |φ(t)| ≤ C(1+|t|)−
1
2 −ε for ε > 0, anymulti-resolution subspace Vj is an RKHSwith kernel Kj(s, t) =

∑
n∈Z φj,n(s)φj,n(t) =

2j∑
n∈Z φ(2

js − n)φ(2jt − n).

3.1. Calculation of the Hilbert–Schmidt norm of QPVj : Donoho–Stark criterion

At this point, one observes that for K ∈ L2(R2) continuous and any t ∈ R, f (t) =


R K(s, t)f (s)ds is a Hilbert–Schmidt
operator; hence for band-limited extrapolation,

PωQf (t) = (Qf , Kω(., t)) =

∫
R
Kω(s, t)χT (s)f (s).ds,

and a similar expression holds for scale-limited extrapolation. Thus, on the one hand it is well-known that in this case
‖PωQ‖ ≤ ‖PωQ‖HS = ‖KωχT‖L2(R2), and on the other hand, Lemma 1 ensures that ‖PωQ‖ = ‖QPω‖. So we obtain a
convenient bound for the operator norm which controls the error estimate (1.5). We switch now to MRA subspaces.

Theorem 5. For Vj being some MRA subspace of L2(R) associated with a continuous scaling function φ satisfying ‖φ‖L2(R) = 1

and |φ(t)| ≤ C(1 + |t|)−
1
2 −ε , there holds

‖PVjQ‖
2
HS =

∫
2jT

Z(|φ|2)(0, s).ds, (3.1)

with Z(f )(t, ξ) standing for the Zak transform of the function f (cf. Appendix B).

Proof. Wewant to compute ‖PVjQ‖
2
HS = Ij(T ) =


T


R

∑
n∈Z φj,n(s)φj,n(t)

2 .ds.dt for any j ∈ Z. First, by a simple rescaling
argument, we get that Ij(T ) = I0(2jT ): hencewe concentrate on the task of computing I0(T )which is split into several steps.

(1) First, for any s ∈ R, we define the function ks : t →
∑

n∈Z φ(s − n)φ(t − n) and we do the Fourier transform in the t
variable:

k̂s(ξ) =

−
n∈Z

φ(s − n) exp(−2iπnξ)φ̂(ξ) = φ̂(ξ)Zφ(s,−ξ).

The Plancherel equality allows us to rewrite I0(T ) =

T


R |φ(ξ)|2|Zφ(s,−ξ)|2dξds.

(2) We know that Zφ(s,−ξ) = exp(−2iπξ s)Zφ̂(ξ , s) and that Zφ̂(ξ , s + 1) = Zφ̂(ξ , s) for any s (cf. [39], p.161–163), so
we get

I0(T ) =

∫
T

∫
R

|φ(ξ)|2|Zφ̂(ξ , s)|2dξds =

∫
T

∫ 1

0
|Zφ̂(ξ , s)|2

−
k∈Z

|φ̂(ξ + k)|2  
=1

dξds,

thanks to the properties of the scaling function φ generating an MRA (see [40], p.173). In the case T = [0, 1], this is
already enough to conclude that I0([0, 1]) =


R |φ̂(ξ)|2dξ = ‖φ‖

2
L2(R). More generally, if T = [a, b] with a, b ∈ Z2, then

Ij([a, b]) = 2j
|T |‖φ‖

2
L2(R).

(3) To estimate
 1
0 |Zφ̂(ξ , s)|2dξ , we must use the following fact (cf. [39], p.165):∫ 1

0
Zφ̂(ξ , s)Zφ̂(ξ , s)dξ =

−
k∈Z

(φ̂, φ̂(.− n)) exp(−2iπks) = Z(φ̂ ∗ η)(0, s),
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where η(τ) = φ̂(−τ) = φ̂(τ ) because φ is real-valued. Hence the expression reduces to∫ 1

0
Zφ̂(ξ , s)Zφ̂(ξ , s)dξ = Z(φ̂ ∗ φ̂)(0, s) = Z(|φ|2)(0, s).

It remains to integrate on T to obtain (3.1). �

As an consequence of (3.1), one can recover part of the result established by Donoho and Stark (Lemma 2 in [4]) for
instance in the case T = [0, n], n ∈ N, and φ(t) =

sinπωt
π t , ω = 2j: since s → Z(|φ|2)(0, s) is 1-periodic and thanks to the

inversion formula (cf. (B.3) or [39], p.163), one finds immediately that

‖PωQ‖
2
HS = n|φ|2(0) = |T |‖φ‖

2
L2(R) = |T |‖χ[−

ω
2 ,
ω
2 ]‖

2
L2(R) = ω|T | = 2j

|T |.

The third equality comes from the Plancherel identity.

3.2. Equivalent form of the Hilbert–Schmidt norm ‖QPVj‖HS

The estimate (3.1) is difficult to use when T has many connected components, or even if T is an interval with non-integer
extremities; the following result fixes this issue.

Corollary 2. Under the hypotheses of Theorem 5, there holds:

‖QPVj‖
2

= ‖PVjQ‖
2

≤ ‖PVjQ‖
2
HS =

−
k∈Z

(|φ|
2
∗ χ2jT )(k). (3.2)

Proof. This is a direct consequence of the Poisson summation formula:∫
T
Z(|φ|2)(0, s)ds =

∫
T

−
k∈Z

|φ|2(k) exp(−2iπks)ds

=

∫
T

−
k∈Z

|φ|
2(k − s)ds

=

−
k∈Z

∫
R

|φ|
2(k − s)χT (s)ds

=

−
k∈Z

(|φ|
2
∗ χT )(k). �

In Fig. 1, we display the squares of several standard scaling functions to be used in (3.2).
Similarly to Theorem 10 in [4], one can question the sharpness of the sufficient criterion (3.2) and wonder whether

it is possible to find sets T such that ‖QPVj‖ < 1 and (3.2) is not satisfied. Actually, this is possible for band-limited
extrapolation; however, a crucial ingredient in the proof of Theorem 10 in [4] lies in the fact that the reproducing kernel for
the Paley–Wiener space PWω is the function ‘‘sincω(t − s)’’ which decays when |t − s| grows. This is not the case when Vj is
an MRA subspace in the sense of Definition 1 as one has only the following simple estimate:

|K0(s, t)| ≤

−
n

|φ(s − n)||φ(t − n)| ≤
C

√
1 + |s − t|

,

which is a consequence of the decay assumption on φ and the inequality for any x, y ∈ R : (1 + |x|)(1 + |y|) ≥ 1 + |x − y|.
Indeed, let us consider T = T1∪T2: the core of the proof in [4] is to establish that,with straightforward notation, ⟨Q1f ,PQ2f ⟩
is small when T1 is far from T2 for any f ∈ L2(R):

⟨Q1f ,PV0Q2f ⟩ =

∫
T1

f (t)

−
n∈Z

∫
T2
φ(s − n)f (s).dsφ(t − n)


.dt

=

−
n∈Z

∫
T1
φ(t − n)f (t).dt

∫
T2
φ(s − n)f (s).ds


=

−
n∈Z

[fχT1 ∗ φ].[fχT2 ∗ φ](n)

= ⟨PV0Q1f ,PV0Q2f ⟩.

This quantity is the scalar product in L2(R) of PV0(fχT1) and PV0(fχT2): it does not decrease if T1 and T2 are far from each
other. Hence the condition (3.2) is probably sharper than its analog for band-limited extrapolation studied in [4]. Moreover,
it does not seem that analogs of the ‘‘large sieve’’ estimates studied in [18] allow us to improve (3.2) in the case where T is
the union of many disjoint intervals.
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Fig. 1. Scaling functions |φ|
2: Daubechies 4 (top left), Daubechies 6 (top middle), Coiflet 5 (top right), Symmlet 10 (bottom left), Meyer 3 (bottommiddle)

and sinc (bottom right).

Lemma 4. Let T ⊂ R andV be a closed linear subspace of L2(R) such that the orthogonal projectionsP andQ satisfy ‖QP‖ < 1.
Then, for any x ∈ V = ran(P ), ⟨T x, x⟩ = 0 if and only if x = 0.

Proof. Any x ∈ ran(P ) rewrites x = P f for some f ∈ L2(R), so

⟨T x, x⟩ = ⟨T x,P x⟩ = ⟨PT P f ,P f ⟩ = ⟨T 2P f ,P f ⟩ = ‖T P f ‖2.

Hence, assuming that ‖T P f ‖2
= 0 yields that P f = QP f . But, from the contents of Lemma 2, this implies that for such an

x, one has

1 =
‖QP f ‖
‖P f ‖

= ‖QP‖,

which contradicts the hypothesis. �

Corollary 3. Under the general hypotheses of Theorem 5, as soon as the sufficient condition
∑

k∈Z(|φ|
2
∗ χ2jT )(k) < 1 is met,

the following hold:

(1) ‖QPVj‖ = ‖PVjQ‖ < 1 and cos(ranPVj , ranQ) < 1;
(2) ran(PVj) ∩ ran(Q) = {0} and ran(PVj)⊕ ran(Q) is closed in L2(R);
(3) Vj = ran(PVjT ); especially ran(PVjT ) and ran(T PVj) are closed and the operator T PVj is not compact;
(4) ran(PVj + Q) = ran(PVj)⊕ ran(Q); in particular, the orthogonal projection onto ran(PVj)⊕ ran(Q) reads (Id − Q)(Id −

PVjQ)
−1PVj + (Id − PVj)(Id − QPVj)

−1Q;
(5) ran((Id − PVj)Q) and ran(Q(Id − PVj)) are closed.

Proof. Points (1) and (2) follow from Theorem 3. For (3), the property ‘‘ran(PVj(Id−Q)) closed’’ is a consequence of Lemma
2.4 in [19] as soon as ran(PVj)+ ran(Q) is closed in L2(R); clearly, ran(PVjT ) ⊂ Vj. In order to prove the converse, it suffices
to observe that ker(T PVj) = {0} from the proof of Lemma 4; moreover, ran(T PVj) is closed because ran(PVjT ) is closed.
Theorem II.19 in [35] allows us to conclude that PVjT is onto. Points (4) and (5) also come from Lemma 3.4 of [19]. �
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According to [11] (see also [13]), ran(PVjT ) is precisely the space Uj written in Theorem 1 in the context of scale-limited
extrapolation. Taking into account for the non-zero angle hypothesis allows us to refine their result by showing thatUj = Vj
as long as ‖QPVj‖ < 1 for general scaling functions inside an orthogonal wavelet framework. In these former works, the
property Uj = Vj was proved only for band-limited scaling functions.

Remark 1. Here, we let P be any orthogonal projection L2(R) → ran(P ): from Corollary 3.2 in [19], it comes that both
conditions ‖PQ‖ < 1 and ‖(Id − P )T ‖ < 1 imply that L2(R) = ran(P ) ⊕ ran(Q) because the second one ensures
that (Id − (Id − P )(Id − Q)) is invertible. Unfortunately we are not able to present a situation for which ‖PVjQ‖ < 1 and
‖(Id−PVj)T ‖ < 1 hold for Vj anMRA subspace and ameasurable set T . However, it is rather easy to visualize theirmeaning:
the first condition expresses the fact that, apart from zero, no function supported on T belongs to Vj, and the second, that no
function supported on R \ T (that is, the measurements in (1.1)) belongs to the direct sum of wavelet subspaces ⊕ℓ>j Wℓ;
functions belonging to ⊕ℓ>j Wℓ generally have a certain number of vanishing moments, [40].

3.3. Relation with the Minimum-Norm (MN) solution

Point (2) in Corollary 3 has an interesting consequence; namely, considering the so-calledMinimum-Norm (MN) solution
as proposed in Theorem1 in [12], it is shown that the iteration limit s̄ of (1.4) admits the followingminimization formulation:

‖s̄‖L2(R) = inf
f∈V

{‖f ‖L2(R) such that T f = T s for s ∈ V }. (3.3)

This is one of the ‘‘best approximation problems’’ considered in [41], Sections 5 and 6. First, as soon as the invertibility
condition ‖QP‖ < 1 is met (and in particular, for any band-limited extrapolation problem, see [25]), this formulation is
not relevant. In the special case where one deals with a ‘‘zero-angle’’ problem for which cos(ran(P ), ran(Q)) = 1, the
dimension of ker(Id − QP ) is strictly positive and one must restrict Eq. (1.2) to r ∈ ran(Id − QP ) = ker(Id − PQ)⊥ thus
satisfying a finite number of orthogonality conditions; see especially the Comment and Corollary 2 in [5] (page 698).

Let us begin by recalling a result from e.g. [42]:

Lemma 5. Let H be a Hilbert space and M1,M2, . . . ,MK be a family of closed linear subspaces of H ; if M .
= ∩

K
i=1 Mi denotes

the (closed) intersection of the Mi’s and PMi is the orthogonal projection on Mi, then for all x ∈ H , there holds:

lim
n→+∞

‖(PMK ◦ · · · ◦ PM2 ◦ PM1)
n x − PM x‖ = 0. (3.4)

Since Q is an orthogonal projection and thanks to the assumption r ∈ ran(Id − QP ), we have that r = s − QP s and the
corresponding s ∈ V decomposes into s = (Id − Q)s + Qs = r + QP s, inside which one can plug again the decomposition
s = r + QP s in order to obtain s = r + QP (r + QP s) = r + QP r + (QP )2s. Denoting s(k) the kth iterate of (1.4), one gets

s =

k−
i=0

(QP )ir + (QP )k+1s ⇔ s(k) = s − (QP )k+1s.

The orthogonal projections Q and P satisfy the hypotheses of Lemma 5, hence we can deduce that s̄ = limk→+∞ s(k) =

s − Pran(P )∩ran(Q)(s)where Pran(P )∩ran(Q) stands for the orthogonal projection onto the intersection of V and the subspace of
functions supported in T . At this level, one observes that the condition ‖QP‖ < 1 implies that ran(P ) ∩ ran(Q) = {0}, so
limk→+∞ s(k) = s. For a zero-angle extrapolation problem, this property does not hold and the limit s̄ can be characterized
by the minimal property of any orthogonal projection:

‖s̄‖L2(R) = ‖s − Pran(P )∩ran(Q)(s)‖L2(R) = inf
f∈V∩ran(Q)

‖s − f ‖L2(R).

As a consequence of both the preceding equality and the orthogonal decomposition L2(R) = ran(Q) ⊕ ran(Q)⊥, picking
any g ∈ V such that (Id − Q)g = (Id − Q)s yields s − g = Q(s − g) ∈ V ∩ ran(Q) which leads to ‖s̄‖L2(R) =

infg∈V ‖s − (s − g)‖L2(R) = infg∈V ‖g‖L2(R).
This MN solution emerging from (1.4) is unstable in the very general situation considered in [5]. Here we limit ourselves

to a somewhat simpler case for which QP is compact which yields that Id− QP is a Fredholm operator with closed range.
Hence a slight perturbation r+ν of r ∈ ran(Id−QP )will still belong to the range of Id−QP if ν is small enough. However,
this notion of solution does not allow us to treat problems like (1.2) for which ‖QP‖ = 1 and r admits an orthogonal
projection onto ker(Id − PQ); they are in the next section.

3.4. Singular Value Decomposition (SVD) and eigenfunctions of QPVjQ

With the previous notations, let us now look at A = QP as a bounded operator defined on the Hilbert space H = L2(R)
which is assumed to be compact and non-self-adjoint. It is easy to see that ran(P )⊥ = ran(Id−P ) ⊂ ker(QP ). Thus, if we
define

A = QP : V = ran(P ) → ran(Q), A∗
= PQ : ran(Q) → V = ran(P ), (3.5)
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the standard SVD theory for compact operators in Hilbert spaces gives

A∗Aψk = PQPψk = λkψk, AA∗ϕk = QPQϕk = λkϕk, λk ≥ 0, k ∈ N, (3.6)

where A∗
= PQ is the adjoint of A. Moreover,

Aψk = QPψk =


λkϕk, A∗ϕk = PQϕk =


λkψk.

Clearly, definition (3.5) implies that A∗A = PQP : V → V ,AA∗
: ran(Q) → ran(Q) are self-adjoint and therefore:

• (ψk)k∈Z is an orthonormal base of ran(PQP ) = ran(PQ),
• (ϕk)k∈Z is an orthonormal base of ran(QPQ) = ran(QP ).

The singular values λk are smaller than 1 since A is a composition of 2 orthogonal projections; there also holds
‖A‖ =

√
λ0. In the context of standard band-limited extrapolation, the collection of functions (ϕk, ψk), normalized2 as

‖ψk‖L2(R) = 1 is called the Prolate Spheroidal Wave functions (PSWF). They have been studied in detail by Slepian, Landau
and Pollak; see [44,22], the book [45] and the surveys [29,46] for more on this topic. The functionψ0 is an extremal function
of the type studied in Section 4 of [41].

Lemma 6. If QP is a compact operator, then its singular functions (3.6) satisfy

∀k ∈ N,
Pϕk
√
λk

= ψk. (3.7)

Proof. From QPQϕk = λkϕk, we get from (3.6) that

λkPϕk = PQ(PQϕk) = PQP (

λkϕk) = λk


λkϕk. �

Here, we try to compute numerically the analogs of the functions ϕk when P is assumed to be the orthogonal projection
onto an MRA subspace with a given index j ∈ Z for various choices of the scaling function. In Figs. 2 and 3, we display
the first 10 functions satisfying QPVjQϕk = λkϕk splitting between the even and odd ones. One can easily see that the
shape of the scaling function appears very clearly in these eigenfunctions which are quite different from one another
according to the choice of the scaling function: see in particular the ones emerging from the Daubechies 4 compared to
the Symmlet 10. The eigenfunctions coming out of the Coiflet 5 scaling functions have also a particular shape. The behavior
of the eigenvalues λk is presented for each choice of the scaling function; however, even if we displayed only the 10 first
eigenfunctions (corresponding to eigenvalues very close to 1), we chose to show the whole set of numerical eigenfunctions.
Possible inaccuracies may be present because the linear system is ill-conditioned and difficult to diagonalize efficiently.
The matrices were 256 × 256 or 512 × 512 and the scale index j = 4 or j = 5; the discrete wavelet transform involves
a periodization of the signal. These numerical results follow early computations displayed in [20]. Classical PSWF were
computed using the algorithms proposed in [43] with 512 points and the Slepian parameter c = 13.

4. The case ‖QP‖ = 1: Minimum-Norm Least Squares (MNLS) solution

In sharp contrast with band-limited extrapolation for which the property ‖QP‖ < 1 generally holds (which is another
form of the analytic extension principle for functions belonging to the Paley–Wiener space PWω), it is easy to see that for
MRA subspaces, the ‘‘bad case’’ ‖QPVj‖ = 1 can happen. Indeed, pick T = [−a, a] and a scaling function φj,n of compact
support: clearly ‖QPVj‖ = 1 for 2a ≫ |supp(φj,0)|. Throughout this section, we shall write P instead of PVj for simplicity.

4.1. Least squares solution and normal equations

In the context of band-limited extrapolation, MNLS solutions have been studied numerically in [3] who tackled directly
Eqs. (1.1).

Definition 4. Let F : X → Y be a bounded linear operator with X, Y two Hilbert spaces.
(1) x̄ ∈ X is called a least squares solution of Fx = y if

‖F x̄ − y‖Y = inf
z∈X

{‖Fz − y‖Y }.

(2) xĎ ∈ X is called the ‘‘best approximate solution’’ if it is a least squares solution with minimum norm, that is

‖xĎ‖X = inf
z∈X

{‖z‖X with z is a least squares solution of Fx = y}.

2 Numerically, the normalization is generally taken as ‖ϕk‖L2(R) = 1 (see e.g. [43]), which implies ‖ψk‖L2(R) → ∞ as k → ∞ as a consequence of
Lemma 6.
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Fig. 2. Eigenvalues and eigenfunctions for QPVjQ with Daubechies 4 (top) and Coiflet 5 (bottom) scaling functions.

It is well-known that x is a least squares solutions if and only if it satisfies the so-called ‘‘normal’’ equation F∗Fx = F∗y;
in infinite dimension, this modified problem may have no solution. However, in the case where ran(F) is closed, the set of
all least squares solutions is a nonempty convex set which therefore admits a unique element of minimum norm. Hence
in this context, it makes sense to speak about ‘‘the best approximate solution’’ xĎ of Fx = y which is also referred to as its
Minimum-Norm Least Squares (MNLS) solution.
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Fig. 3. Eigenvalues and eigenfunctions for QPVjQ with Symmlet 10 (top) and sin c (bottom) scaling functions.

Dealing with operators with a closed range brings many advantages when it comes to solving equations like (1.1);
however, except in the case where ran(T P ) is finite dimensional (thus closed, which is an assumption in [3]), the operator
A = T P is compact and its range is generally not closed (see [2] for more details). Thus it is forbidden to speak about the
MNLS of (1.1) without supplementary assumptions. It is therefore interesting to once again switch to the formulation (1.2)
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involving a Fredholm operator, which may be singular in the sense that ker(Id − QP ) ≠ {0}, but for which ran(Id − QP )
is always closed.

The normal equations for (1.2) read
(Id − PQ)(Id − QP )s = (Id − [PQ + QP − PQP  

PQ◦(Id−P )+Q◦P

])s = (Id − PQ)r. (4.1)

Clearly, since ker(Id − PQ)⊥ = ran(Id − QP ), the right-hand side satisfies
(Id − PQ)r = (Id − PQ)(r − Pker(Id−PQ)r) = (Id − PQ)Pran(Id−QP )r.

Because of the hypothesis ‖QP‖ = ‖PQ‖ = 1, the formal Neumann series for inverting (4.1) may not converge since for
any x ∈ ran(P ), [PQ + QP − PQP ]x = QP x and for x′

∈ ran(P )⊥, [PQ + QP − PQP ]x′
= PQx′. However, this

formal series is equivalent to the following iterative scheme:
s0 = (Id − PQ)r, sk+1

= (Id − PQ)r + [PQ + QP − PQP ]sk,
which is a special case of the following ‘‘steepest descent’’ algorithm:

sk+1
= sk − αk(Id − PQ)[(Id − QP )sk − r], (4.2)

with the particular choice αk ≡ 1 and s0 = (Id − PQ)r . By its construction, all the iterates of the algorithm (4.2) belong to
ran(Id− QP )∗ as soon as the initial value s0 does; this fact is used in [3] in order to reduce the complexity for band-limited
extrapolation when |T | is large. Indeed, one sees that starting from z0 = r and then defining an auxiliary sequence,

zk+1
= zk − αk[(Id − QP )(Id − PQ)zk − r],

one recovers any of the sk values in (4.2) for some k ∈ N by computing sk = (Id − PQ)zk; this allows us to iterate inside
ran(Id − QP ) only. Related references are [9,17].

4.2. Gradient algorithms for singular operators with closed range

General convergence results of gradient algorithms for singular operators with closed range in Hilbert spaces have been
proved in [21,47]: we are about to adapt them now to our particular extrapolation/recovery problem.

Theorem 6. Consider the Fredholm operator Id − QP : ran(P ) → ran(T ) with ‖QP‖ = 1: the sequence (sk)k∈N generated
by (4.2) with

qk = (Id − PQ)[(Id − QP )sk − r], αk =
‖qk‖2

‖(Id − QP )qk‖2
,

converges in L2(R) toward a least squares solution s̄ which depends on the initial value:

s̄ = sĎ + Pker(Id−QP )s0,

where Pker(Id−QP ) stands for the orthogonal projection onto the kernel of Id − QP . In the case where the initial value satisfies

s0 ∈ ran(Id − PQ) = ker(Id − QP )⊥,

the sequence (sk)k∈N converges toward the MNLS sĎ of the equation (Id − QP )s = r.

The conclusion of Theorem 6 still holds for the simplified version of the algorithm obtained by fixing a constant value of αk
as long as it is smaller than 2/‖Id−QP‖; clearly, ‖Id−QP‖ = ‖(Id−Q)P + (Id−P )‖ ≤ ‖(Id−Q)P‖+‖Id−P‖ = 2.
Hence the case αk ≡ 1 is admissible and the formal Neumann series coming from the normal equation is convergent:

sĎ =

−
k≥0

[PQ + QP − PQP ]
k (Id − PQ)r.

Remark 2. (1) The ‘‘closed range hypothesis’’ is crucial here: for some results valid in the case where it is bypassed, see
e.g. [48]. They allow us to invert equations involving a compact operator but the obtained solution is unstable.

(2) The expression of Pker(Id−QP ) can be mademore explicit by observing that ker(Id−QP ) = ran(P )∩ ran(Q) ≠ {0} (see
Lemma 2.2 in [19]). Since these ranges are closed,

ran(Id − PQ) = ker(Id − QP )⊥

= (ran(P ) ∩ ran(Q))⊥ ⊃ ran(P )⊥ + ran(Q)⊥

= (ran(Id − P )⊥ ∩ ran(Id − Q)⊥)⊥

= ran(Id − P )+ ran(Id − Q)

= ker(P )+ ker(Q).
According to Corollary 3, the condition ‖QP‖ < 1 ensures that ran(P )∩ ran(Q) = {0} = (ker(P )+ ker(Q))⊥, but

here it does not hold, thus ran(Id − PQ) ≠ L2(R).
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(3) The MNLS sĎ also belongs to ker(Id − QP )⊥ = ker(P )+ ker(Q), which contains all the iterates sk as soon as
s0 ∈ ker(Id − QP )⊥.

(4) Stability of the MNLS sĎ in the presence of additive noise ν(t) in the observations is ensured by the boundedness of the
so-called Moore–Penrose generalized inverse of (4.1); see e.g. [3,48,47,19,2] for details.

(5) The issue of the continuous dependence of sĎ with respect to themeasure of T or the scale index j is delicate, as explained
in Section 4 of [49].

The convergence of the steepest descent algorithm can be slow despite it already being faster than the standard
Gerchberg–Papoulis iterates. Hence it makes sense to speed it up by setting up a Conjugate Gradient (CG) routine as
follows: let s0 ∈ ran(P ) and compute v0 = p0 = (Id − PQ)((Id − QP )s0 − r). If p0 ≠ 0, then s1 = s0 − α0p0 with
α0 = ‖v0‖2/‖(Id − QP )v0‖2 like in the former algorithm. Now, for k ∈ N,

αk−1 =
⟨vk−1, pk−1

⟩

‖(Id − QP )pk−1‖2
, vk = vk−1

− αk−1(Id − PQ)(Id − QP )pk−1, (4.3)

and as long as vk ≠ 0 of ‖vk‖ ≥ ε with ε a small positive number, compute

βk−1 =
⟨vk, (Id − PQ)(Id − QP )pk−1

⟩

‖(Id − QP )pk−1‖2
, pk = vk − βk−1pk−1. (4.4)

When ‖vk‖ < ε, it remains to set sk = s0 −
∑k

ℓ=0 αℓp
ℓ. Along with the computation of the iterates, it is interesting to

compute the following function:
g(sk) = ⟨vk, sk − sĎ⟩, sĎthe MNLS of (1.2),

as it satisfies the following relation (see [47]):
g(sk) = g(sk−1)− αk−1‖v

k−1
‖
2.

At last, we define the two positive numbers 0 < m ≤ M as the spectral bounds of the operator R which is defined as the
restriction of (Id − PQ)(Id − QP ) to ran(Id − PQ):

∀x ∈ ran(Id − PQ), m‖x‖ ≤ ‖Rx‖ ≤ M‖x‖.
We can adapt the convergence result of [47] to our context as follows.

Theorem 7. Let s0 ∈ ran(P ), the iterates (4.3)–(4.4) generate a sequence (sk)k∈N which converges monotonically toward a least
squares solution of (1.2) s̄ = sĎ + Pker(Id−QP )s0. In the case where s0 ∈ ran(Id − PQ) = ker(P )+ ker(Q), one has the decay
estimate:

‖sk − sĎ‖ ≤


g(s0)
m


M − m
M + m

k

.

In general, one gives an initial value s0 ∈ ran(T ); for scale-limited extrapolation, P = PVj and ker(PVj) = ran(Id − PVj) =

⊕ℓ>j Wℓ, the wavelet subspaces satisfying Vj+1 = Vj ⊕ Wj and containing functions with vanishing moments. The simplest
choice is of course s0 = 0.

Corollary 4. Let Vj be an MRA subspace and T such that ‖QPVj‖ = 1: the MNLS solution sĎ of (1.2) satisfies

sĎ ∈ ran(Id − PVjQ) = ⊕ℓ>j Wℓ + ran(T ).

In particular, it can happen that sĎ ∉ Vj and T PVjs
Ď

= (Id − Q)PVjs
Ď

≠ (Id − QPVj)s
Ď.

Proof. This is mainly a consequence of Point (2) in Remark 2. �

In [47], the convergence of the algorithm (4.3)–(4.4) in the case where one deals with a bounded singular operator with
non-closed range is also established under some supplementary hypotheses on r and s0. This is the situation arising when
trying to compute the least squares solution of the Eqs. (1.1) in infinite dimension: this has been done numerically (in finite
dimension) for band-limited extrapolation in [3] and for scale-limited extrapolation in [12].

5. Conclusion

We presented in this paper a rather simple and explicit criterion allowing us to estimate the operator norm ‖QP‖

which controls the stability of the extrapolation process in the particular case where P is the orthogonal projector onto
one of the nested subspaces of an MRA. The choice of the scaling function does not appear in the computation, and it is not
required that the ‘‘hole’’ T should be an interval ofR. Geometric harmonics for several choices of the scaling functions are also
displayed together with their corresponding eigenvalues which show a sharp decay from nearly 1 to zero beyond a certain
level. These results allow us to give a precise answer to a question raised in [11] and also [50] in the context of a peculiar
application. Concerning the extension of these Donoho–Stark type criteria, the cases of finite-dimensional problems and
sparse Compressed Sensing situations have been treated in [29,28]. More elaborate integral transforms are studied in [26]
and PSWF for the fractional Fourier transform are computed in [23,24] to which a similar approach might be applied.
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Appendix A. Proof of Lemma 1

Clearly, ‖PAPB‖ ≤ ‖PA‖ ‖PB‖ ≤ 1; we split the proof into several steps:

(1) For any bounded operator T onH , let ρ(T ) stand for the spectral radius of T , i.e. ρ(T ) = sup |λ| for the λ such that T −λI
is not invertible. Then ρ(T ) = lim sup ‖T n

‖
1/n when n → +∞. This yields in particular ρ(T ) ≤ ‖T‖.

(2) For T self-adjoint on H , one has |Tf |2 = (Tf , Tf ) = (f , T 2f ) ≤ |f ||T 2f | ≤ |f |2‖T 2
‖, hence ‖T‖ ≤ ‖T 2

‖
1/2, and

‖T‖ ≤ ‖T n
‖
1/n for n = 2p, which implies ‖T‖ ≤ ρ(T ) and by the preceding step, ‖T‖ = ρ(T ).

(3) If T ,U are self-adjoint and invertible, ‖TU‖ = ρ(UTTU)1/2, ‖UT‖ = ρ(TUUT )1/2. But TUUT = TU(UTTU)(TU)−1, so TUUT
and UTTU are similar and have the same spectrum (thus the same spectral radius). This implies that ‖TU‖ = ‖UT‖.

(4) The preceding step is still valid when T ,U are self-adjoint and limits of self-adjoint and invertible operators; this is the
case for any two orthogonal projections PA and PB which can be approximated by themselves plus εId with ε > 0 a small
real number and Id the identity mapping. �

Appendix B. The Zak transform: definition and properties

In this appendix section, we limit ourselves to recalling some basic facts about the Zak transform originally introduced
in the context of solid-state physics. Following [39], we have:

Definition 5. Let f be a continuous function decaying at least like C(1+|t|)−1−ε with ε > 0 as |t| → +∞. The Zak transform
of f is defined as

∀t, ξ ∈ R2, Zf (t, ξ) =

−
k∈Z

f (t + k) exp(−2iπkξ). (B.1)

It is clear that Zf is periodic:

Zf (t, ξ + 1) = Zf (t, ξ), Zf (t + 1, ξ) = exp(2π iξ)Zf (t, ξ).

Hence Z maps a function defined on R to another which is fully determined by its restriction to the torus T = [0, 1]2 in the
time/frequency plane. Let f̂ (ξ) =


R f (t) exp(−2iπ tξ)dt be the Fourier transform of f ∈ L2(R), there holds: ∀t, ξ ,

Zf (t, ξ) = exp(2iπ tξ)Zf̂ (−ξ, t), Zf̂ (ξ , t) = exp(2iπ tξ)Zf̂ (t,−ξ). (B.2)

Moreover, there are inversion formulas

f (t) =

∫ 1

0
Zf (t, ξ)dξ, f̂ (ξ) =

∫ 1

0
exp(−2iπξ t)Zf (t, ξ)dt. (B.3)

The Zak transform is an isometry from L2(R) onto L2(T) because for any f , g ,∫
T

Zf (t, ξ)Zg(t, ξ)dt.dξ =

∫
R
f (t)ḡ(t).dt.
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