
Journal of Computational and Applied Mathematics 246 (2013) 104–112

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Determination of an unknown diffusion coefficient in a semilinear
parabolic problem
K. Van Bockstal ∗, M. Slodička
Research Group NaM2 , Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 11 January 2012

MSC:
35K20
35B30

Keywords:
Parabolic IBVP
Parameter identification
Nonlocal boundary condition
Time discretization
Convergence

a b s t r a c t

A semilinear parabolic problem of second order with an unknown diffusion coefficient
in a subregion is considered. The missing data are compensated by a total flux condition
through a given surface. The solvability of this problem is proved. A numerical algorithm
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1. Introduction

Recovery of a possible discontinuous diffusion coefficient from boundary measurements of solutions can be found in
many applications, such as heat conduction and hydrology. The complete inverse problem is ill posed, so a numerical
solution is quite difficult. Spontaneous potential (SP) well-logging is an important technique to detect parameters of the
formation inpetroleumexploitation. The SP log is ameasurement of thenatural potential difference or self potential between
an electrode in the borehole and a reference electrode at the surface. No artificial currents are applied. This method has
been mathematically studied, such as in [1–4]. The resistivity can depend on temperature and humidity in some geological
formations. This makes the problem of the resistivity identification time-dependent. The aim of this paper is to study the
recovery of a diffusion coefficient in a subregion from nonlocal boundary conditions for a transient problem. We assume
that the unknown coefficient can change in time, but its shape in space is known. It should be noted that nonlocal boundary
conditions have already been used for identification of some missing parameters at the boundary; cf. [5,6].

Let Ω ⊂ Rd be a bounded domain with a Lipschitz continuous boundary Γ . Ω is split into two non-overlapping parts
Ω0 andΩ \Ω0. We consider a transient diffusion process inΩ . The diffusion coefficient K takes the form K = k(t, x)κ(t, x)
for a known κ and k(t, x) = 1 for x ∈ Ω \ Ω0 and k(t, x) = k(t) for x ∈ Ω0. Γ is split into three non-overlapping parts,
namely ΓN (Neumann part), ΓD (Dirichlet part) and Γ0, where besides a Dirichlet boundary condition (BC) also the total flux
through this part is prescribed, i.e.,


Γ0

−K∇u · ν = h(t) in (0, T );

u = U(t) on (0, T )× Γ0.

(1)

We assume that Γ D ∩ Γ 0 = ∅,meas(Γ0) > 0.
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The goal of this work is to study the following parabolic initial boundary value problem (IBVP) (1)–(2): Find a couple
(K , u) such that (T > 0 fixed)

∂tu − ∇ · (K∇u) = f (u) in QT := (0, T )×Ω;

u = gD in (0, T )× ΓD;

−K∇u · ν = gN in (0, T )× ΓN;

u(0) = u0 inΩ.

(2)

We use the variational framework. Without loss of generality we assume that gD
= 0 and gN

= 0. This will increase
readability of the text. The suitable choice of a test space is

V = {ϕ ∈ H1(Ω); ϕ|ΓD = 0, ϕ|Γ0 = const},

which is clearly a Hilbert space with the norm ∥u∥2
V = ∥u∥2

+ ∥∇u∥2, where ∥·∥ represents the norm in L2(Ω).
To prove the existence of a weak solution to problem (1)–(2), we apply Rothe’s method (cf. [7]). We use an equidistant

time-partitioning with a step τ = T/n, for any n ∈ N, and introduce the notation ti = iτ and for any function z

zi = z(ti), δzi =
zi − zi−1

τ
.

We suggest the following recursive approximation scheme for i = 1, . . . , n; Ki = kiκi, with the unknown (ki, ui) ∈ R+ × V
on each time-step

δui − ∇ · (Ki∇ui) = f (ui−1) inΩ;

ui = 0 on ΓD;

−Ki∇ui · ν = 0 on ΓN;
Γ0

−Ki∇ui · ν = hi

ui = Ui on Γ0.

(3)

First, we have to show the existence of (Ki, ui) for any i = 1, . . . , n. Then we derive the stability estimates and finally we
pass to the limit for n → ∞ to get the existence of a solution to (1)–(2).

The values C, ε, Cε are generic and positive constants independent of the discretization parameter τ . The value ε is small
and Cε = C


ε−1


.

2. A single time-step

We present two different ways for solving (3). In the first one we assume that ki is given and we look for a solution of
δui − ∇ · (Ki∇ui) = f (ui−1) inΩ;

ui = 0 on ΓD;

−Ki∇ui · ν = 0 on ΓN;
Γ0

−Ki∇ui · ν = hi.

We prove that the trace of ui on Γ0 continuously depends on ki. We seek for such ki for which ui|Γ0 = Ui.
In the second method we solve
δui − ∇ · (Ki∇ui) = f (ui−1) inΩ;

ui = 0 on ΓD;

−Ki∇ui · ν = 0 on ΓN;

ui = Ui on Γ0

(4)

for a given ki. We prove that the total flux

Γ0

−Ki∇ui · ν through Γ0 continuously depends on ki. We seek for such ki that
gives


Γ0

−Ki∇ui · ν = hi.
We adopt the following assumptions on the data

0 < C0 ≤ k ≤ C1; (5)
0 < D0 ≤ κ ≤ D1; (6)
U, h, κ ∈ C([0, T ]); (7)
|f (x)− f (y)| ≤ C |x − y|, ∀x, y; (8)
u0 ∈ L2(Ω). (9)
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2.1. Auxiliary problem (10)

Consider the following problem

1
τ
(u, ϕ)+ (K∇u,∇ϕ)+ hϕ|Γ0 = (f , ϕ) ϕ ∈ V . (10)

For any given k > 0 (recall that K = kκ) this admits a unique weak solution uk ∈ H1(Ω), which follows from the theory of
linear elliptic equations (cf. [8]).
Uniform bound for uk. We set ϕ = uk into (10). Applying the Nečas inequality (see [9])

∥z∥2
Γ ≤ ε ∥∇z∥2

+ Cε ∥z∥2 , ∀z ∈ H1(Ω), 0 < ε < ε0 (11)

and using the uniform bounds (5) and (6) one can easily get
1
τ

− Cε


∥uk∥

2
+ (C0D0 − ε) ∥∇uk∥

2
≤ C


h2

+ ∥f ∥2 .
Fixing a sufficiently small positive ε we see that for τ < τ0

∥uk∥
2
+ ∥∇uk∥

2
≤ C


h2

+ ∥f ∥2 for C0 ≤ k ≤ C1.

uk depends continuously on k. Subtract (10) for k = β from (10) for k = α and set ϕ = uα − uβ to get

1
τ

uα − uβ
2 +


ακ∇(uα − uβ),∇(uα − uβ)


=

(β − α)κ∇uβ ,∇(uα − uβ)


.

An obvious calculation implies thatuα − uβ
2 +

∇(uα − uβ)
2 ≤ C(α − β)2.

Using the trace theorem we deduce that for T (k) := uk|Γ0 we have

|T (α)− T (β)| ≤ C
uα − uβ


L2(Γ )

≤ C
∇(uα − uβ)

2 +
uα − uβ

2 ≤ C |α − β|.

2.2. Auxiliary problem (12)

Consider
1
τ
(u, ϕ)+ (K∇u,∇ϕ) = (f , ϕ) ϕ ∈ {ψ ∈ H1(Ω); ψ |Γ0∪ΓD = 0}. (12)

For any given k > 0 this admits a unique weak solution uk ∈ H1(Ω)—cf. [8].
Uniform bound for uk. We set ϕ = uk into (12). One can readily get

∥uk∥
2
+ ∥∇uk∥

2
≤ C ∥f ∥2 for C0 ≤ k ≤ C1.

uk depends continuously on k. Subtract (12) for k = β from (12) for k = α and set ϕ = uα − uβ to get

1
τ

uα − uβ
2 +


ακ∇(uα − uβ),∇(uα − uβ)


=

(β − α)κ∇uβ ,∇(uα − uβ)


,

which impliesuα − uβ
2 +

∇(uα − uβ)
2 ≤ C(α − β)2.

Take any smooth function Φ such that Φ|ΓD = 0 and Φ|Γ0 = 1. We recall that Γ D ∩ Γ 0 = ∅. Therefore, the existence of
such a function is guaranteed by [10, Lemma 5.1]. Then

Ψ (k) := (−kκ∇uk · ν, 1)Γ0 = −
1
τ
(uk,Φ)− (kκ∇uk,∇Φ)+ (f ,Φ)

obeys

|Ψ (α)− Ψ (β)| =

 1τ uα − uβ ,Φ

+

ακ∇(uα − uβ),∇Φ


+

(α − β)κ∇uβ ,∇Φ

 ≤ C |α − β|.

2.3. Solvability of (3)

A simple consequence of Sections 2.1 and 2.2 reads as follows:
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Lemma 1. Assume (5)–(9). If U(t) ∈ T ([C0, C1]) ∀t ∈ [0, T ] or h(t) ∈ Ψ ([C0, C1]) ∀t ∈ [0, T ], then there exist a τ0 > 0 and
a couple (ki, ui) ∈ R+ × V which solves (3) for τ < τ0.

3. Convergence

The variational formulation of (3) reads as

(δui, ϕ)+ (Ki∇ui,∇ϕ)+ hiϕ|Γ0 = (f (ui−1), ϕ) ϕ ∈ V
ui|Γ0 = Ui.

(13)

According to Lemma 1 we see that (13) has a solution on each ti. The next step is the stability analysis.

Lemma 2. Let the assumptions of Lemma 1 be fulfilled. Then

max
1≤i≤n

∥ui∥
2
+

n
i=1

∥ui − ui−1∥
2
+

n
i=1

∥∇ui∥
2 τ ≤ C .

Proof. Set ϕ = uiτ into (13) and sum it up for i = 1, . . . , j keeping 1 ≤ j ≤ n. We obtain

1
2

uj
2 − ∥u0∥

2
+

j
i=1

∥ui − ui−1∥
2


+

j
i=1

(Ki∇ui,∇ui) τ =

j
i=1

(f (ui−1), ui) τ −

j
i=1

hiUiτ .

Using the Cauchy and Young inequalities we readily getuj
2 +

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui∥
2 τ ≤ C


1 +

j
i=1

∥ui∥
2 τ + ∥u0∥

2
+

j
i=1

h2
i τ +

j
i=1

U2
i τ


.

An application of Gronwall’s lemma implies thatuj
2 +

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui∥
2 τ ≤ C,

which is valid for all 1 ≤ j ≤ n. From this we conclude the proof. �

Let us denote by V ∗ the dual space to V . Then:

Lemma 3. Let the assumptions of Lemma 2 be fulfilled. Then
n

i=1

∥δui∥
2
V∗ τ ≤ C .

Proof. The relation (13) gives

(δui, ϕ) = (f (ui−1), ϕ)− (Ki∇ui,∇ϕ)− hiϕ|Γ0 .

A standard argumentation yields

| (δui, ϕ) | ≤ C (1 + |hi| + ∥∇ui∥) ∥ϕ∥V ,

which implies

∥δui∥V∗ = sup
ϕ∈V

∥ϕ∥V ≤1

| (δui, ϕ) | ≤ C (1 + |hi| + ∥∇ui∥) .

Taking into account Lemma 2 we conclude the proof. �

The variational formulation of (1)–(2) reads as: find (K , u) such that

(∂tu, ϕ)+ (K∇u,∇ϕ)+ hϕ|Γ0 = (f (u), ϕ) ϕ ∈ V (14a)

u|Γ0 = U . (14b)

Now, let us introduce the following piecewise linear in time function

un(0) = u0

un(t) = ui−1 + (t − ti−1)δui for t ∈ (ti−1, ti]
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and a step function un

un(0) = u0, un(t) = ui, for t ∈ (ti−1, ti].

Similarly we define K n, hn,Un. The variational formulation (13) can be rewritten as

(∂tun, ϕ)+

K n∇un,∇ϕ


+ hnϕ|Γ0 = (f (un(t − τ)), ϕ) ϕ ∈ V (15a)

un|Γ0 = Un. (15b)

We want to pass to the limit for τ → 0 in (15) and to arrive at (14).

Theorem 4. Let the assumptions of Lemma 1 be fulfilled. Then there exists a weak solution to (14).

Proof. Take any ξ ∈ (0, T ) and integrate (15) on (0, ξ) to get ξ

0
(∂tun, ϕ)+

 ξ

0


K n∇un,∇ϕ


+

 ξ

0
hnϕ|Γ0 =

 ξ

0
(f (un(t − τ)), ϕ) ϕ ∈ V . (16)

Using the results of Lemma 2 and applying [11, Theorem 2.13.1], we get the existence of a subsequence of un (denoted by
the same symbol again) such that

lim
n→∞

un → u in L2(QT ).

Therefore we also get

un → u a.e. in QT . (17)

Using Lemma 3 we may write for ξ ∈ (ti−1, ti] and ϕ ∈ V that

|(un(ξ)− un(ξ), ϕ)| =

 ti

ξ

(∂tun, ϕ)

 ≤

 T

0
∥∂tun∥

2
V∗ ∥ϕ∥V τ

1
2 .

Hence we have for τ → 0 and ϕ ∈ V that ξ
0 (∂tun, ϕ) = (un(ξ)− u0, ϕ) + (un(ξ)− un(ξ), ϕ)

↓ ↓ ↓ ξ
0 (z, ϕ) = (u(ξ)− u0, ϕ) + 0.

This is valid for any ξ ∈ [0, T ], thus z = ∂tu in L2((0, T ), V ∗). It holds ξ

0
(f (un(t − τ))− f (un(t)), ϕ)

 ≤ C
 ξ

0
∥∂tun∥ ∥ϕ∥ τ = O


τ

1
2


∥ϕ∥ .

Applying (17) we get

lim
τ→0

 ξ

0
(f (un(t)), ϕ) =

 ξ

0
(f (u(t)), ϕ) .

Lemma 2 and the reflexivity of L2((0, T ), V ) give (for a subsequence)

un ⇀ u in L2((0, T ), V ).

This, together with (11), implies T

0
∥un − u∥2

Γ ≤ ε

 T

0
∥∇(un − u)∥2

+ Cε

 T

0
∥un − u∥2

≤ ε + Cε

 T

0
∥un − u∥2 .

Passing to the limit for τ → 0 and applying (17) we obtain

lim
τ→0

 T

0
∥un − u∥2

Γ ≤ ε,

which is valid for any small ε > 0. Hence

lim
τ→0

 T

0
∥un − u∥2

Γ = 0 and un → u a.e. in (0, T )× Γ .
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Repeating this consideration forΩ0 instead ofΩ we deduce that

lim
τ→0

 T

0
∥un − u∥2

∂Ω0
= 0 and un → u a.e. in (0, T )× ∂Ω0. (18)

Due to the construction we have that C0 ≤ kn ≤ C1. This yields that kn ⇀ k (for a subsequence) in L2((0, T )). Now, applying
the Green theorem and taking a sufficiently smooth ϕ we deduce that ξ

0


K n∇un,∇ϕ


=

 ξ

0
kn (κn∇un,∇ϕ)Ω0

+

 ξ

0
(κn∇un,∇ϕ)Ω\Ω0

=

 ξ

0
kn (un, κn∇ϕ · ν)∂Ω0

−

 ξ

0
kn (un,∇ · (κn∇ϕ))Ω0

+

 ξ

0
(κn∇un,∇ϕ)Ω\Ω0

.

Passing to the limit for τ → 0 we get

lim
τ→0

 ξ

0


K n∇un,∇ϕ


=

 ξ

0
k (u, κ∇ϕ · ν)∂Ω0

−

 ξ

0
k (u,∇ · (κ∇ϕ))Ω0

+

 ξ

0
(κ∇u,∇ϕ)Ω\Ω0

=

 ξ

0
k (κ∇u,∇ϕ)Ω0

+

 ξ

0
(κ∇u,∇ϕ)Ω\Ω0

=

 ξ

0
(K∇u,∇ϕ) .

Applying the density argument we conclude that

lim
τ→0

 ξ

0


K n∇un,∇ϕ


=

 ξ

0
(K∇u,∇ϕ) ∀ϕ ∈ V .

Collecting all considerations above and passing to the limit for τ → 0 in (16) we arrive at ξ

0
(∂tu, ϕ)+

 ξ

0
(K∇u,∇ϕ)+

 ξ

0
hϕ|Γ0 =

 ξ

0
(f (u), ϕ) ϕ ∈ V .

Differentiation with respect to ξ gives (14a). Taking the limit in (15b) and using (18) we get (14b), which concludes the
proof. �

4. Numerical experiments

The domain we consider isΩ =

−

1
2 , 1


× (−1, 1), withΩ0 =


−

1
2 , 0


× (−1, 1) in R2. Let the time interval be [0, 1],

i.e., T = 1. The boundary Γ is split into three non-overlapping parts, namely ΓD (right), ΓN (top and bottom) and Γ0 (left
part of Γ ).

We use the second solution method described in Section 2 and define the exact diffusion coefficient as follows

K(t, x, y) = k̃(t)1{x<0} +
1
2
.

This is equivalent to setting

k(t, x, y) =


k̃(t)+ 0.5 if (t, x, y) ∈ Ω0;

1 if (t, x, y) ∈ Ω \Ω0;
κ(t, x, y) =


1 if (t, x, y) ∈ Ω0;

0.5 if (t, x, y) ∈ Ω \Ω0

in the previous notation K = kκ .
First, we prescribe the exact solution (K , u) as follows

K(t, x, y) = (1 + sin(10t)) 1{x<0} +
1
2
; u(t, x, y) = (1 + t) sin

π
2
(1 − x)


. (19)

Remark that we choose a trigonometric discontinuous diffusion coefficient with k̃(t) = (1 + sin(10t)). Some simple
calculations with the use of the exact solution give the exact data for the numerical experiment

gD
= gN

= 0; U(t) =
1 + t
√
2

; u0(x) = sin
π
2
(1 − x)


. (20)

We want to approximate the exact solution (19) given the exact data (20). Therefore, we focus on the determination of k̃(t).
For the recovery of k̃(t)we need the value of h(t) at each time t ∈ [0, 1], which is given by

h(t) =
π
√
2
(1 + t) (1.5 + sin(10t)) .
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Fig. 1. Numerical value of k̃i using the P1-FEM with noise e = 0% (a) and e = 0.5% (b); i = 1, . . . , 50.

Fig. 2. Numerical value of k̃i using the P1-FEM with noise e = 1% (a) and e = 5% (b); i = 1, . . . , 50.

We add an uncorrelated noise to this additional condition in order to simulate the errors present in real measurements. The
noise is generated randomly with given magnitude e = 0%, 0.5%, 1% and 5%.

For the time discretization we choose an equidistant time partitioning with time-step τ = 0.02. Applying the backward
Euler difference scheme into (4), we are left with a recurrent system of linear elliptic BVPs for (Ki, ui) ≈ (K(ti), u(ti)) , i =

1, 2, . . . , 50 and ϕ ∈ {ψ ∈ H1(Ω); ψ |Γ0∪ΓD = 0}

1
τ
(ui, ϕ)+ (Ki∇ui,∇ϕ) = (fi, ϕ)+

1
τ
(ui−1, ϕ) ; u0 = u0; (21)

with

(fi, ϕ) =


sin
π
2
(1 − x)


, ϕ


+


(1.5 + sin(10ti))

π
2

2
(1 + ti) sin

π
2
(1 − x)


, ϕ


Ω0

+


0.5

π
2

2
(1 + ti) sin

π
2
(1 − x)


, ϕ


Ω\Ω0

.

The unknown k̃i ≈ k̃(ti), i = 1, . . . , 50, is determined by the nonlinear conjugate gradient method. On each time-step
ti, i = 1, . . . , 50, we minimalize the functional

J(k̃i) :=


Γ0

(k̃i + 0.5)∇ui · ν − h(ti)
2

.

Since this functional J is not convex we can only obtain convergence to a local minimum. Therefore, the initial guess has to
be sufficiently close to the actual minimizer of the functional. The starting point for this algorithm on the first time-step is
set as k̃(0)1 = 1. The starting points on the following time-steps are different in the various examples. We remark that the
algorithm stops after maximum 10 iterations with the prescribed error tolerance 10−6.

For the space discretization we use a fixed uniformmesh consisting of 144528 triangles. At each time-step, the resulting
elliptic BVP (21) is solved numerically by the finite element method (FEM) using first order (P1-FEM) and second order
(P2-FEM) Lagrange polynomials.

The results from the recovery of k̃(t) using the P1-FEM and P2-FEM for the different values of the amplitude e are shown
in Figs. 1, 2, 4 and 5. The exact k̃(ti) is denoted by a solid line and the approximations k̃i by linespoints; i = 1, . . . , 50. The
evolution of the k̃i-error for the different time-steps is shown in Figs. 3(a) and 6(a). The L2(Ω)-error of the approximate
solution ui on [0, 1] is depicted in Figs. 3(b) and 6(b).
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Fig. 3. The absolute k̃i-error (a) and the absolute L2(Ω)-error of the approximate solution ui (b) using the P1-FEM; i = 1, . . . , 50.

Fig. 4. Numerical value of k̃i using the P2-FEM with noise e = 0% (a) and e = 0.5% (b); i = 1, . . . , 50.

Fig. 5. Numerical value of k̃i using the P2-FEM with noise e = 1% (a) and e = 5% (b); i = 1, . . . , 50.

Fig. 6. The absolute k̃i-error (a) and the absolute L2(Ω)-error of the approximate solution ui (b) using the P2-FEM; i = 1, . . . , 50.

The experiments show that the approximation becomes less accurate with increasing magnitude ewhen the number of
timediscretization intervals and the number of triangles in the space discretization is fixed. This result is valid for the P1-FEM
as well as for the P2-FEM. We conclude, as expected, that the approximations are more accurate if we use the P2-FEM.
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5. Conclusion

A semilinear parabolic problem of second order with an unknown diffusion coefficient in a subregion is considered.
The existence of a weak solution for the IBVP is proved when an additional total flux condition through a given surface is
prescribed. A numerical algorithm is established and its convergence is demonstrated by a numerical experiment.
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