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optimization problems with vector and set optimization. We prove existence results and
necessary and sufficient conditions by using limit sets.
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1. Introduction and notation

Set-valued optimization problems have been investigated during the last decade usually with the criterion of vector
optimization (see for example [1–4]). In the last years new criteria have been given. These criteria are based on set-relations
defined on the space of subsets (see [5]). They are independent of the vector case and are known as set optimization criteria.
Recently they have been of increasing interest [5–8]. With vector optimization the character of the set image for each
element x is not considered. In this sense set optimization constitutes a more natural criterion for studying set-valued
optimization problems and finding a solution.

However in a lot of cases the set of solutions is empty with both criteria: vector and set optimization. This is the reason
for introducing approximately efficient solutions. Concepts of approximate solutions have been introduced and applied by
several authors in the literature (see for example [9–11]). In this work we define some notions of approximate solution or
ε-efficient element for vector and set optimization. These concepts are, in some sense, more flexible than that ones defined
in the mentioned works. We establish necessary and sufficient conditions for the existence of these elements by means of
limit sets.

This paper is organized as follows. In Section 2 we define the concept of weak ε-efficient element of a multifunction F .
We give necessary and sufficient conditions using the limit set of F . Section 3 is devoted to the case of set optimization.
We define the concept of ε-lower weak minimal element and give conditions on F and its domain for its existence. Also we
study necessary and sufficient conditions using limit sets.

We consider X, Y real normed spaces with Y partially ordered by a convex closed pointed cone KY and M ⊂ X . Let F be
a multifunction F :M −→ 2Y .

The image and graph of F are respectively defined by

F(M) = ∪
x∈M

F(x), graph(F) = {(x, y) | x ∈ M, y ∈ F(x)}.

And the epigraph of F :

epi(F) = {(x, y) ∈ X × Y | x ∈ M, y ∈ F(x) + KY }.
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Given x̄ ∈ M we will consider the contingent cone toM at x̄ defined by (see [12]):

T (M, x̄) = {v ∈ X | ∃(tn) → 0+, (un) → v with x̄ + tnun ∈ M for all n ∈ N}.

Definition 1. Given µ ∈ Y we call the limit set of F at x̄ ∈ M on the direction v ∈ T (M, x̄) to the set

Yµ

F (x̄, v) =

z ∈ Y | z = lim
tn→0+
un→v

f (x̄ + tnun) − f (x̄)
tn

; µ = f (x̄), f ∈ CS(F)

 ,

where CS(F) denotes the set of continuous selections of F .

Definition 2 ([2]). Let (x̄, ȳ) ∈ graph(F). A set-valued map DCF(x̄, ȳ): X → 2Y whose graph equals the contingent cone to
the graph of F at (x̄, ȳ), i.e.,

graph(DCF(x̄, ȳ)) = T (graph(F), (x̄, ȳ)),

is called contingent derivative of F at (x̄, ȳ).

Recall that the contingent cone to the graph of F is denoted by T (graph(F), (x̄, ȳ)) and it consists of all tangent vectors
(h, k) = limn→∞ µn(xn − x̄, yn − ȳ), with (x̄, ȳ) = limn→∞(xn, yn), (xn, yn) ∈ graph(F) and µn > 0 for all n ∈ N . Or
equivalently, there exist a sequence of real numbers (tn) → 0+ and a sequence of vectors (hn, kn) → (h, k) such that
(x̄ + tnhn, ȳ + tnkn) ∈ graph(F) for all n ∈ N.

Remark 3. Observe that if F is single-valued, F = f , f continuous onM , then Y f (x̄)
f (x̄, v) = DC f (x̄, f (x̄))(v) for all v ∈ T (M, x̄)

(see [13]). In consequence

Yµ

F (x̄, v) =


f∈CS(F)
µ=f (x̄)

DC f (x̄, µ)(v) for all v ∈ T (M, x̄).

In certain conditions the limit set of F coincides with the contingent derivative of F . One requirement for the contingent
derivative is to be lower semicontinuous:

Definition 4 ([12]). A set-valued map F :M −→ 2Y is called lower semicontinuous at x ∈ M if for any y ∈ F(x) and for any
sequence of elements (xn) ⊂ M converging to x, there exists a sequence of elements (yn) ⊂ F(xn) converging to y. It is called
lower semicontinuous if it is lower semicontinuous at each point ofM .

Proposition 5. Let F :M −→ 2Rn
be a continuous set-valuedmapwith convex and closed images. Let (x̄, µ) ∈ graph(F). Assume

that dom(DCF(x̄, µ)) = X and DCF(x̄, µ)(v) is lower semicontinuous with convex images. Then

Yµ

F (x̄, v) = DCF(x̄, µ)(v) for all v ∈ X .

Proof. ‘‘⊂’’: Observe that if dom(DCF(x̄, µ)) = X it follows that T (M, x̄) = X . Let v ∈ X , w ∈ Yµ

F (x̄, v) then there exists
f ∈ CS(F) with µ = f (x̄), (tn) → 0+, (un) → v such that

w = lim
tn→0+
un→v

f (x̄ + tnun) − f (x̄)
tn

.

Let kn =
f (x̄+tnun)−f (x̄)

tn
. Then (x̄ + tnun, f (x̄) + tnkn) ∈ graph(F) with (un, kn) → (v, w). In consequence (v, w) ∈

T (graph(F), (x̄, µ)) and w ∈ DCF(x̄, µ)(v).
‘‘⊃’’: Under these hypotheses on F , for each v ∈ X and w ∈ DCF(x̄, µ)(v) there exists a continuous selection f of F such that
µ = f (x̄) and w ∈ Yf (x̄, v) (see [13, Theorem 17]). It follows that DCF(x̄, µ)(v) ⊂


f∈CS(F)
µ=f (x̄)

Yf (x̄, v). In virtue of Remark 3

we deduce
f∈CS(F)
µ=f (x̄)

Yµ

f (x̄, v) =


f∈CS(F)
µ=f (x̄)

DC f (x̄, µ)(v) = Yµ

F (x̄, v) for all v ∈ X .

In consequence DCF(x̄, µ)(v) ⊂ Yµ

F (x̄, v) for all v ∈ X . �

Definitions of upper K -continuity and pseudoconvexity which we recall here, are used in Section 3.

Definition 6 ([3]). F is upper K -continuous at x̄ ∈ M if for each neighborhood V of F(x̄) in Y , there is a neighborhood U of
x̄ in X such that

F(x) ⊂ V + KY for all x ∈ U ∩ M.
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Definition 7 ([12]). A multifunction F is pseudoconvex at (x̄, ȳ) if

epi(F) ⊂ (x̄, ȳ) + T (epi(F), (x̄, ȳ)),

where T (epi(F), (x̄, ȳ)) is the contingent cone to the epigraph of F at (x̄, ȳ).

2. Approximate solutions in set-valued optimization with vector criterion

From now on we will suppose that the cone KY has nonempty interior (intKY ≠ ∅).
We recall the notion of ε-efficient element introduced in [11], for a multifunction G: V −→ 2Rn

, where V is a complete
metric space and K ⊂ Rn is a pointed closed convex cone with intK ≠ ∅:

Definition 8 ([11]). Given ε > 0, we say that yε ∈ G(V ) is an ε-efficient element with respect to K if there exists an element
βε ∈ Rn such that ∥βε∥ < ε and

G(V ) ∩ {yε − βε − (K \ {0})} = ∅.

From the above notion of ε-efficient element we define the concept of weak ε-efficient element as follows:

Definition 9. Given ε > 0, we say that yε ∈ F(M) is a weak ε-efficient element of F with respect to KY if there exists an
element αε ∈ Y such that ∥αε∥ < ε and

F(M) ∩ {yε − αε − intKY } = ∅.

In the future we will call a weak ε-efficient element of F a weak ε-efficient element of F with respect to KY .

Proposition 10. Let yε ∈ F(xε) be a weak ε-efficient element of F . Let αε ∈ (−KY ). Then

Y yε
F (xε, v) ∩ (−αε − intKY ) = ∅ for all v ∈ T (M, xε).

Proof. Let z ∈ Y yε
F (xε, v) with v ∈ T (M, xε). Then there exist (tn) → 0+, (un) → v, f ∈ CS(F) such that

z = lim
tn→0+
un→v

f (xε + tnun) − f (xε)

tn
with f (xε) = yε.

Since yε is a weak ε-efficient element of F then

(F(xε + tnun) − yε) ∩ (−αε − intKY ) = ∅ for all n ∈ N. (2.1)

Let us prove that z ∉ (−αε − intKY ). In other case, since −αε − intKY is open there exists N ∈ N such that

f (xε + tnun) − f (xε)

tn
∈ (−αε − intKY ) for all n > N,

hence

f (xε + tnun) − f (xε) ∈ (−tnαε − tnintKY ) ⊂ (−αε − intKY ) for all n > N,

therefore

(F(xε + tnun) − yε) ∩ (−αε − intKY ) ≠ ∅ for all n > N

in contradiction with (2.1). Then z ∉ (−αε − intKY ) and as a consequence

Y yε
F (xε, v) ∩ (−αε − intKY ) = ∅ for all v ∈ T (M, xε). �

Next lemma proved in [6] will be useful for providing a sufficient condition of existence of weak ε-efficient element.

Lemma 11. Let M be convex. Let F be pseudoconvex at (xε, yε) ∈ graph(F). Let us suppose that for each pair of sequences
(tn) → 0+, (hn, kn) → (h, k), such that (xε + tnhn, yε + tnkn) ∈ epi(F), there exists a continuous selection f of F such that
yε = f (xε) and (xε + tnhn, yε + tnkn) ∈ epi(f ). Then

F(x) − yε ⊂ Y yε
F (xε, x − xε) + KY

for all x ∈ M.
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Proposition 12. Let M be convex. Let F be pseudoconvex at (xε, yε) ∈ graph(F). Let αε ∈ KY with ∥αε∥ < ε. Assume that F
satisfies the hypothesis of Lemma 11. If

Y yε
F (xε, v) ∩ (−αε − intKY ) = ∅ for all v ∈ T (M, xε),

then yε is a weak ε-efficient element of F .

Proof. Suppose that yε is not a weak ε-efficient element of F , then for all αε ∈ Y with ∥αε∥ < ε it satisfies:

F(M) ∩ (yε − αε − intKY ) ≠ ∅.

By Lemma 11

F(x) − yε ⊂ Y yε
F (xε, x − xε) + KY for all x ∈ M,

then there exists x ∈ M such that

(Y yε
F (xε, x − xε) + KY ) ∩ (−αε − intKY ) ≠ ∅,

and as a consequence

Y yε
F (xε, x − xε) ∩ (−αε − intKY ) ≠ ∅. �

3. Approximate solutions in set-valued optimization with set criterion

The optimality concept that we will use in this section is determined by a relation defined by Kuroiwa et al. in [14] as
follows:

Definition 13 ([14]). Let A, B be two subsets of Y , A ≠ ∅, B ≠ ∅. A≤
l B if for all b ∈ B there exists a ∈ A such that a ≤ b.

‘‘≤l’’ is called the lower relation.

The above definition is equivalent to B ⊂ A + KY and generalizes the order induced by KY in Y , in the sense: a ≤ b if
b ∈ a + KY .

Definition 14 ([14]). Given a family S of subsets of Y , A ∈ S is a lower minimal (or l-minimal) if for each B ∈ S such that
B≤

l A it satisfies A≤
l B.

In a natural way the notion of lower weak relation and lower weak minimal element are defined as follows:

Definition 15. Let A, B be two subsets of Y , A ≠ ∅, B ≠ ∅. A≼
l B if B ⊂ A + intKY . ‘‘≼l’’ is called the lower weak relation.

Definition 16. Given a family S of subsets of Y , A ∈ S is a lower weak minimal (or l-wminimal) of S, if for each B ∈ S such
that B≼

l A it satisfies A≼
l B.

The set of l-minimals of S is denoted by l-min S and the set of l-wminimals of S is denoted by l-w min S.
The relation ≤

l determines in S the equivalence relation:

A ∼ B ⇔ A≤
l B and B≤

l A

whose classes we will represent by [A]
l. Analogously the relation ≼

l determines in S an equivalence relation whose classes
we will represent by [A]

lw .
We will define the concepts of ε-lower minimal and ε-lower weak minimal elements as follows:

Definition 17. (a) Let ε > 0. Aε ∈ S is an ε-lower minimal of S if there exists αε ∈ Y with ∥αε∥ < ε such that for each
B ∈ S with B≤

l Aε − αε it satisfies Aε − αε ≤
l B.

(b) Let ε > 0. Aε ∈ S is an ε-lower weak minimal of S if there exists αε ∈ Y with ∥αε∥ < ε such that for each B ∈ S with
B≼

l Aε − αε it satisfies Aε − αε ≼
l B.

We consider a multifunction F with the hypotheses of Section 1. Let F = {F(x) | x ∈ M}. If S = F we say ε-lower
(weak) minimal of F instead of F .

If F(xε) is an ε-lower (weak) minimal of F , then xε is called an ε-lower (weak) minimum of F .

Proposition 18. Let (xε, yε) ∈ graph(F). F(xε) is an ε-lower weakminimal of F if and only if there exists αε ∈ Y with ∥αε∥ < ε
such that for each x ∈ M one of the conditions below is satisfied:

1. F(x) ∈ [F(xε) − αε]lw .
2. There exists µ ∈ F(xε) such that (F(x) − µ + αε) ∩ (−intKY ) = ∅.
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Proof. Let us suppose that neither 1 nor 2 hold. Then there exists x ∈ M such that F(x) ∉ [F(xε) − αε]lw . Furthermore for
all µ ∈ F(xε) there exists y ∈ F(x) such that u = y − µ + αε ∈ (−intKY ). Thus µ − αε = y − u ∈ F(x) + intKY . Then
F(xε)−αε ⊂ F(x)+ intKY and F(x) ≼

l F(xε)−αε . But F(xε)−αε ⋠
l F(x) because F(x) ∉ [F(xε)−αε]

lw . Consequently F(xε)
is not an ε-lower weak minimal of F .

Reciprocally, if F(xε) is not an ε-lower weak minimal of F , for each αε ∈ Y with ∥αε∥ < ε there exists x ∈ M such
that F(x) ≼

l F(xε) − αε and F(xε) − αε ⋠
l F(x). Then F(x) ∉ [F(xε) − αε]lw and since F(x) ≼

l F(xε) − αε it follows that
F(xε) − αε ⊂ F(x) + intKY . Hence there exists µ ∈ F(xε) such that (F(x) − µ + αε) ∩ (−intKY ) ≠ ∅ in contradiction with
the hypothesis. �

Definition 19. Let F(xε) be an ε-lower weak minimal of F . F(xε) is called strict if there exists a neighborhood U of xε such
that F(x) ⋠

l F(xε) − αε for all x ∈ U ∩ M . Then xε is called a strict ε-lower weak minimum of F .

Remark 20. In virtue of Proposition 18, it is easy to see that, given an ε-lower weakminimal F(xε) of F , it is strict if and only
if there exist a neighborhood U of xε and αε ∈ Y with ∥αε∥ < ε, such that for each x ∈ U ∩ M there exists µ ∈ F(xε) with
(F(x) − µ + αε) ∩ (−intKY ) = ∅.

Next results establish conditions for the existence of ε-lower minimal and ε-lower weak minimal. First we recall some
concepts defined in [6].

Definition 21 ([6]). Let S be a family of subsets of Y and let Σ = ∪A∈S A. A cover

(xi − KY )

c
: xi ∈ Σ, i ∈ I


is called a

KS-cover if for each A ∈ S there exists i ∈ I such that A ⊂ (xi − KY )
c .

S is called K -semicompact if all KS-covers have a finite KS-subcover.
The multifunction F is called KF -semicompact if F is K -semicompact.

Given ε > 0 and αε ∈ Y with ∥αε∥ < ε we consider the family

F − αε = {F(x) − αε | x ∈ M}.

Proposition 22. Let ε > 0 and αε ∈ Y with ∥αε∥ < ε. If F is KF -semicompact then the family F − αε is K-semicompact.

Proof. Let {(yi − KY )
c

| yi ∈ F(M) − αε, i ∈ I} be a KF −αε -cover. Then yi = zi − αε with zi ∈ F(xi), xi ∈ M . Furthermore
for each F(x) − αε ∈ F(M) − αε there exists i ∈ I such that F(x) − αε ⊂ (yi − KY )

c
= (zi − αε − KY )

c . Hence
F(x) ⊂ (zi − KY )

c and, as F is KF -semicompact, there exists a finite subcover {(zj − KY )
c

| j = 1, 2, . . . , n} of F . As a
consequence {(yj − KY )

c
| j = 1, 2, . . . , n} is a finite subcover of F − αε . �

The next propositions, proved in [6], will provide a condition for the existence of ε-lower minimal and ε-lower weak
minimal.

Proposition 23 ([6]). Let F be KF -semicompact, then l-min F ≠ ∅.

Proposition 24 ([6]). Let M be compact. If F is upper K-continuous, then F is KF -semicompact.

Applying Propositions 22 and 23 we deduce the following corollary:

Corollary 25. If F is KF -semicompact then there exists an ε-lower minimal of F .

The next corollary is a consequence of Proposition 24 and Corollary 25.

Corollary 26. Let M be compact. If F is upper K-continuous, then there exists an ε-lower minimal of F .

Corollary 27. Let M be compact. If F is upper K-continuous, then there exists an ε-lower weak minimal of F .

Proof. We will prove that an ε-lower minimal of F is an ε-lower weak minimal of F and the result will be consequence of
Corollary 26. Let F(xε) be an ε-lower minimal of F . Then there exists αε ∈ Y with ∥αε∥ < ε such that for all x ∈ M with
F(x) ≤

l F(xε) − αε it satisfies F(xε) − αε ≤
l F(x). Let x ∈ M such that F(x) ≼

l F(xε) − αε . Hence

F(xε) − αε ⊂ F(x) + intKY . (3.1)

Since KY + intKY = intKY we have

F(xε) − αε + KY ⊂ F(x) + intKY . (3.2)

From (3.1) we deduce that

F(xε) − αε ⊂ F(x) + KY . (3.3)
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In consequence F(x) ≤
l F(xε) − αε . Since F(xε) is an ε-lower minimal we deduce that F(xε) − αε ≤

l F(x). Then

F(x) ⊂ F(xε) − αε + KY , (3.4)

from that and (3.3) we obtain

F(x) + KY = F(xε) − αε + KY ,

add intKY and deduce

F(x) + intKY = F(xε) − αε + intKY . (3.5)

From (3.2) and (3.4) we have

F(x) ⊂ F(xε) − αε + KY ⊂ F(x) + intKY

and from (3.5)

F(x) ⊂ F(xε) − αε + intKY ,

then we conclude that

F(xε) − αε ≼
l F(x). �

A necessary condition for the existence of a strict ε-lower weak minimal is enunciated with the notions of the weakly
minimal element and K -wminimal property that we recall here.

Definition 28. Let D ⊂ Y . An element ȳ ∈ D is called weakly minimal if

(ȳ − int(KY )) ∩ D = ∅.

The set of weakly minimal elements of D is denoted by K -w minD.

Definition 29 (Domination Property). A subset A ⊂ Y has the K -wminimal property if for all y ∈ A there exists a weakly
minimal element a ∈ A such that a − y ∈ (−intKY ) ∪ {0}.

In the next theorem we enunciate a necessary condition for the existence of a strict ε-lower weak minimum. First we
need a previous lemma.

Lemma 30. Let xε, x ∈ M, yε ∈ F(xε), αε ∈ Y . If F(x) ⋠
l F(xε) − αε , K -w min F(xε) = {yε} and F(xε) has the K -wminimal

property, then:

(F(x) − yε) ∩ (−αε − intKY ) = ∅.

Proof. Let us suppose that it is false, i.e.:

(F(x) − yε) ∩ (−αε − intKY ) ≠ ∅,

then there exist z ∈ F(x), h ∈ intKY such that z − yε = −αε − h. Thus yε = z + h + αε and yε ∈ F(x) + αε + intKY . Since
K -w min F(xε) = {yε} and F(xε) has the K -wminimal property then for all w ∈ F(xε), there exists k ∈ intKY ∪ {0} such that

w = yε + k ∈ F(x) + αε + intKY .

Therefore F(xε) − αε ⊂ F(x) + intKY and as a consequence F(x) ≼
l F(xε) − αε which contradicts the hypothesis. �

Theorem 31. Let xε be a strict ε-lower weak minimum of F . Let αε ∈ (−KY ). If K -w min F(xε) = {yε} and F(xε) has the
K -wminimal property then

Y yε
F (xε, v) ∩ (−αε − intKY ) = ∅ for all v ∈ T (M, xε).

Proof. Since xε is a strict ε-lower weak minimum of F there exists a neighborhood U of xε such that F(x) ⋠
l F(xε) − αε for

all x ∈ U ∩ M . Let v ∈ T (M, xε). If z ∈ Y yε
F (xε, v) then there exist f ∈ CS(F), (tn) → 0+, (un) → v such that

z = lim
tn→0+
un→v

f (xε + tnun) − f (xε)

tn
.

Therefore there existsN ∈ N such that for n ≥ N we can define xn = xε+tnun ∈ U∩M which satisfies F(xn) ⋠
l F(xε)−αε .

By Lemma 30:

(F(xn) − yε) ∩ (−αε − intKY ) = ∅ for all n ≥ N.
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In a way similar to that in Proposition 10 it is proved that z ∉ (−αε − intKY ) and as a consequence

Y yε
F (xε, v) ∩ (−αε − intKY ) = ∅ for all v ∈ T (M, xε). �

Observe that without the condition K -w min F(xε) = {yε} the conclusion is not guaranteed, as we show in the following
example.

Example 32. Let F : (0, 1) −→ 2R2
be defined by

F(r) = {(x1, x2) | x21 + x22 = r2, x2 ≥ 0} ∪ {(0, −r)}.

Let KY = R2
+

= {(x1, x2)|x1 ≥ 0, x2 ≥ 0}. Given ε > 0, let rε = 1 − ε/2, yε = (−(1 − ε/2), 0) and αε = (−ε, 0).
Then K -w min F(rε) = {yε, (0, −rε)} ≠ {yε}. Moreover if ε ≤ 2/3 then rε is a strict ε-lower weak minimum of F , because
F(1 − ε/2) − (−ε, 0) ⊄ F(r) + intKY for all r ∈ (0, 1).

Let f : (0, 1) −→ R2 be defined by f (r) = (0, −r). It is clear that f ∈ CS(F). Given v ∈ T ((0, 1), rε) we have

lim
tn→0+
un→v

f (rε + tnun) − f (rε)
tn

= (0, −v) for all (tn) → 0+, (un) → v.

It is easy to check that if v > 0 then (0, −v) ∈ (−(−ε, 0) − R2
+
). In consequence, given 0 < ε ≤ 2/3, rε = 1 − ε/2 is a

strict ε-lower weak minimum of F , F(rε) has the K -wminimal property and however

Y yε
F (rε, v) ∩ (−αε − intKY ) ≠ ∅.

Finally we obtain a sufficient condition for the existence of ε-lower weak minimum.

Theorem 33. Let M be convex. Let F be pseudoconvex at (xε, yε) ∈ graph(F). Let us suppose that for each pair of sequences
(tn) → 0+, (hn, kn) → (h, k), such that (xε + tnhn, yε + tnkn) ∈ epi(F), there exists a continuous selection f of F such
that yε = f (xε) and (xε + tnhn, yε + tnkn) ∈ epi(f ). Let αε ∈ Y with ∥αε∥ < ε. If every v ∈ T (M, xε) satisfies
Y yε
F (xε, v) ∩ (−αε − intKY ) = ∅, then xε is an ε-lower weak minimum of F .

Proof. Suppose that it is false, i.e. xε is not an ε-lowerweakminimumof F . FromProposition 18, for allαε ∈ Y with ∥αε∥ < ε
there exists x ∈ M such that for each µ ∈ F(xε) there exists βµ ∈ F(x) with

(βµ − µ + αε) ∈ (−intKY ). (3.6)

From Lemma 11 we get

F(x) − yε ⊂ Y yε
F (xε, x − xε) + KY ,

and in particular

βµ − yε + αε ∈ Y yε
F (xε, x − xε) + KY + αε.

From this fact and applying (3.6) with µ = yε , we deduce that

(Y yε
F (xε, x − xε) + KY + αε) ∩ (−intKY ) ≠ ∅,

then

Y yε
F (xε, x − xε) ∩ (−αε − intKY ) ≠ ∅,

which is a contradiction. �
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