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a b s t r a c t

Scientists and engineers generally tackle problems that include multiscale effects and that
are thus difficult to solve numerically. Themain difficulty is to capture both the fine and the
coarse scales to get an accurate numerical solution. Indeed, the computations are generally
performed by using numerical schemes based on grids. But the stability and thus the
accuracy of the numerical method depends on the size of the grid which must be refined
drastically in the case of very fine scales. That implies huge computational costs and in
particular the limitations of the memory capacity are often reached. It is thus necessary to
use numerical methods that are able to capture the fine scale effects with computations on
coarse meshes. Operator-based upscaling is one of them and we present a first attempt to
adapt that technique to a Discontinuous Galerkin Method (DGM). We consider the Laplace
problem as a benchmark and we compare the performance of the resulting numerical
scheme with the classical one using Lagrange finite elements. The comparison involves
both an accuracy analysis and a complexity calculus. This work shows that there is an
interest of combining DGM with upscaling.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The wave propagation is widely used in a large variety of scientific fields as in oil exploration where the issue is to
produce images of hydrocarbon stocks that are hidden and nowadays very difficult to detect. The principle is based on
the fact that the wave equation can be reversed in time, which means that any arrival time of a reflected wave can be
transformed into a spatial measurement providing the localization of the corresponding reflector. From a numerical point
of view, the processwhich is known as the Reverse TimeMigration, requires to solvemanywave equations in complexmedia
whose tectonic includes strong heterogeneities and the contrasts of the physical parameters can thus be very significant.
The quality of the image is obviously related to the accuracy of the numerical method, which justifies the development
of fast and accurate solvers for large problems. The size of the discrete system is an important issue but it is not the only
one. Indeed, it is necessary to consider real propagation domains, which means that multiscale problems must be solved.
Propagation domains are mostly wide, while the parameters that characterize the medium vary quickly. As a consequence,
the representation of the parameters should be done on a fine grid while it should be sufficient to cover the mediumwith a
coarse mesh. Obviously, it is possible to do computations with a fine mesh whose dimensions are fixed by the physical
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parameters. But, in that case, the resulting discrete system will contain a huge number of discrete unknowns, so that
computational costs of the RTM become prohibitive, knowing that several solutions of the wave equation are needed. A
numericalmethod capable of considering these two scales independently is thus of great interest, in particular for numerical
geophysics.

To tackle multiscale problems, different attempts have been proposed in the literature. They involve upscaling, which
consists in defining equivalent parameters. There exist many techniques of upscaling that are based on averaging or
renormalizing the parameters [1,2]. Homogenization can also be applied [3–5]. It allows to get an accurate solution
computed on the coarse grid without computing the full solution inside the fine mesh. It leads then to constant equivalent
parameters. Now, it is worth noting that homogenization assumes that the parameters vary into different scales and that
the medium is periodic.

In this paper, we focus on an operator-based upscalingmethodwhich can be appliedwithout assuming periodicity of the
medium. Operator-based upscalingmethodswere first developed for elliptic flow problems (see [6,7]) and then extended to
hyperbolic problems (see [8–10]) such as the wave equation. The operator-based upscaling method is based on the splitting
of the solution into twoparts, the so-called rough and refined parts. The rough component is computed on a coarse gridwhile
the refined component is obtained fromcomputations on a finemesh covering each coarse cell. The time computational costs
can then be reduced by making calculations inside each coarse cell independent. This can be done by enforcing a Dirichlet
boundary condition on the boundary of each coarse cell. By this way, the refined component is computed by solving local
problems while the rough component is obtained classically by solving the variational problem inside the coarse mesh.

Operator-based upscaling methods were so far developed by using continuous finite elements. For instance, they have
been carried out for wave problems by using mixed finite elements [8–10].

Herein, we consider the interest of developing an operator-based upscalingmethod using aDiscontinuous Galerkin Finite
Element Method (DGFEM). By this way, we would like to know whether it is possible to reduce the computational costs
even more. DGFEMs perform well in the case of heterogeneous media because they match with hp-adaptivity and parallel
computing. Nevertheless, for the same mesh, they involve more degrees of freedom than continuous FEMs. Hence, it would
be interesting to see if, combined with an operator-based uspcaling, it is possible to reduce the computational costs.

This study is preliminary to a work dealing with harmonic wave equations and thus concerns the Laplace operator. We
consider the standard Laplace problem with homogeneous Dirichlet boundary conditions

−∆u = f inΩ,
u = 0 on ∂Ω, (1)

whereΩ is the unit square ]0, 1[×]0, 1[ and the source term f lies in L2(Ω). For the sake of simplicity, we restrict ourselves
to a square domain, but the study can be extended to any convex polygonal domain.

Since it is known for being both stable and consistent, we are interested in the Interior Penalty Discontinuous Galerkin
Method (IPDGM) [11]. We have organized the paper in such a way that we first show how to do upscaling with an IPDGM
and next we compare the performances of this approach with the one involving a continuous Finite Element Method (FEM).
In Section 2, we detail the variational framework to perform upscaling with the FEM and the IPDGM. The matrices resulting
from the upscaling discretization are clarified in Section 3. Section 4 is devoted to detail the upscaling algorithm and a
discussion on its performances. Finally, in Section 5, we compare the performances of the algorithms using the FEM and the
IPDGM through numerical results.

2. Continuous and discontinuous finite element methods for upscaling

The upscaling method consists in finding a finite element solution in a space VH,h that is decomposed into the direct sum
VH,h = VH ⊕ V̂H,h. The space VH is defined on a coarse grid of characteristic length H partitioning the domainΩ , and V̂H,h is
defined on a fine grid of characteristic length hwhich is obtained by refining the coarse grid. Then, the approximate solution
uH,h is obtained as uH,h = uH+ûH,h, where uH ∈ VH and ûH,h ∈ V̂H,h. In the following, uH is called the rough componentwhile
ûH,h stands for the refined component representing the small scale effects. The space V̂H,h must be appropriately defined in
such a way that ûH,h can be easily computed as a function of uH . The linear system involves thus only uH . The small scale
effects are then included inside the modeling afterwards thanks to the relation between ûH,h and uH .

In this section, we present two different choices for the spaces VH and V̂H,h. The first one is adapted to continuous finite
elements and has been proposed in [6,7]. The second one involves discontinuous finite elements which we would like to
focus on. Herein, we consider the IPDGM. Once the spaces are introduced, we define the corresponding bilinear forms.

2.1. Definition of the finite element spaces

Before introducing the finite element spaces, we need to define a partition of the domain Ω . For the sake of simplicity,
we restrict ourselves to regular Cartesian meshes in two dimensions, but our study can be extended without difficulty to
irregular meshes or to three dimensional problems. We fix N,M ∈ N∗, and we define two mesh sizes H = 1/N (the coarse
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Fig. 1. The mesh TH (solid lines) and the submesh Th (dashed lines).

step), and h = H/M (the fine step). The coordinates of the coarse nodes are defined by X I
= IH (for 0 ≤ I ≤ N) and Y J

= JH
(for 0 ≤ J ≤ N). Then, we define the coarse cells K IJ and the coarse mesh TH by

K IJ
=]X I−1, X I

[×]Y J−1, Y J
[ (1 ≤ I, J ≤ N), TH =


K IJ

N

I,J=1
.

We subdivide each coarse cell K IJ with fine cells. We define X I
P = X I

+ Ph (for 0 ≤ P ≤ M) and Y J
Q = Y J

+ Qh (for
0 ≤ Q ≤ M). We then define the fine cells K IJ

PQ by

K IJ
PQ =]X I−1

P−1, X
I−1
P [×]Y J−1

Q−1, Y
J−1
Q [,

which defines the submesh T
IJ
H,h =


K IJ
PQ

M

P,Q=1
and the global fine mesh, which is the union of all submeshes:

Th =

N
I,J=1

T
IJ
H,h. (2)

In Fig. 1, we represent the mesh TH and its submesh Th.
The set of internal edges of Th is denoted by F i

h with

F i
h =


e = ∂K ∩ ∂ J | K , J ∈ Th


,

while the set of external edges of Th is

F b
h =


e = ∂K ∩ ∂Ω | K ∈ Th


.

The set of all edges of Th is thus

Fh = F i
h ∪ F b

h . (3)

Now, we introduce the usual discretization spaces VH and Vh involved in the FEM we apply. Here, we use the same
notations for continuous FEMs and for IPDGMs. Regarding the FEM, the discretization space VH on the coarse grid, called
‘‘rough discretization space’’, is defined by

VH =


v ∈ C0(Ω̄) | ∀K ∈ TH v|K ∈ Qp(K), and v|∂Ω = 0


,

where Qp(K), p ∈ N is the space of polynomials of degree at most p in each variable on the element K . Concerning the
IPDGM, VH is defined by

VH =


v ∈ L2(Ω) | ∀K ∈ TH , v|K ∈ Qp(K)


.
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It should be noted that themain difference between the two spaces lies in the fact that the solution to discontinuous Galerkin
problem is only piecewise continuous. Therefore, it is not in C0(Ω̄) but only in L2(Ω).

Let us introduce Vh, which is built on the full fine grid Th and is defined by

Vh =


v ∈ C0(Ω̄) | v|K ∈ Qp(K), ∀K ∈ Th


,

for the FEM and as

Vh =


v ∈ L2(Ω) | v|K ∈ Qp(K), ∀K ∈ Th


,

for the IPDGM.
Let us now remark that, since Th is constructed as a refinement of TH , VH ⊂ Vh and the sum of the two spaces is not

direct. Then, we introduce a third vector space, V̂H,h, which is specific to the upscaling method. This space V̂H,h is associated
with both meshes TH and Th, and is defined for both continuous and discontinuous approximations by

V̂H,h =


v ∈ Vh | ∀K ∈ TH v|∂K = 0


. (4)

Then, it is clear that the sum of VH and V̂H,h is direct, provided that p < N2
+1, andwe can define the upscaling discretization

space

VH,h = VH ⊕ V̂H,h.

Note that VH ⊂ VH,h ⊂ Vh. The condition v|∂K = 0 in (4) is crucial for the upscaling method, since it allows for a simple
calculation of the refined part ûH,h of the solution from the knowledge of the rough part uH . We will detail this property
in the next section. The condition p < N2

+ 1 ensures that no element of VH could satisfy the condition v|∂K = 0 on all
edges of the coarse mesh. It is always satisfied for practical applications, since p is generally smaller than 10 and N greater
than 10.

To describe more precisely the upscaling algorithm, we also need to define the spaces V̂ IJ
H,h, whose elements v are the

restrictions of v ∈ V̂H,h on a coarse cell K IJ
∈ TH ,

V̂ IJ
H,h =


v ∈ V̂H,h | Supp v ⊂ K IJ


,

and the spaces V IJ
H whose elements v are the restrictions of v ∈ VH on K IJ

∈ TH ,

V IJ
H =


v ∈ VH | Supp v ⊂ K IJ


.

Then, there holds V̂H,h =
N

I,J=1 V̂
IJ
H,h, VH =

N
I,J=1 V

IJ
H .

Now, let us focus on the bilinear form associated to the upscaling problem.

2.2. Bilinear forms associated with continuous and discontinuous finite element methods

The discretized problem reads: find uH,h ∈ VH,h such that, ∀v ∈ VH,h,

ah(uH,h, v) =


Ω

f v dx, (5)

where ah is a bilinear form, coercive on VH,h. In the case of continuous finite elements, we have

ah(u, v) =


Ω

∇u · ∇v dx.

For discontinuous finite element methods there are many kinds of Discontinuous Galerkin formulations, each of them
leading to a different definition of ah. We refer to [11] for a review of these formulations and a detailed study of their stability
and convergence properties. Herein, we have chosen to focus on an IPDGM, which has been proposed by Arnold in [12] and
is also known as Symmetric Interior Penaltymethod [13]. It has been shown in [11] that thismethod is stable and consistent,
whichmeans that the convergence order is optimal, contrary tomany other DGFEMs. This is the reasonwhywe have chosen
to favor IPDGMs, but the upscaling method can be applied to any other type of DGFEMs without difficulty.

We first need to define the notion of ‘‘jump’’ and ‘‘mean’’ of a discontinuous function through an edge. Let e be an internal
edge shared by two elements denoted arbitrarily by K and J: e = ∂K ∩ ∂ J ∈ F i

h . We denote by nK the unit normal vector to
e (see Fig. 2), outward to K , and we define the jump of a scalar function u ∈ Vh and the mean of a vector function v ∈ V 2

h
through e by

[[u]]e = uK |e − uJ |e, {{v}}e =
vK |e + vJ |e

2
· nK .
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Fig. 2. The elements K and J and the normal vector nK .

For an external edge e = ∂K ∩ ∂Ω ∈ F b
h , the jump of u and the mean value of v are defined by analogy as

[[u]]e = u|e, {{v}}e = v|e · nK .

The interior penalty bilinear form ah is defined for all u, v ∈ VH,h by

ah(u, v) = Bh(u, v)− Ih(u, v)− Ih(v, u)+ Jh(u, v), (6)

where

Bh(u, v) =


K∈Th


K

∇u · ∇vdx,

Ih(u, v) =


e∈Fh


e
[[u]]{{∇v}}ds,

Jh(u, v) =


e∈Fh


e

α

h
[[u]][[v]]ds,

and α is a constant (independent of H and h) that can be chosen large enough to make ah coercive (see [14,15]) on the space
Vh. We define the norm ∥ ∥DG by [16]

∥u∥2
DG =


K∈Th

∥∇u∥2
0,K +


e∈Fh

h−1
∥[[u]]∥2

0,e.

Here, we denote by ∥ · ∥0,K the norm in L2(K), and by ∥ · ∥0,e the norm in L2(e). Recall that Th is the global fine mesh (2), and
Fh is the set of all edges of Th (3).

According to the definition of VH,h, this norm is equivalent on the spaces VH,h and Vh. Hence, since ah is coercive on Vh, ah
is coercive on VH,h and the problem (5) has a unique solution uH,h ∈ VH,h.

2.3. Upscaling formulation

We seek a discrete solution under the form uH,h = uH + ûH,h in VH,h, where uH ∈ VH and ûH,h ∈ V̂H,h. The unknown uH,h
is solution to the discrete problem

ah(uH,h, vH,h) = L(vH,h) ∀vH,h ∈ VH,h.

Using the direct decomposition of VH,h = VH ⊕ V̂H,h, we obtain the system of variational equations
ah(uH + ûH,h, vH) = L(vH) ∀vH ∈ VH

ah(uH + ûH,h, v̂H,h) = L(v̂H,h) ∀v̂H,h ∈ V̂H,h.
(7)

Thanks to the direct sum V̂H,h =
N

I,J=1 V̂
IJ
H,h, the second equation is then transformed into a collection of subproblems for

1 ≤ I, J ≤ N . Indeed, using that

ûH,h =

N
I,J=1

ûIJ
H,h,

each ûIJ
H,h satisfies the problem

ah(û
IJ
H,h, v̂

IJ
H,h) = L(v̂IJH,h)− ah(uH , v̂

IJ
H,h) ∀v̂

IJ
H,h ∈ V̂ IJ

H,h. (8)
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Observe now that in (8), uH get involved in the right-hand side and we do not know its value at this stage. However, thanks
to the homogeneous Dirichlet boundary condition on ∂K IJ which is imposed in the space V IJ

H,h, we can assume that each
subproblem is independent and well-posed on K IJ when uH is a data. Thus, we can use each subproblem to obtain the
expression ûIJ

H,h(uH) as a function of uH . Assembling all the solutions, we then obtain a way of computing ûH,h as a function
of uH . At this point, we are able to insert this expression in the first equation of (7) to get the variational equation

ah(uH + ûH,h(uH), vH) = L(vH) ∀vH ∈ VH , (9)
whose only unknown is uH .

The upscaling algorithmweuse is then the following. As a first step, by solving the subproblems (8)we find the expression
of ûH,h which depends on uH . The second step consists in solving the rough equation (9) in order to compute uH . The final
step consists in computing uH,h from uH thanks to the expression we obtained at step 1.

The main advantage of this algorithm is that there is no need to compute the solution on the whole fine grid coveringΩ .
We just have to solve subproblems defined on a fine scale, but on small subparts ofΩ (the coarse cells K ij) plus a problem
on the whole domain, but defined on a coarse scale.

3. Properties of the linear systems

In order to describe the shape of the stiffness matrix K resulting from the upscaling discretization, we have to introduce
a basis of VH,h. This basis is obtained from basis of VH and V̂H,h.

We denote by (ψi)i=1..NH
a basis of VH ,NH being the number of degrees of freedom of the mesh TH . By construction of

V̂H,h, it is represented by the set

φ

IJ
k


k=1..Mh

of basis functions related to V̂ IJ
H,h for (I, J) ∈ 1 . . .N2. Here Mh denotes the

number of degrees of freedom of the submesh of K IJ . We will consider classical Lagrange basis functions, but using other
types of basis functions should not impact on the properties of the resultingmatrix. Concerning the global numbering of the
nodes of the fine mesh, we choose, without loss of generality, to number them coarse cells by coarse cells, from bottom to
top and from left to right.

The matrix K is then constructed as the assembling of four blocks. The first one, denoted by Kcc , corresponds to the
interactions between the basis functions of VH . The second one, denoted by Kff , corresponds to the interactions between
the basis functions of V̂H,h. The two last ones, denoted by Kcf and Kfc , correspond to the interactions between the basis
functions of VH and the basis functions of V̂H,h. Since the bilinear form ah is symmetric, we have Kcf = KT

fc .
• The coarse matrix Kcc is defined by

(Kcc)i,j = ah(ψi, ψj), 1 ≤ i, j ≤ NH .

It corresponds to the standard stiffness matrix we would obtain by using a standard FEM applied on the coarse mesh
only. It is thus symmetric positive definite.

• To define the fine matrix Kff , we first introduce the elementary ‘‘fine stiffness matrix’’ associated with the coarse cell
K IJ

∈ TH :
K

IJ
ff


i,j

= ah(φ
IJ
i , φ

IJ
j ), 1 ≤ i, j ≤ Mh.

To construct the fine matrix Kff we use the following proposition.

Property 1. The matrix Kff is block diagonal and each block is an elementary matrix K
IJ
ff .

This property follows from the choice of the space V̂ IJ
H,h and in particular from the condition v|∂K = 0 on the boundary of

each coarse cell.
Proof. We just have to prove that the bilinear form ah(φ

IJ
i , φ

PQ
j ) vanishes as soon as (I, J) ≠ (P,Q ) (i.e. when we consider

the interactions between two distinct elements K IJ and K PQ ).
The result is obvious for the FEM. Indeed, two functions φIJ

i and φPQ
j with (I, J) ≠ (P,Q ) have separated supports since

we impose a Dirichlet condition on the boundary of each coarse cell. Hence we have ah(φ
IJ
i , φ

PQ
j ) = 0. We therefore focus

on the IPDGM case.
If K IJ and K PQ share no common edges, it is clear that ah(φ

IJ
i , φ

PQ
j ) = 0. If they share a common edge e, we have

Bh(φ
IJ
i , φ

PQ
j ) = 0,

Jh(φ
IJ
i , φ

PQ
j ) =


e
[[φ

IJ
i ]][[φ

PQ
j ]]ds,

Ih(φ
PQ
j , φ

IJ
i ) =


e
[[φ

PQ
j ]]{{∇φ

IJ
i }}ds,

Ih(φ
IJ
i , φ

PQ
j ) =


e
[[φ

IJ
i ]]{{∇φ

PQ
j }}ds.
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Since e is an edge of the coarse elements K IJ and K PQ , we have [[φ
IJ
i ]]e = [[φ

PQ
j ]]e = 0, thanks to the Dirichlet boundary

condition imposed on the boundary of the coarse cell. Then, we have

Jh(φ
IJ
i , φ

PQ
j ) = Ih(φ

IJ
i , φ

PQ
j ) = Ih(φ

PQ
j , φ

IJ
i ) = 0.

We conclude that Kff is block diagonal and its diagonal blocks are K
IJ
ff . �

We then obtain the full ‘‘fine matrix’’ by assembling each block:

Kff =


K

IJ
ff


1 ≤ I ≤ N, 1 ≤ J ≤ N.

Moreover, from the properties of the bilinear form ah, we easily check that each block is symmetric positive definite and
thus invertible.

Remark 1. In the case of regular Cartesianmeshes of homogeneous domains, thematrixK
IJ
ff is the same for each coarse cell.

• We use a similar process to define the matrix Kcf . For each cell K IJ
∈ TH , we define the submatrix K

IJ
cf

(K
IJ
cf )k,l =


ah(ψk, φ

IJ
l )


, 1 ≤ k ≤ NH , 1 ≤ I, J ≤ N, 1 ≤ l ≤ Mh,

and we set

Kcf =


K

IJ
cf


1 ≤ I ≤ N, 1 ≤ J ≤ N.

Note that (K IJ
cf )k,l obviously vanishes if the support of the coarse basis function ψk does not contain the element K IJ .

We can now define the ‘‘full upscaled matrix’’ K (associated with the upscaling space VH,h) by assembling the different
blocks:

K =


Kcc Kcf

KT
cf Kff


. (10)

4. Upscaling algorithm

In this section, we first detail the upscaling algorithm to solve the Laplace problem (5) in the space VH,h = VH ⊕ V̂H,h,
using the expression of the stiffness matrix K . Then, we discuss the performance of the method.

4.1. Upscaling for solving the Laplace problem

In the following, we denote by UH the vector of size NH representing the decomposition of the rough solution uH in the
basis (ψi)i=1..NH

and by ÛH,h the vector of size N2
∗ Mh representing the decomposition of the refined solution ûH,h in the

basis

φ

IJ
k


k=1..Mh
I,J=1..N

. The vectorUH,h = (UH , ÛH,h)
T corresponds then to the total solution uH,h. We use a similar decomposition

to compute the source term F = (Fc, Ff )T. Here,

Fc = {(f , ψi)}i=1..NH ,

Ff = {(f , φIJ
k )} k=1..Mh

I,J=1..N
.

Then, the matricial form of the discretized Laplace problem reads

KUH,h = F .

Hence, using the decomposition (10) of the stiffness matrix K , we are led to solve the block linear system
Kcc Kcf

KT
cf Kff

 
UH

ÛH,h


=


Fc
Ff


.

Now, we express ÛH,h(UH) as a function of UH :

ÛH,h = K−1
ff Ff − K−1

ff KT
cfUH , (11)

and we obtain a linear system where the only unknown is the rough solution UH :

(Kcc − Kcf K
−1
ff KT

cf )UH = Fc − Kcf K
−1
ff Ff . (12)

Since the matrix Kff is block diagonal (as proved in the previous section), inverting Kff resumes to invert each K
IJ
ff . We

thus discern the three steps of the algorithm:
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1. Solving the subproblems in order to obtain the expression (11) of ÛH,h in terms of UH . This step resumes to invert the
submatrices K II

ff .
2. Solving the coarse equation (12) to get UH .
3. Using the value of UH previously computed in (11) in order to get ÛH,h.

Note that it is not necessary to invert the total matrix K . We just have to invert the matrices K II
ff (which correspond to

fine-scale problems on subparts ofΩ) and Kcc (which corresponds to a coarse-scale problem onΩ).

4.2. Performance of the method

We discuss here the performance of the algorithm. We can easily give an asymptotic cost of the method if we consider
that most part of computations consists in inverting matrices. We assume that inverting an l × l matrix requires O(l3)
operations.

We introduce γp as the number of degree of freedom per cell. There holds γp = (p + 1)2 for the IPDGM and γp =

4/4 + 4(p − 1)/2 + (p − 1)2 = p2 for the continuous FEM (four nodes shared by four elements, p − 1 nodes shared by two
elements on each edge and (p − 1)2 internal elements).

The algorithm requires to invert each square matrix K ii
ff . There are N2 matrices K ii

ff and the size of each one is γpM2.
Therefore, solving the subproblems requires O(γ 3

p N
2M6) operations. To solve the coarse-scale equations, we need to invert

the matrix Kcc − Kcf K
−1
ff KT

cf which is of size γpN2. Thus, solving the coarse problem represents O(γ 3
p N

6) operations. The
asymptotic cost of the algorithm is thus of order (N2M6

+ N6)γ 3
p .

We can now compare this result with the standard IPDGM and FEM (without upscaling) on the coarse grid only and on
the full fine grid. In the coarse grid, we need to invert Kcc , therefore the asymptotic cost is O(N6γ 3

p ) operations. In the full
fine grid, we need to invert a matrix of size γpN2M2. Hence, the asymptotic cost is O(N6M6γ 3

p ).
To conclude, when studying a very heterogeneous domain (M ≫ N) the upscaling algorithm is approximately N4 times

less expensive than solving the full fine scale problem.

5. Numerical experiments

We now present numerical experiments devoted to analyze and to compare the performance of the upscaling algorithm
using the FEM and the IPDGM. We carry out two tests in a 2D square domain of size Ω = 1m × 1m. In the first test,
we consider a source function with slow variations. This test is similar to the one presented in [10] and illustrates how
the approximated solution converges when the space steps H and h decrease. Then we consider a source function which
presents much more oscillations. This test case illustrates more precisely the advantages of using an upscaling algorithm
instead of considering the classical FEM or IPDGM. The two source functions are chosen such that the analytic solution u
of the Laplace problem can be easily computed. Then, we can calculate the ‘‘rough’’ L2-error Er , between u and the rough
solution uH and the ‘‘total’’ L2-error Et between u and the total solution uH,h as

Er
= ∥u − uH∥0 and Et

= ∥u − uH,h∥0.

In all tests, we use Q1 finite elements. Now, we recall the classical convergence properties of the FEM and the IPDGM.
When using the usual discretization space VH , the IPDGM with Qp elements converges like Hp+1 in the L2 norm for the
Laplace problem; see [15,11]. Therefore, we expect to observe a space-convergence of second order when we refine the
coarse mesh TH . Concerning the standard FEM, it is well known that the method converges like Hp+1, when using the usual
discretization space VH . We therefore expect once again a second order convergence.

5.1. The case of a slowly oscillating function

Relying on several numerical tests performed in [10], we consider a source function f (x, y) = sin(πx) sin(πy). This
function was chosen in order to produce the solution

u(x, y) =
1

2π2
sin(πx) sin(πy).

First, we fix the number of fine cells M in each coarse cell and we refine the coarse mesh. This test enables us to show that
the upscaling algorithm ‘‘preserves’’ the original convergence properties of the IPDGM and the FEM. Then, we investigate
the properties of the algorithmwhen the fine mesh only is refined. We fix the number of coarse cells N and we increase the
number of fine cells in each coarse cell.

We thus first consider aN×N coarsemesh, whereN ranges from 10 to 50.We refine each coarse cell with a fixed number
of 5 × 5 cells. The ‘‘rough errors’’ and ‘‘total errors’’ are presented in Table 1 and the graphs are plotted in Fig. 3. We observe
a second order convergence for both the rough solution and the total solution and for both IPDGM and FEM, which is the
result we expected. There is no major difference between the accuracy of the two methods.
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Table 1
Errors Er and Et as functions of H and h.

H h IPDGM FEM
Er Et Er Et

0.1000 0.0200 2.46 × 10−4 6.54 × 10−5 2.08 × 10−4 6.36 × 10−5

0.0500 0.0100 6.16 × 10−5 1.59 × 10−5 5.20 × 10−5 1.57 × 10−5

0.0333 0.0067 2.73 × 10−5 7.03 × 10−6 2.31 × 10−5 6.96 × 10−6

0.0250 0.0050 1.54 × 10−5 3.94 × 10−6 1.30 × 10−5 3.91 × 10−6

0.0200 0.0040 9.85 × 10−6 2.52 × 10−6 8.33 × 10−6 2.50 × 10−6

Fig. 3. Errors Er and Et as functions of H and h.

Table 2
Errors Er and Et as functions of h. H = 0.2.

h IPDGM FEM
Er Et Er Et

0.0667 9.84 × 10−4 3.61 × 10−4 8.35 × 10−4 3.50 × 10−4

0.0333 9.92 × 10−4 2.79 × 10−4 8.35 × 10−4 2.57 × 10−4

0.0167 9.93 × 10−4 2.64 × 10−4 8.35 × 10−4 2.41 × 10−4

0.00833 9.93 × 10−4 2.61 × 10−4 8.35 × 10−4 2.37 × 10−4

Now, we fix the coarse grid to 5 × 5 cells and we divide the fine grid step by 2 in each subtest (hence M ranges from
3 to 24). The results are presented in Table 2. We observe that the error on the rough solution remains approximately
constant. It is not surprising since the coarse mesh remains unchanged. Actually the rough error obtained by an FEM is
totally independent of the fine mesh. This is due to the fact that, in the very particular case of Q1-Lagrange elements with
regular meshes in homogeneous media, the matrix Kcf is null. This can be proved by a direct but tedious calculation of
ah(ψk, φ

IJ
l ).

Concerning the total solution, we observe that accuracy is improved when the fine mesh is refined. Yet, this accuracy
is less and less significant as h decreases. This result confirms the observation of [10], where the authors have shown that
there is no second order convergence when only the fine mesh is refined.

5.2. The case of a more rapidly oscillating function

In the next experiment, we chose a source term f (f (x, y) = 2π2
[sin(πx) sin(πy) + 8.1 sin(9πx) sin(9πy)]) which

produces the following solution

u(x, y) = sin(πx) sin(πy)+ 0.1 sin(9πx) sin(9πy).

This solution is composed of two parts. The first one oscillates slowlywith a large amplitude, while the second part oscillates
rapidly with a lower amplitude. This experiment is devoted to mimic physical problems where the properties of the media
vary rapidly but with a small amplitude around a mean smooth function.

Hereafter, we consider three test-cases.

(a) We fix the number of fine cells in each coarse cell to 5 × 5. We refine a N × N coarse mesh, where N ranges from 5 to
50. The numerical values of the errors are presented in Table 3. As shown in the previous experiment, we observe again
a second order convergence for both the rough solution and the total solution. Once again, there is no major difference
between the IPDGM and the FEM.
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Fig. 4. Rough solution uH , and total solution uH,h obtained with IPDGM. H = 0.1, h = 0.02, y = 0.48.

Table 3
Errors Er and Et as functions of H and h.

H h IPDGM FEM
Er Et Er Et

0.2000 0.0400 3.69 × 10−1 3.97 × 10−1 3.71 × 10−1 3.91 × 10−1

0.1000 0.0200 3.50 × 10−2 2.62 × 10−2 7.37 × 10−3 2.26 × 10−2

0.0500 0.0100 1.01 × 10−2 4.18 × 10−3 8.24 × 10−3 3.47 × 10−3

0.0333 0.0067 4.46 × 10−3 1.48 × 10−3 3.73 × 10−3 1.31 × 10−3

0.0250 0.0050 2.50 × 10−3 7.51 × 10−4 2.10 × 10−3 6.88 × 10−4

0.0200 0.0040 1.60 × 10−3 4.54 × 10−4 1.35 × 10−3 4.27 × 10−4

Table 4
Errors Er and Et as functions of h.

H h IPDGM FEM
Er Et Er Et

0.0500 0.0167 9.80 × 10−3 4.42 × 10−3 8.24 × 10−3 4.19 × 10−3

0.0500 0.0083 1.01 × 10−2 4.42 × 10−3 8.24 × 10−3 3.37 × 10−3

0.0500 0.0042 1.02 × 10−2 4.41 × 10−3 8.24 × 10−3 3.23 × 10−3

0.0500 0.0021 1.02 × 10−2 4.41 × 10−3 8.24 × 10−3 3.20 × 10−3

Table 5
Errors EH as function of H .

H FEM IPDGM

0.2000 3.71 × 10−1 1.87
0.1000 7.37 × 10−3 1.20 × 10−1

0.0500 8.24 × 10−3 4.07 × 10−2

0.0333 3.73 × 10−3 2.00 × 10−2

0.0250 2.10 × 10−3 1.17 × 10−2

0.0200 1.35 × 10−3 7.64 × 10−3

0.0100 3.36 × 10−4 1.97 × 10−3

0.0050 8.39 × 10−4 4.95 × 10−4

(b) In the second test, we fix the rough step size to 0.05 and we reduce the fine grid step of 2 in each subtest. The rough part
uH , and the total solution uH,h obtained by the IPDGM for H = 0.1, h = 0.02, and y = 0.48 are displayed in Fig. 4.
As observed in the previous experiment (see Section 5.1), we see from Table 4 that the errors are again approximately
constants. Therefore, if the coarse mesh is not refined the convergence cannot be expected. Once again, there is no
variation of the rough error for the FEM, due to the fact that the matrix Kcf is null.

(c) In the last experiment, we compute the L2 errors EH between the analytic solution u and the approximated solution uH
obtained by the two methods (the FEM and the IPDGM) without upscaling. The results are presented in Table 5. Before
computing the error, we have projected the approximated solution on a refined grid of space step h = H/5, in order to
obtain accurate results.
In comparison with standard FEM and IPDGM, we observe that the upscaling method improves the accuracy of the
augmented solution. Compare for instance line H = 0.05 in Table 5 with line H = 0.05, h = 0.01 in Table 3. The
improvement is more significant for IPDGMs, where the total error is ten times smaller than the error obtained with
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Table 6
Computational time for upscaling with FEM.

H h CPU time

0.2000 0.0400 0.008
0.1000 0.0200 0.020
0.0500 0.0100 0.076
0.0333 0.0067 0.212
0.0250 0.0050 0.580
0.0200 0.0040 1.540

Table 7
Computational time for classical FEM.

H CPU time

0.2000 0.000
0.1000 0.004
0.0500 0.020
0.0333 0.100
0.0250 0.384
0.0200 1.220
0.0100 68.60
0.0050 4380

standard IPDGMs. As it was expected, we note that classical FEMs and IPDGMs are more accurate on the fine mesh than
upscaling (compare for instance line H = 0.01 in Table 5 with line H = 0.05, h = 0.01 in Table 3).

In order to emphasize the gain we obtain using an upscaling technique, we present respectively in Tables 6 and 7 the
computational time of upscaling with the FEM and of the classical FEM. Comparing line H = 0.1, h = 0.02 in Table 6 with
lines H = 0.1 and H = 0.02 in Table 7, we observe that the computational cost of the upscaling technique is five times
greater than the cost of the classical technique on a coarse grid but 60 times smaller than the cost of the classical technique
on a fine grid. The gain is increasedwhenwe refine the grid: forH = 0.05, h = 0.01, the computational cost of the upscaling
technique is four times greater than the cost of the classical technique on a coarse grid but 1000 times smaller than the cost
of the classical technique on a fine grid. Finally, for H = 0.025, h = 0.005, the upscaling technique is only 1.5 times more
expensive than the classical technique on a coarse grid, while it is 7500 cheaper than the classical technique on a fine grid.

6. Conclusion

Operator-based uspcaling allows numerical computations on very fine meshes to be sidestepped and thus contributes
well to reduce the computational costs of finite element methods. It is based on the idea of solving subproblems covered by
a fine grid after the computational domain being divided into independent subdomains.

By considering the Laplace problem, we have carried out operator-based uspcaling when using continuous and
discontinuous Galerkin finite elements. The combination of upscaling with discontinuous approximations is new and our
main objective was to see whether that can help to reduce the computational costs, and to improve the accuracy of the
numerical solution. Since this work is preliminary to a study on Helmholtz equations, we have chosen to use an IPDGM
which is well-known to be stable and consistent for wave problems [16]. Our main results are the following:

Concerning the asymptotic cost of the upscaling algorithm, it is of order (N2M6
+N6)γ 3

p (γp denotes the number of degree
of freedom per cell), while it is of order N6γ 3

p on the coarse mesh, and N6M6γ 3
p on the fine mesh without upscaling.

Regarding numerical experiments with Q1 elements, we have observed a second order convergence for both IPDGM and
FEMwhen the coarse mesh is refined whereas a zero order convergence holds for both IPDGM and FEMwhen the fine mesh
is refined only. Operator-based uspcaling improves the accuracy of the solution for both approximations. The improvement
is more significant for IPDGMs than for FEMs, knowing that IPDGMs perform better than FEMs without upscaling. Since
discontinuous approximations are known to be cheaper when using higher order elements, a future work should focus
on the combination of operator-based uspcaling with a high order IPDGM and obviously on extending this work to the
Helmholtz equation.
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