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a b s t r a c t

The present work is about the development of a parallel non-conforming multi-element
discontinuous Galerkin time-domain (DGTD) method for the simulation of the scattering
of electromagnetic waves by metallic nanoparticles. Such nanoparticles most often have
curvilinear shapes, therefore we propose a numerical modeling strategy which combines
the use of an unstructured tetrahedral mesh for the discretization of the scattering
structures with a structured (uniform cartesian) mesh for treating efficiently the rest of
the domain. The overall goal is to increase the flexibility in the meshing process while
decreasing the needs in computational resources for the target applications. The latter are
here modeled by the system of 3D time-domain Maxwell equations coupled to a Drude
dispersionmodel for taking into account thematerial properties of nanoparticles at optical
frequencies. We propose an auxiliary differential equation (ADE) based DGTD method for
solving the resulting system and present numerical results demonstrating the benefits of
using non-conforming multi-element meshes in this particular application context.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nanophotonics is a branch of optical engineering which is concerned with the study of the behavior of light at
the nanometer scale in interaction with sub-wavelength particles or devices. Because of its numerous scientific and
technological applications (e.g. in relation to telecommunication, energy production and biomedicine), nanophotonics
currently represents an active field of research increasingly relying on computer simulation besides experimental studies.
The numerical study of electromagnetic wave propagation scattered by nanometer scale structures requires taking into
account an appropriate physical dispersion model, such as the Drude or Drude–Lorentz models, for characterizing the
material properties of the involved nanostructures at optical frequencies [1]. Such a dispersion model allows to establish a
dependency between the electrical permittivity and the electrical conductivity of the material and the angular frequency
of the incident electromagnetic wave. For so-called local dispersion models, one has to deal with the numerical treatment
of the system of time-domain Maxwell equations for the electromagnetic field, coupled to a system of auxiliary ordinary
differential equations modeling the space–time evolution of the electrical polarization or a polarization current, depending
on the considered dispersion models. In these models, one assumes that the response of an electron in the metal only
depends on its interaction with the electric field at its precise position. This assumption, called local response assumption,
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already gives a good description of the underlying physics above the nanometer scale. However, nanofabrication tools are
improving a lot, enabling the design of structures approaching subnanometer scales. At this level, new optical properties
appear that cannot be accurately described by a local model. In such cases, it becomes necessary to consider a more detailed
description of the underlying physics, and alternative physical models of dispersion (see [2] and references therein). These
modified models are called non-local models [3].

A lot ofmethods have been developed for the numerical solution of the time-domainMaxwell equations. Finite difference
time-domain (FDTD) methods based on Yee’s scheme (a time explicit method defined on a staggered mesh) are still
prominent because of their simplicity and their non-dissipative nature (they hold an energy conservation property which
is an important ingredient in the numerical simulation of unsteady wave propagation problems) [4]. When it comes to the
simulation of realistic nanophotonic applications, the FDTD method raises several important limitations, essentially due to
the use of a (structured) cartesian discretization grid. In the last ten years, the Discontinuous-Galerkin Time-Domain (DGTD)
method has met an increased interest in the purpose of simulating complex industrial problems. Indeed, these methods
somehow can be seen as a crossover between Finite Element Time-Domain (FETD) methods (their accuracy depends of the
order of a chosen local polynomial basis upon which the solution is represented) and Finite Volume Time-Domain (FVTD)
methods (the neighboring cells are connected by numerical fluxes). Thus, DGTD methods offer a wide range of flexibility
in terms of geometry (since the use of unstructured and non-conforming meshes is naturally permitted) as well as local
approximation order refinement strategies, which are of useful practical interest.

In this study, we focus on the study and development of a parallel non-conforming multi-element DGTD method for
the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies
relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic bymetallic
nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy
which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a
structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the
flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources
for the target applications. In Section 2, after a short description of the modeling issues regarding the considered physical
context, we state the initial and boundary value problem at hand. Section 3 is devoted to the formulation of the proposed
non-conforming multi-element DGTDmethod for the solution of the mathematical model introduced in Section 2. Practical
implementation and parallelization aspects are discussed in Section 3.5. In Section 4 numerical and performance results are
presented for two test problems. First, we consider the scattering of a single nanosphere which allows a comparison with
a reference solution in the time-harmonic regime for validation purposes. Then, we apply the proposed parallel numerical
methodology to an L-shapedwaveguide composed of nanospheres in order to illustrate the benefits of using non-conforming
multi-element meshes in this particular application context. Finally, we summarize the outcomes of this study and outline
some future works in Section 5.

2. The time-domain Maxwell–Drude equations

To be able to consider concrete physical situations such as the ones characterizing light–matter interactions with
nanometer scale objects, one has to take into account in the numerical treatment a better description of the propagation of
waves in realistic media. The physical phenomenon that we consider here is dispersion. In the presence of an electric field
the medium cannot react instantaneously and thus presents an electric polarization of the molecules or electrons that itself
influences the electric displacement. In the case of a linear homogeneous isotropic media, there is a linear relation between
the applied electric field and the polarization. However, above some range of frequencies (depending on the considered
material), the dispersionphenomenon cannot beneglected and the relation between thepolarization and the applied electric
field becomes complex. In practice, this is modeled by a frequency dependent complex permittivity. Several suchmodels for
the characterization of the permittivity exist; they are established by considering the equation of motion of the electrons in
themediumandmaking some simplifications. If one is interested in taking into account the dispersion effects inmetals at the
nanometer scale and at optical frequencies, then the Drudemodel [5] is generally adopted in the first instance. However, for
frequency ranges that are too wide, or that include interband transitions of electrons in the metal, it is well-known that the
Drude model suffers from severe limitations. In these cases, Drude–Lorentz or even more sophisticated dispersion models
are employed [6].

There are mainly two ways of handling the frequency dependent permittivity in the framework of time-domain
simulations, both starting frommodels defined in the frequency domain. The first approach is to introduce the polarization
vector as an unknown field through an auxiliary differential equation which is derived from the original model in the
frequency domain bymeans of an inverse Fourier transform. This is called theDirect Method or Auxiliary Differential Equation
(ADE) formulation. One can note that while the new equations can be easily added to any time-domain Maxwell solver, the
resulting set of differential equations is tied to the particular choice of dispersive model and will never act as a black box
able to deal with other models. In the second approach, the electric field displacement is computed from a time convolution
integral of the electric field and the permittivity, of which the formulation can be changed independently from the rest of
the solver. This is called the Recursive Convolution Method (RCM).

An ADE formulation is adopted here and we focus on the case of a Drude model for the physical dispersion. The Drude
model is associated to a particularly simple theory that, for a chosen specific frequency range of interest and a givenmetallic
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material, successfully accounts for the optical and thermal properties of the latter. In this model, the metal is considered as
a static lattice of positive ions immersed in a free electrons gas. Those electrons are considered to be the valence electrons
of each metallic atom, that got delocalized when put into contact with the potential produced by the rest of the lattice

atoms. In the case of the Drude model, the frequency dependent permittivity is given by εr(ω) = ε∞ −
ω2
d

ω2+iωγd
where

ε∞ represents the core electrons contribution to the relative permittivity εr , γd is a coefficient linked to the electron/ion

collisions representing the friction experienced by the electrons and ωd =


nee2
meε0

(me is the electron mass, e the electronic
charge and ne the electronic density) is the plasma frequency of the electrons. Considering a constant permeability and a
homogeneous and isotropic medium, one can write the Maxwell equations as:

∇ × H =
∂D
∂t

, ∇ × E = −
∂B
∂t

, (1)

along with the constitutive relations D = ε0ε∞E + P and B = µ0H, which can be combined to yield:

∇ × E = −µ0
∂H
∂t

, ∇ × H = ε0ε∞

∂E
∂t

+
∂P
∂t

. (2)

In the frequency domain, the polarization P is linked to the electric field through the relation P̂ = −
ε0ω

2
d

ω2+iγdω
Ê, where ·̂

denotes the Fourier transform of the time-domain field. An inverse Fourier transform gives:

∂2P
∂t2

+ γd
∂P
∂t

= ε0ω
2
dE. (3)

By defining the dipolar current vector Jp =
∂P
∂t

, (2)–(3) can be rewritten as:

µ0
∂H
∂t

= −∇ × E, ε0ε∞

∂E
∂t

= ∇ × H − Jp,
∂Jp
∂t

+ γdJp = ε0ω
2
dE. (4)

Recalling the definitions of the impedance and light velocity in vacuum, Z0 =
√

µ0/ε0 and c0 = 1/
√

ε0µ0, and introducing
the following substitutions,H = Z0H, E = E,Jp = Z0Jp,t = c0t, γd = γd/c0 andω2

d = ω2
d/c

2
0 , it can be shown that system

(4) can be normalized to yield:

∂H
∂t

= −∇ ×E, ε∞

∂E
∂t

= ∇ ×H −Jp, ∂Jp
∂t

+ γdJp = ω2
d
E, (5)

knowing that µ0c0/Z0 = 1 and ε0c0Z0 = 1. From now on, we omit theX notation for the normalized variables.
Our goal is to solve system (5) in a domain Ω with boundary ∂Ω = Γa ∪ Γm, where we impose the following boundary

conditions: n × E = 0 on Γm, and L(E,H) = L(Einc,Hinc) on Γa where L(X, Y) = n × X − zn × (Y × n) with z =
√

µ/ε.
Here n denotes the unit outward normal to ∂Ω and (Einc,Hinc) is a given incident field. The first boundary condition is called
metallic (referring to a perfectly electric conducting surface) while the second condition is an absorbing boundary condition,
more precisely the Silver–Müller condition which is a first order approximation of the exact absorbing boundary condition.
This absorbing condition is applied on Γa which represents an artificial truncation of the computational domain.

3. DGTD method on multi-element non-conforming meshes

This section is concerned with the numerical treatment of system (5) using a DGTD method. A discontinuous Galerkin
formulation can be seen as a classical finite element method for which the global continuity of the approximation has
been lifted. This implies that the support of each basis function is restrained to a discretization cell, which leads to local
formulations implying no large mass matrix inversion if an explicit time-marching scheme is adopted. Then, connexion
between neighboring cells is restored by the use of a numerical flux as in a finite volumemethod. The form of the numerical
flux impacts themathematical properties of the resulting DGTD scheme. Both centered [7] or upwind [8] fluxes can be used.

The discontinuity of the approximation allows for several methodological improvements such as the local adaptation of
the approximation order [9], and theuse of non-conformingmeshes [10,11]. Besides, themethod is particularlywell suited to
an implementation onmodern high performance computing platforms [12]. Also, a wide choice of time integration schemes
can be used for the discretization of time derivatives, including the leap-frog and Runge–Kutta schemes. Moreover, local
time-stepping [13] as well as locally implicit formulations [14] have been extensively studied during the last years in the
discontinuous Galerkin framework. DGTD methods have now acquired a sufficient level of maturity and have successfully
penetrated several scientific and technological communities following their adaptation to increasingly complex modeling
contexts such as [15–18] among others. Worthwhile to note, the method has also been adopted for the first time in a
commercial software as the time-domain alternative of a very well known electromagnetic wave simulation tool [19]. In all
the previously mentioned works on DGTD methods, the first order (or mixed) form of the system of time-domain Maxwell
equations is considered and, within each mesh element, the electromagnetic field components are approximated by an
arbitrarily high order nodal polynomial.
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Fig. 1. Left: type of non-conformity considered in 3D (here, l = 1), between a hexahedron (q2) and two tetrahedra (t1 and t2). Middle: 2D view of the
non-conforming hybrid face between q2 and, t1 and t2. Right: other example (2D view only) of non-conformity considered, between one hexahedron and
eight tetrahedra (l = 2).

3.1. Discretization in space

We consider a discretization of the domain Ω as Ch =
N

i=1 ci = Th


Qh where the ci’s are hexahedral (∈Qh) and
tetrahedral (∈Th) elements. Moreover, we impose that the hexahedral mesh is orthogonal i.e. that it is a cartesian mesh.
The resulting mesh is hybrid and non-conforming (i.e. with hanging nodes on a common face between two elements with
different types) [11,9,10]. In this study, we assume a certain kind of non-conformity as shown in Fig. 1, i.e. we limit ourselves
to configurations such that for a given non-conforming interface, the triangular faces on one side are obtained by subdividing
the quadrangular face on the other side. In practice, we allow for an arbitrary refinement level l of the triangular faces (l = 1
and l = 2 on Fig. 1).

3.2. Definitions and notations

We introduce Pp[ci] the space of scalar polynomial functions with degree at most p in ci ∈ Th, and Qr [ci] the space of
scalar polynomial functions with degree at most r with respect to each space variable separately in ci ∈ Qh. Depending on
the case, di stands for the dimension of Pp[ci] or Qr [ci]. We seek for the discrete approximations Eh, Hh and Jp,h of E, H and
Jp, each of them being searched for in the approximation space V 3

h defined by:

Vh =


vh ∈ L2(Ω)

∀ci ∈ Th, vh|ci ∈ Pp[ci]
∀ci ∈ Qh, vh|ci ∈ Qr [ci]


. (6)

The resulting DGTDmethod will be denoted as DGTD-PpQr in the sequel. Let aik = ci ∩ ck be a common interface between ci
and ck and let us denote by Vi = {k|ci ∩ ck ≠ ∅} the set of neighboring cells of ci. We also introduce n̆ik which is the unitary
normal vector on aik directed from ci to ck, and n̆ik = (n̆1

ik, n̆
2
ik, n̆

3
ik)

T
∈ R3. We also have an equivalent notation n̆i for the

outward unitary normal to the cell boundary ∂ci.

3.2.1. Weak formulation
It is nowpossible towrite theweak formulation of the problem (5). By taking the dot-product of each termwith a vectorial

test function ψ and then integrating over cell ci, one obtains the following variational problem:


ci

∂H
∂t

· ψ +


ci

∇ × E · ψ = 0,
ci

ε∞

∂E
∂t

· ψ −


ci

∇ × H · ψ = −


ci
Jp · ψ,

ci

∂Jp
∂t

· ψ +


ci

γdJp · ψ =


ci

ω2
dE · ψ.

(7)

Using the classical Green formulae, this writes:


ci

∂H
∂t

· ψ +


ci
E · ∇ × ψ =


∂ci


E × n̆i


· ψ,

ci
ε∞

∂E
∂t

· ψ −


ci
H · ∇ × ψ = −


ci
Jp · ψ −


∂ci


H × n̆i


· ψ,

ci

∂Jp
∂t

· ψ +


ci

γdJp · ψ =


ci

ω2
dE · ψ.
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We now define a set of scalar basis functions φij (1 ≤ j ≤ di) on the cell ci. Since the test functions are to be naturally chosen
as vectorial elements, one should define three vectorial basis functions (for the three space dimensions) for each scalar one.
We therefore introduce:

φ1
ij =


φij
0
0


, φ2

ij =

 0
φij
0


and φ3

ij =

 0
0
φij


.

We denote by Ei the restriction of Eh to the cell ci, i.e. Ei = Eh|ci , where Ei is locally expanded as:

Ei =

3
m=1

di
j=1

Em
ij φ

m
ij ,

with similar expressions for Hi and Jp,i. We now choose the test functions ψ to be the 3 di vectors φm
ij for 1 ≤ m ≤ 3

and 1 ≤ j ≤ di. Then, since the approximate fields Eh and Hh are allowed to be discontinuous across element boundaries,
a specific treatment must be introduced when evaluating such a field at a cell boundary. In the context of finite volume
methods, this leads to the notion of numerical flux. In the present study, we choose to use a centered approximation to
evaluate Eh|aik , i.e. ∀i, ∀k ∈ Vi we set Eh|aik = (Ei|aik + Ej|aik

)/2 (a similar treatment is applied to Hh). Taking into account
the previous definitions, one obtains the following 9 di scalar equations:


ci

∂Hi

∂t
· φm

ij +


ci
Ei · ∇ × φm

ij =


k∈Vi


aik


φm

ij ×
Ei + Ek

2


· n̆ik,

ci
ε∞

∂Ei

∂t
· φm

ij −


ci
Hi · ∇ × φm

ij = −


ci
Jp,i · φm

ij −


k∈Vi


aik


φm

ij ×
Hi + Hk

2


· n̆ik,

ci

∂Jp,i
∂t

· φm
ij +


ci

γdJp,i · φm
ij =


ci

ω2
dEi · φ

m
ij .

Performing an integration by parts on the surface integrals leads to:


ci

∂Hi

∂t
· φm

ij = −
1
2


ci


Ei · ∇ × φm

ij + ∇ × Ei · φ
m
ij


+

1
2


k∈Vi


aik
φm

ij ·

Ek × n̆ik


,

ci
ε∞

∂Ei

∂t
· φm

ij =
1
2


ci


Hi · ∇ × φm

ij + ∇ × Hi · φ
m
ij


−


ci
Jp,i · φm

ij −
1
2


k∈Vi


aik
φm

ij ·

Hk × n̆ik



ci

∂Jp,i
∂t

· φm
ij +


ci

γdJp,i · φm
ij =


ci

ω2
dEi · φ

m
ij .

(8)

3.2.2. Semi-discrete equations
The previous equations can be cast under a matrix form using the decomposition of each fields on the basis. Terms of the

type

ci

ε∞
∂Ei
∂t ·φm

ij can bewritten asMε∞

i
∂ E i
∂t withMε∞

i =

 Mε∞
i 0di×di 0di×di

0di×di
Mε∞

i 0di×di

0di×di 0di×di
Mε∞

i

 defined by its diagonal blocks
Mε∞

i


jl =


ci

ε∞φijφil and E i =

Ex,ij16j6di
Ey,ij


16j6di

Ez,ij

16j6di

 that has 3 di components. Reasoning similarly for the other terms allows to rewrite (8)

as: 

Mi
∂ H i

∂t
= −Ki E i +


k∈Vi

Sik E k,

Mε∞

i
∂ E i

∂t
= Ki H i −


k∈Vi

Sik H k − Mi J p,i,

∂ J p,i
∂t

+ γdJp,i = ω2
dEi,

where the 3 di × 3 di local stiffness matrix Ki and the 3 di × 3 dk surface matrix Sik are defined by their respective diagonal
blocks:Ki


jl =

1
2


ci


φm

ij · ∇ × φm
il + φm

il · ∇ × φm
ij


, of size di × di,Sik


jl =

1
2


aik
φm

ij ·

φm

kl × n̆ik

, of size di × dk.

(9)
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Different possibilities exist for the choice of the basis functionsφij. A common choice consists in using Lagrange polynomials,
though other choices are possible. A set of pi + 1 interpolation nodes (xj)06j6pi is defined in the cell, and the basis functions
are then the Lagrange function Lpk(x) equal to 1 on the xk node, and to 0 on all the other xj, j ≠ k.

Particular comments apply to the computation of the coefficients of the interface matrixSik. Indeed, depending on the
type of face, we shall make the following distinctions:

• Conforming internal interface. To calculate the coefficients of the interface matrix Sik for a conforming interface
aik between two tetrahedra (two hexahedra, respectively), we use a precomputed matrix on a reference triangular
(quadrangular, respectively) element and an affine mapping to deduce the matrices on physical interfaces. This
precalculated matrix does not depend on the underlying mesh but it requires that the conformity is ensured between
any two adjacent elements.

• Non-conforming (hybrid) internal interface. Asmentioned in Section 3.1, in 3D, the intersection between twoneighboring
tetrahedral and hexahedral elements necessarily presents hanging nodes. Therefore, one has to compute the interface
matrix corresponding to such a hybrid and non-conforming interface using an appropriate numerical integration
procedure. Given the type of non-conformity that we allow in the meshing process (see Section 3.1), all the hybrid
interfaces are triangles. On these triangles, we use the Gauss–Legendre quadrature formulae that are fully described
in [20]. The method to calculate the matrix associated with an interface between a tetrahedron ci and a hexahedron ck
goes as follows. First, note that the surface matrixSik (cf. (9)) involves terms of the normal n̆ik as well as a (di ×dk) matrixΦik defined by: (Φik)jl =


aik

φijφkl, for 1 ≤ j ≤ di, 1 ≤ l ≤ dk. Second, we call NGL the minimal number of Gauss points
and weights necessary to obtain an exact integration of polynomials of degree ≤ 2NGL − 1. The actual computation of
the matrix Φik is of the form:Φik ≃ P1B


P2T ,

with: (P1)jl = φij(xl), for 1 ≤ j ≤ di and 1 ≤ l ≤ NGL,

(P2)jl = φkj(xl), for 1 ≤ j ≤ dk and 1 ≤ l ≤ NGL,

(B)ll = ωl and (B)jl = 0 if j ≠ l, for 1 ≤ j, l ≤ NGL,

where xl and ωl are respectively the points and weights of Gauss–Legendre method. The matrices P1 and P2 are
respectively of size of di × NGL and dk × NGL, the matrix B is diagonal and of dimension NGL × NGL.

• Boundary interface. For the boundary cells i.e. for interfaces located on the discretization of Γ , we consider that ck is a
fictitious cell andWk is defined according to the boundary conditions that are set on Γ . For instance, if aik ∈ Γm we set:

Ek
Hk


=


−I3×3 03×3
03×3 I3×3


Ei
Hi


, i.e.


Ek
Hk


=


−Ei
Hi


.

If aik ∈ ∂Γa we set:
Ek
Hk


=


03×3 ZiNik

−Z−1
i Nik 03×3


Ei
Hi


+


I3×3 −ZiNik

Z−1
i Nik I3×3


Einc
i

Hinc
i


,

where Nik =


0 n̆3ik −n̆2ik

−n̆3ik 0 n̆1ik
n̆2ik −n̆1ik 0


and


Einci
Hinc
i


is a given incident field.

3.3. Time integration

A second-order leap-frog scheme (LF2) is used for time integration. In doing so E i is evaluated at time station tn = n∆t ,

whereas H i, J p,i are evaluated at time station tn+
1
2 =


n +

1
2
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2


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2
p,i + J
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2

p,i


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(10)

Note that different time discretization can be used, like a fourth-order leap frog (LF4) scheme or fourth-order Runge–Kutta
(RK4) scheme, under their respective stability conditions.
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3.4. Theoretical aspects

We shall now briefly discuss some theoretical aspects concerning the previously introduced DGTD scheme, namely
stability and convergence. Compared to the standard analysis developed for pure Maxwell’s equations (i.e. for a non-
dispersive medium) and a conforming tetrahedral mesh [7], two difficulties arise. The first one is related to the dispersive
nature of the media, leading to the coupling of Maxwell’s equations with an ordinary differential equation describing the
evolution of the polarization current. The corresponding numerical analysis for a DGTDmethod formulated on a conforming
tetrahedral mesh can be found in [21]. The second difficulty relies on the hybrid nature of the mesh. For pure Maxwell’s
equations (i.e. non-dispersive) but hybrid meshes, the convergence analysis can be found in [22]. The results stated below
only rely on the combination of arguments of the two above-cited references. Thus, for clarity and in order to be as concise
as possible, we will only state the final results and point out some key points of the proofs.

The total fully discrete energy of the system is defined as ξ n
=


i ξ
n
i , where

ξ n
i =

1
2


ci
H

n+ 1
2

i · H
n− 1

2
i + ε∞


ci

∥En
i ∥

2
+

1
ω2

d


ci
J
n+ 1

2
i · J

n− 1
2

i


. (11)

Proposition 3.1. Under a CFL condition of the type ∆t ≤ Ch, the fully discrete energy ξ n is positive and bounded. The scheme is
thus stable.

Sketch of the proof: The proof relies on inverse inequalities and arguments that are standard in numerical analysis. In the
first step, one proves that the energy is a positive definite form under a CFL-like condition. There are two key points that
differ from a standard analysis here. On the one hand, the energy is split into a part relating tetrahedra cells and another
one relating hexahedra cells. Then one treats each of them separately. The added terms containing the hybrid parts have
to be treated carefully, but do not add any theoretical difficulty to the proof. On the other hand, in comparison to a pure
Maxwell problem, the polarization current energy term can also be negative. Using the ODE describing the evolution of
the polarization allows to conclude with standard arguments. The second step is to obtain a bound on the energy. Writing
a discrete energy principle using the equation describing the evolution of the field, the analysis here is quite standard and
follows [21,22]. Let us notice that due to the polarization current here, the fully discrete energy is not decreasing but remains
bounded.
Then we can also state an a priori convergence result.

Theorem 3.2 (Convergence of the Fully-Discrete Scheme). Let

H, E, Jp


be the solution of (7) and


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h , En
h, J

n+ 1
2

p,h


∈ V 9

h the

fully-discrete solution of (10). If

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
∈ C0([0, T ] ,Hs+1(Ω)9) ∩ C3([0, T ] , L2(Ω)9) for s ≥ 0, then:
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2
+ ∥E(tn) − En
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2
+ ∥Jp(tn+

1
2 ) − J
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2

p,h ∥
2
 1

2

= O(∆t2 + hmin(s,p,r)).

Sketch of the Proof. We also refer to [22,21] for details on the techniques used. Firstly, one proves the convergence of the
semi-discrete scheme as defined in (8). The proof relies on the use of an L2-interpolator (and the associated interpolation
error estimates) and inverse inequalities. The sub-optimal h-convergence rate obtained is due to the choice of a centered
fluxes formulation. Secondly, the error between the semi-discrete fields and the fully discrete ones is estimated (in the L2-
norm). To this end, one first studies the consistency error (in the ODE sense) and then, by similar energy techniques as for
the stability analysis, one is able to prove the convergence.

3.5. Practical implementation and adaptation to parallel platforms

Asmentioned previously, the basis functions φij are nodal, Lagrange polynomials. In our implementation of the proposed
DGTD-PpQr method, up to 4th order polynomials have been considered on both tetrahedra (P4) and hexahedra (Q4), which
respectively represents 35 and 125 evenly distributed degrees of freedom per element. It is interesting to remark that,
conveniently, only the degrees of freedom geometrically belonging to an interface aik couple the two elements sharing that
interface, which is an intrinsic property of Lagrange basis functions (for both tetrahedra and hexahedra). In other words, the
entries of the interface matricesSik (or Sik equivalently) involving a degree of freedom that does not belong to the interface
are equal to zero. This property can be taken into account in order to avoid unnecessarymultiplications by 0when evaluating
the elementary numerical fluxes on aik, thus saving CPU resources. For simplicity, let us define AH,i (respectively AE,i ) as the
right hand side of the first (respectively the second) equation of system (10). The time advancing procedure itself consists,
first, in advancing Eh, to time (n + 1)∆t which is based on the following 3 steps sequence—where Hk and Jp,i are given at
time (n + 1/2)∆t:
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Table 1
Characteristics of the tetrahedral and hybrid hexahedral–tetrahedral meshes used for
the simulation of the scattering of a plane wave by a single nanosphere.

Method # vertices # tetra # hexa # d.o.f Volume

DGTD-P2 148,618 881,154 0 8,811,540 4.2×10−21 m3

DGTD-P2Q2 93,346 342,499 32,256 4,295,902 8.0×10−21 m3

1. Loop over the conforming interfaces aik – triangles and quadrangles – of the mesh, and apply the square matrix Sik
(respectively Ski) to the unknown field Hk (respectively Hi). Add this contribution to the global flux AE,i (respectively
add it to AE,k ).

2. Loop over the non-conforming interfaces aik – triangles – of the mesh, and apply the rectangular 3di × 3dk matrix Sik
(respectively 3dk × 3di matrix Ski) to the unknown field Hk (respectively Hi). Add this contribution to the global flux AE,i
(respectively add it to AE,k ).

3. Loop over the cells ci and apply Ki to the unknown field Hi. Add this contribution to AE,i . Then, during the same run,
after the computation of the stiffness step is complete, apply the inverse of the mass matrix Mε∞

i . Finally, if ci lies in a
dispersive material, add the contribution of the current, Jp,i, to AE,i .

Then, Hh is advanced to time (n+ 3/2)∆t in a symmetrical manner (except that no current is involved). Finally, the current
Jp,h is advanced to time (n + 3/2)∆t . For this, note that as the formulation is local, no matrix–vector product is involved.

Besides, the implementation of the proposed DGTD-PpQr method has been adapted to distributed memory parallel
computing platforms by adopting a coarse grain parallelization strategy combining a partitioning of the mesh into K
submeshes using the MeTiS [23] library and a message passing programming with the MPI standard. In this strategy, each
of the K submeshes is treated by a single computing unit (core). A particular concern for this kind of heterogeneous space-
discretization method is found in obtaining a partitioning that is sufficiently well-balanced in terms of computational load
per subdomain in order to observe a satisfying scalability. However, it is possible to assign heterogeneous weights to the
cells of the mesh that MeTiS will use to distribute the computational load as evenly as possible between the subdomains. A
straightforward choice having given convincing results so far for the DGTD-PpQr method is to define these weights as the
number of DOF for each cell. Once the K -way partitioning is achieved, it is necessary to build communication lists including
the corresponding artificial faces of each subdomain. For this preprocessing step, the non-conforming interfaces need to be
taken into account cautiously. In fact, a non-conforming quadrangular artificial face of a given subdomain may correspond
to several non-conforming triangular faces, possibly belonging to different submeshes. Consequently, these quadrangular
faces may appear more than once throughout the communication lists.

4. Numerical and performance results

4.1. Near-field resonance of an Au-nanosphere

In order to validate the method and conduct a preliminary assessment of its computational efficiency, we first consider
an academic problem which consists in simulating the near-field, sub-wavelength resonance of a single 20 nm radius gold
nanosphere lying in vacuum under a plane wave excitation. For this test problem, it is possible to compare the computed
numerical solutions to an analytical one in the frequency domain, given by the Mie theory [24], which predicts a surface
plasmon resonance, e.g. a collective coherent oscillation of the electronic gas described by the Drudemodel. The source is set
as an incident plane wave polarized on the x component, incoming from the artificial domain boundary Γa and propagating

along the z axis. The incident field is given by E inc
x (t) = sin (2π fc(t − 4τ)) e−


t−4τ

τ

2
.We set fc = 576.92 THz and τ = 2.0 fs.

The physical parameters for the sphere are set to ε∞ = 1, ωd = 1.19×104 THz and γd = 141 THz. We note that in vacuum,
the wavelength is approximately 520 nm which is very large compared to the scattering structure. However, the mesh has
to be fine enough in order to correctly approximate the obstacle geometry, which has an important impact on both the
resonance pattern and amplitude. In fact, for this kind of problem, the most relevant criterion for an a priori assessment
of the accuracy of the simulation essentially resides in the geometrical approximation of the scatterer rather than in the
number of degrees of freedom per wavelength. This test problem has been simulated using a DGTD-P2 method applied on
a fully tetrahedral mesh and a DGTD-P2Q2 method applied on a non-conforming hexahedral–tetrahedral mesh. The two
meshes are partially visualized on Fig. 2 and their characteristics are summarized in Table 1. The computational domain is
artificially bounded by a 200 nm diameter sphere in the case of the fully tetrahedral mesh, and by a cube with 200 nm side
length in the case of the non-conforming hexahedral–tetrahedral mesh. In both cases we compute the solution until the
final physical time tf = 20 fs. The time steps for the DGTD-P2 and DGTD-P2Q2 methods are ∆ttet = 13.7 × 10−5 fs and
∆thyb = 13.5 × 10−5 fs respectively.

On Fig. 3we plot the distribution of themodulus of the discrete Fourier transform at the source central frequency fc of the
electric field in the plane z = 0. We observe a very good agreement between the Mie solution and the two DGTD solutions.
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Fig. 2. Partial views of the tetrahedral and hybrid hexahedral–tetrahedral meshes used for the simulation of the scattering of a plane wave by a single
nanosphere.

a b c

Fig. 3. Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (a) Mie analytical solution
/ (b) DGTD-P2Q2 result / (c) DGTD-P2 result (the Au-sphere is hidden).

This is also observed on Fig. 4 which represents a 1D cut along the x axis, as well as, in particular, the difference between
the numerical DGTD solutions and the Mie solution.

The advantage of using a geometry conforming tetrahedral mesh is demonstrated by performing a simulation using
a uniform cartesian mesh and a DGTD-Q1 method. The underlying mesh contains 200 × 200 × 200 cells. The obtained
solution is visualized on Fig. 5 on which one can in particular notice that the maximum value of the resonance is greatly
over evaluated. Finally, performance results are given in Table 2. For each solution strategy, we partition the mesh into
4, 8 and 16 subdomains and run computations on a cluster of Intel Xeon 2.66 GHz nodes (each consisting of 8 computing
cores and 32 Gb of RAM), interconnected by an Infiniband network. The parallel speedups are satisfying, in spite of a slight
superiority of the DGTD-P2 method. There are two main reasons explaining this behavior. First, the fact that it is easier to
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Fig. 4. 1D distribution along the x axis of the difference with the Mie solution of the modulus of the electric field in the Fourier domain.

Fig. 5. Simulation of the scattering of a plane wave by a single nanosphere. Numerical illustration of the staircasing effect using the DGTD-Q1 solution
method on a uniform cartesian mesh.

Table 2
Simulation of the scattering of a plane wave by a single nanosphere.
Performance results: CPU time for 1000 iterations and parallel speedup (in
parentheses).

– Sequential 4 cores 8 cores 16 cores

DGTD-P2 7534 s (1.0) 1878 s (4.0) 966 s (7.8) 515 s (14.6)
DGTD-P2Q2 4321 s (1.0) 1179 s (3.7) 634 s (6.8) 340 s (12.7)

approach an optimal load balancing in the case of a fully tetrahedral mesh. Second, the DGTD-P2 method involves twice as
much degrees of freedom as the DGTD-P2Q2 method, thus improving the ratio of computing time to communication time.

4.2. L-shaped nanospheres waveguide

In order to illustrate the benefits of using non-conforming multi-element meshes, we now consider a more challenging
application in the field of optical and electronic engineering. The selected test problem involves an L-shaped waveguide
inspired by [25,26]. This L-shapedwaveguide is formed of seven 50 nmdiameter Au spheres in vacuum,with a 75 nmcenter-
to-center spacingwhile thewhole computational domain consists of a 550 nm× 750 nm× 400 nmparallelepipedic domain.
A Silver–Müller absorbing boundary condition is applied on the surface of this parallelepipedic domain. When excited by an
optical regime source, the interest of this setting is the sub-wavelength energy guiding, from sphere to sphere, due to the
surface plasmons coupling with each other. It follows that the geometry of the spheres should be correctly approximated in
order to avoid non-physical energy concentration phenomena in spurious wedges of themesh. Moreover, the vicinity of the
spheres should be accurately resolved in order to capture the sub-wavelength phenomena of interest. Finally, the physical
timewindowof the computation should be long enough for the phenomenon to settle. This test problemhas been simulated
using a DGTD-P2 method applied on a fully tetrahedral mesh and a DGTD-P2Q2 method applied on a non-conforming
hexahedral–tetrahedral mesh. The twomeshes are partially visualized on Fig. 6 and their characteristics are summarized in
Table 3. The source term is a dipole localized in the tetrahedral subdomain, 75 nm away from the center of the first sphere in
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Fig. 6. Partial views of the tetrahedral and hybrid hexahedral–tetrahedral meshes used for the simulation of the L-shaped waveguide.

Table 3
Characteristics of the tetrahedral and hybrid hexahedral–tetrahedral
meshes used for simulation of the L-shaped waveguide.

– # vertices # tetra # hexa # d.o.f

DGTD-P2 222,175 1,306,356 0 13,063,560
DGTD-P2Q2 211,214 706,012 81,280 9,264,660

Table 4
Simulation of an L-shaped waveguide. Performance results: CPU time to reach 1 fs and parallel
speedup (in parentheses).

– 8 cores 16 cores 32 cores 64 cores 128 cores

DGTD-P2 11420 s (1.0) 5710 s (2.0) 2800 s (4.1) 1455 s (7.8) 762 s (15.0)
DGTD-P2Q2 5680 s (1.0) 2804 s (2.0) 1439 s (3.9) 848 s (6.7) 494 s (11.5)

the guide. This dipolar source amounts to imposing a current density of the form Jx(x, y, z, t) = δ(x− xs, y− ys, z − zs)f (t)
with f (t) =


1 − e−(t/α)2


sin (2π fc t) where the central frequency is fc = 622.65 THz, γ = 2.5 × 1016, and α = 2.5833 fs.

The parameters of the Drudemodel for the Au nanospheres are ε∞ = 1,ωd = 6.79×103 THz and γd = 2.5×102 THz. Time
steps for these simulations are∆thyb = 3.9×10−4 fs and∆ttet = 3.7×10−4 fs. Performance results are given in Table 4 for
up to 128 cores, on the cluster system already used for the previous test problem. Here again, a better scalability is observed
with the DGTD-P2 method although the DGTD-P2Q2 strategy remains significantly faster. Fig. 7 shows the physical results
in the form of contour lines of the Ez component on the z = 0 plane, first, after 6.02 fs as the resonances start to settle, and
second, after 34.13 fs as the phenomenon is well-established. Once more, the agreement between the two solutions is very
satisfying. In fact, the contour lines of the P2Q2 solution appears to be smoother than the P2 solution, which suggests that
the fully tetrahedral mesh should be even finer for a better comparison.

5. Conclusion

In this paper, we have presented a non-conformingmulti-element (tetrahedra/hexahedra) DGTDmethod for the solution
of the system of 3D Maxwell–Drude equations. This numerical methodology is based on nodal Lagrange basis-functions,
centered numerical fluxes and an explicit second order leap-frog time integration scheme. It has been implemented in a
distributed memory parallel framework, relying on the MPI standard and the domain partitioning based SPMD strategy.
We have shown that first, the meshing flexibility in this method offers a practical interest: it allows to accurately solve
the neighborhood of the scattering objects while reducing the number of degrees of freedom in the rest of the domain,
thus saving computational resources, without sacrificing numerical precision. Second, the use of a non-conforming multi-
element mesh does not yield a prohibitive degradation of the parallel performances as compared to a fully tetrahedral
mesh methodology. Ongoing and future works include, from a modeling point of view, the extension of this numerical
methodology to more general physical dispersion models (non-local models, non-linear models). From the methodological
point of view, many topics remain to be explored, such as local time-stepping methods, as well as the adaptation to the use
of curved-elements, P2 meshes, and the adaptation of the parallelization strategy in view of exploiting massively parallel
systems.
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a b c

Fig. 7. Simulation of an L-shaped waveguide. X-Polarization case: Ex component of the electric field. (a): DGTD-P2Q2 solution at time t = 6.02 fs. (b):
DGTD-P2Q2 solution at final time tf = 34.13 fs. (c): DGTD-P2 solution at final time tf = 34.13 fs.
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