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a b s t r a c t

We consider the space of rational functions of degree n with a common denominator. It is
shown that – in addition to the standard rational de Casteljau algorithm – the correspond-
ing rational Bézier curves admit up to n! different de Casteljau-type algorithms, depending
on the ordering of the elementary factors of the polynomial. Our observations generalize re-
cent results of Han et al. (2014), which cover the case of denominators of the form

n
i=1(1−

t + qi−1t) where q is a positive constant, to rational curves with general denominators.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rational Bézier and B-spline curves and surfaces are one of the standard representations for free-form geometry in Com-
puter Aided Design and Geometric Modeling [1–3]. The use of rational representations allows the exact description of conic
sections and quadric surfaces (including spheres and cylinders), which are of fundamental interest for various applications.

Bernstein polynomials and B-splines form bases with optimal properties for the spaces of polynomials and spline
functions of given degree (and knots in the case of spline function). The spaces of rational (spline) functions with a common
denominator are spanned by basis functions with similar properties, which are constructed by collecting rational Bernstein
functions or NURBS (Non-Uniform Rational B-splines) basis functions.

In a recent paper, Han, Chu and Qiu [4] consider rational functions with denominators of the form
n

i=1(1 − t + qi−1t)
where q is positive a real constant. Based on an operator that has been introduced by Lupaş [5], they introduce a system of
rational basis functions that sharemany properties with Bernstein polynomials. The Lupaş q-analogue of Bernstein operator
is obtained by replacing the usual binomials with their generalized version based on powers of a fixed real number q, see
[4,5] for details.

It is the scope of this short paper to show that similar results are available for a wider class of spaces of rational functions
and to analyze the close relations to the standard approach in Computer Aided Geometric Design, which relies on the use of
rational Bernstein functions. We shall see that this leads to several new de Casteljau-type evaluation algorithms for rational
Bézier curves. While the immediate practical significance of these new algorithms is rather low, these observations might
motivate more detailed investigations of nested spaces spanned by bases that are connected by simple recurrence relations
to admit de Casteljau-type algorithms. This should extend some of the benefits of using Bernstein–Bézier representations,
such as numerically stable evaluation algorithms, to more general spaces of functions. Such investigations would have a
similar scope as the exploration of blossoming for non-polynomial functions [6].
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More precisely, the present paper shows how the observations from [4] can be extended to spaces of rational functions
with more general denominators, simply by using rational Bernstein functions. More precisely, we consider nested spaces
of rational functions, obtained by successively multiplying the denominator with linear factors and raising the degree of the
denominator.We derive recurrence formulas for theweights and basis functions of these spaces. Based on these recurrences
it is observed that each ordering of the denominator factors provides a de Casteljau-type algorithm for curves expressedwith
respect to this basis.

2. Rational Bernstein functions

We consider an infinite sequence of linear factors

Li(t) = ai(1 − t) + bit, i ∈ Z+, (1)

which are defined by the real coefficients ai and bi, (ai, bi) ≠ (0, 0). If all coefficients are positive, then these factors do not
possess roots in the interval [0, 1]. Some of these factors may degenerate to constants. This is the case if the coefficients
satisfy ai = bi.

For any positive integer n, we denote the product of the first n factors by

ωn(t) = L1(t) · . . . · Ln(t).

The product is a polynomial of degree at most n. It possesses a unique representation

ωn(t) =

n
i=0

wn
i β

n
i (t)

with respect to the Bernstein polynomials βn
i (t) =

 n
i


t i(1 − t)n−i of degree n. Following the usual approach in Computer

Aided Geometric Design [1–3], the coefficients of this representation are called theweights. A simple computation confirms
that

wn
i =

1 n
i


 

K∪L={1,...,n}
|K |=(n−i),|L|=i


k∈K

ak

l∈L

bl

 . (2)

Consequently, if all coefficients ai and bi are positive, then so are the weights.
The weights are used to define the rational Bernstein functions

ρn
i (t) =

wn
i β

n
i (t)

ωn(t)
. (3)

Note that these functions depend only on the ratios of ai : bi, i.e., they do not change if we replace (ai, bi) with (λiai, λibi),
where λi is a non-zero real number. Moreover if ai · bi ≤ 0, then Li(t) and consequently the basis functions will have a root
within the interval [0, 1]. For these reasons, in applications the coefficients (ai, bi) will be positive.

If all weights are non-zero, then these functions span the space of rational functions of degree nwith denominatorωn(t),

Rn
= span{ρn

i (t) | i = 0, . . . , n} = {P(t)/ωn(t) | P(t) ∈ Πn(t)}, (4)

where Πn(t) is the space of polynomials of degree n. These spaces are nested, i.e. Rn−1
⊂ Rn.

We extend these definitions to include the case n = 0 by defining

ω0(t) = ρ0
0 (t) = 1.

Consequently, R0 is the linear space of constant functions. Moreover, the functions in (3) are defined for all integers i by
setting of wn

i = 0 and ρn
i (t) = 0 whenever i < 0 or i > n.

The rational Bernstein functions possess several useful properties, which are similar to the properties of the ‘‘Lupaş
q-analogues of the Bernstein functions’’ [4]:

Proposition 1. (i) Non-negativity: If all coefficients ai, bi are positive, then ρn
i (t) ≥ 0 for t ∈ [0, 1].

(ii) Partition of unity:
n

i=0 ρn
i (t) = 1 almost everywhere.1

(iii) Endpoint interpolation: If all coefficients ai, bi are non-zero, then ρn
i (0) = δi0 and ρn

i (1) = δin.
(iv) Inverse property: ρn

i (t) = ρ̂n
n−i(1 − t), where ρ̂ are the basis functions defined in an analogous way using the linear factors

L̂i(t) = bi(1 − t) + ait.
(v) Reducibility: We obtain the classical polynomial Bernstein basis when ai = bi = 1.

The proofs of these observations follow directly from the definition of the rational Bernstein functions.

1 Except for the roots of ωn(t).
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3. Recurrence relations

Before establishing recurrence relations, we need to analyze the weights in more detail.

Proposition 2. The weights satisfy the recurrence formula

wn
i = an

(n − i)
n

wn−1
i + bn

i
n

wn−1
i−1 . (5)

Proof. The recurrence of the denominators

ωn(t) = ωn−1(t) Ln(t) (6)

implies the equation
n

i=0

wn
i β

n
i (t) =


n−1
i=0

wn−1
i βn−1

i (t)


[an(1 − t) + bnt],

from which we obtain

wn
i β

n
i (t) = an(1 − t)wn−1

i βn−1
i (t) + bntwn−1

i−1 βn−1
i−1 (t). (7)

Dividing both sides by βn
i (t) gives (5). �

Based on these observations we derive a recurrence relation for the rational Bernstein functions.

Proposition 3. The rational Bernstein functions satisfy the recurrence formula

ρn
i (t) =

an(1 − t)
Ln(t)

ρn−1
i (t) +

bnt
Ln(t)

ρn−1
i−1 (t). (8)

Proof. Combining (6), (7) and (3) confirms (8). �

This recurrence will be used in the next section to derive a de Casteljau-type algorithm for evaluating rational Bézier
curves.

Note that there are infinitely many formulas expressing ρn
i as a (non-constant) linear combination of ρn−1

i and ρn−1
i−1 .

More precisely we have

ρn
i (t) =

n
n − i

(1 − t)
Ln(t)

wn
i

wn−1
i

ρn−1
i (t), (9)

ρn
i (t) =

n
i

t
Ln(t)

wn
i

wn−1
i−1

ρn−1
i−1 (t) (10)

and any affine combination of (9) and (10) provides a valid formula.
As we shall see in the next section, Eq. (8) can be used to derive a de Casteljau-type algorithm, since the coefficients on

the right-hand side are independent of i. Among all affine combinations of (9) and (10), the recurrence (8) is the only one
with this property.

Another formula expresses each rational Bernstein function of degree n in terms of two functions of degree n+1, thereby
confirming the nested nature of the spaces Rn.

Proposition 4. The rational Bernstein functions satisfy

ρn
i (t) = an+1

n + 1 − i
n + 1

wn
i

wn+1
i

ρn+1
i (t) + bn+1

i + 1
n + 1

wn
i

wn+1
i+1

ρn+1
i+1 (t). (11)

Proof. Expressing ρn+1
i+1 (t) using Eq. (10) and ρn+1

i (t) using Eq. (9) leads to the formula. �

This result allows to formulate an algorithm for degree elevation. Due to the linear independence of the rational Bernstein
functions, there exists only one formula of this kind.

4. de Casteljau-type algorithms

Given the control points P0, . . . , Pn ∈ Rd for some dimension d, we define a rational Bézier curve in Rd,

c(t) =

n
i=0

Piρn
i (t).
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If the weights are positive, then a rational Bézier curve possesses the convex hull property and shape-preserving properties,
i.e., it is variation diminishing and convexity preserving [7, p. 112]. This includes the case of a rational Bézier curve with
weights defined by linear factors (1) with positive constants ai and bi. In particular, this also covers curves defined by the
‘‘Lupaş q-analogues of the Bernstein functions’’ as observed – independently of the shape-preserving properties of rational
Bézier curves – in [4].

Definition 5. For any given value of t ∈ [0, 1], the de Casteljau-type algorithm defines recursively the points

P0
i (t) = Pi, for i = 0, . . . , n;

P j
i (t) =

aj(1 − t)
Lj

P j−1
i (t) +

bjt
Lj

P j−1
i+1 (t), for j = 1, . . . , n and i = 0, . . . , n − j. (12)

Proposition 6. The points defined in the de Casteljau-type algorithm satisfy

P j
i (t) =

j
k=0

Pi+kρ
j
k(t). (13)

In particular we have Pn
0 (t) = c(t).

Proof. We proceed by mathematical induction. For j = 0 we get (13) by the convention ρ0
0 (t) ≡ 1. For the induction step

we obtain

P j
i (t) =

aj(1 − t)
Lj

P j−1
i (t) +

bjt
Lj

P j−1
i+1 (t)

=
aj(1 − t)

Lj


j−1
k=0

Pi+kρ
j−1
k (t)


+

bjt
Lj


j−1
k=0

Pi+k+1ρ
j−1
k (t)



=

j
k=0

Pi+k


aj(1 − t)

Lj
ρ
j−1
k (t) +

bjt
Lj

ρ
j−1
k−1(t)


=

j
k=0

Pi+kρ
j
k(t),

where the last equality follows from (8). �

The maximum number of different de Casteljau-type algorithms of this form is n! (This is a factorial, not an exclamation
mark!). Indeed, if all linear factors are different, then their permutations define the different algorithms. Note that all these
de Casteljau-type algorithms are different from the standard rational de Casteljau algorithm, see Example 9.

For each step (12) of these algorithms, the ratio used to generate the new point from the two existing ones is the same
for all i. This is different from the standard de Casteljau algorithm (see Fig. 4), where a different ratio is used in each linear
combination.

Our approach can be extended to quadratic elementary factors of the denominator as follows. Consider linear factorswith
complex coefficients. If two consecutive linear factors are complex conjugate, then their product is real and the composition
of the corresponding two steps in the de Casteljau-type algorithms gives linear combinations with real coefficients. This
leads to a de Casteljau-type algorithm also for quadratic elementary factors, since these can be split into two adjacent
complex conjugate linear factors. Consequently, we can extend this approach to rational curves with any denominator.
We demonstrate this approach by applying it to one example, see Example 10.

Finallywenote that the rational de Casteljau-type algorithmdescribed inDefinition 5 provides a geometric interpretation
for the influence of the constants ai, bi to the shape of the curve, cf. Fig. 1.Without loss of generality,we consider the constants
an, bn associated with the last linear factor, as we can always reorder the linear factors. In the final step we generate a blend
curve between the two curves Pn−1

0 (t) and Pn−1
1 (t). Both curves are rational Bézier curveswith the sameweights (determined

by the first n − 1 linear factors) but with different control polygons. The control points of the first and second curves are
P0, . . . , Pn−1 and P1, . . . , Pn, respectively. The ratio an/bn determines the influence of both curves to the final result. If it is
equal to one, then the final curve is simply a linear blending curve between the two curves. For larger or smaller values, it
remains closer to the first or to the second curve, respectively. A similar but less intuitive interpretation (as a blend between
three curves) can be given in the case of two complex conjugate linear factors.

5. Examples

We present several examples that illustrate the findings of this paper.

Example 7. For the special choice ai = a, bi = b we obtain wn
i = an−ibi. In this case, the rational basis functions are the

Bernstein polynomials composed with a rational reparametrization of degree 1 that maps the boundaries of the interval
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Fig. 1. Geometric interpretation of the ratio an/bn for a cubic rational Bézier curve. The last step of the de Casteljau-type algorithm generates a blend
between the two quadratic rational Bézier curves (shown as dashed lines), which are defined by the first three and by the last three control points.
Depending on the ratio an/bn , the cubic curve (shown as solid line with different colors) follows the first (dashed red) or the second (dashed green)
quadratic curve more closely. The picture shows the curves obtained for the ratios 20 (red), 1 (blue) and 1/20 (green). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

[0, 1] onto itself. More precisely we get

ρn
i (t) = βn

i


bt

a(1 − t) + bt


. �

Example 8. For the special choice ai = 1, bi = qi−1, where q is a positive real number we get the ‘‘Lupaş q-analogues of
the Bernstein functions’’, which were considered earlier in [4]. The authors of that paper observed that the weights admit a
particularly nice closed-form representation in this case. �

Example 9. Consider three linear factors

L1(t) = 3(1 − t) + t, L2(t) = 6(1 − t) + 5t, L3(t) = 1(1 − t) + 3t.

We obtain the weights

w1
0 = 3, w1

1 = 1

w2
0 = 18, w2

1 =
21
2

, w2
2 = 5

w3
0 = 18, w3

1 = 25, w3
2 =

68
3

, w3
3 = 15.

The corresponding cubic rational basis functions ρ3
i (t) are displayed in Fig. 2. We consider a curve with control points

P0 = [0, 0], P1 = [−1, 1], P2 = [2, 3], P3 = [1, 0].

The de Casteljau-type algorithm for t = 1/2 generates the points P j
i

j\i 0 1 2 3
0 [0, 0] [−1, 1] [2, 3] [1, 0]

1 [−
1
4 ,

1
4 ] [−

1
4 ,

3
2 ] [

7
4 ,

9
4 ]

2 [−
1
4 ,

9
11 ] [

29
44 ,

81
44 ]

3 [
19
44 ,

279
176 ],

which are displayed in Fig. 3, top left. The five additional permutations of the factors L1, L2 and L3 lead to five further de
Casteljau-type algorithms that generate the same curve point.

Note that these algorithms do not provide the tangent property of the classical de Casteljau algorithm in general, i.e., the
line connecting the last two points is generally not tangent to the curve. Similarly, these algorithms do not have a subdivision
property in general and cannot be used to split the curve. In contrast, algorithms obtained using the blossoming approach
(cf. [8]) possess these properties. �
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Fig. 2. The rational Bernstein functions of degree three from Example 9 (black) compared to the Bernstein polynomials (gray).

Fig. 3. Six different de Casteljau-type algorithms for value t = 1/2.

Example 10. Consider four linear factors

L1(t) = L2(t) = (1 − t) + 2t, L3(t) = L4(t) = −(1 + 3i)(1 − t) + (1 − i)t.

The factors L1 and L2 are real and identical, and the factors L3 and L4 are complex conjugate. The corresponding quartic
rational basis functions are thus real with the last row of weights being

w4
0 = 10, w4

1 = 11, w4
2 =

29
3

, w4
3 = 6, w4

4 = 8.

We consider a curve with the control points

P0 = [−1, 0], P1 = [−1, 3/2], P2 = [0, 2], P3 = [1, 3/2], P4 = [1, 0].
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Fig. 4. The standard rational de Casteljau algorithm for value t = 1/2.

Fig. 5. Three different de Casteljau-type algorithms for value t = 2/3 for a rational curve with two complex conjugate linear factors in the denominator.
Some of the intermediate control points are located on quadratic rational curves, since we had to merge two steps of the algorithm.

We can still apply the de Casteljau-type algorithms as in the previous example. After the step corresponding to one complex
factor we get complex control points, which become real again after the step corresponding to the complex conjugate. We
display in Fig. 5 the three de Casteljau-type algorithms which are obtained by performing the two complex conjugate steps
immediately one after the other.

More precisely, if the two linear factors Lj+1(t) and Lj+2(t) are complex conjugate, then the points P j+2
i (t) lie on a conic

section (a quadratic rational curve) with the control points P j
i (t), P

j
i+1(t), P

j
i+2(t) and the weights determined by the de-

nominator Lj+1(t) · Lj+2(t). These quadratic curves are plotted in Fig. 5 at the corresponding places in the de Casteljau-type
algorithm. �

6. Conclusion

We have analyzed nested spaces of rational functions, obtained by successively multiplying the denominator with linear
factors. We were able to determine the recurrence formulas for weights and basis functions of these spaces. Each ordering
of the denominator factors provides a de Casteljau-type algorithm for curves expressed with respect to these rational basis.

The algorithms can be extended in a straightforward way to the case of tensor-product patches. Indeed, in this case each
variable is handled separately. Future research could be devoted to triangular rational patches with denominators that have
only linear elementary factors, and to rational spline curves and surfaces.
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