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1 Introduction

We consider the existence and uniqueness of positive monotone solutions to a class

of nonlinear Schrödinger equations in planar exterior domains

∆y + g(|x|)b(y) = 0, (1.1)

where |x| ∈ ED, g(|x|) ∈ Cλ
loc(ED, R), λ ∈ (0, 1), b(y) ∈ Cλ

loc(R,R) (locally Hölder

continuous), and we denote ED = {x ∈ R2 : |x| > D}, SD = {x ∈ R2 : |x| = D},
for D > 0.

Nonlinear differential equations arise in a variety of different areas of applied

mathematics and physics (see, e.g. [10]-[20]). Recently, boundary value problems

for differential equations on the infinite domain have received much attention; and
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for details we refer the reader to Dubé and Mingarelli [2], Wahlén [19], Yao and Lü

[21], Yao [22], [23] and the references therein. Many results relevant to the study

of equation (1.1) have been achieved in recent years.

By making use of the classical variational principle, Buffoni et al [1] established

the condition for the existence and conditional energentic stability of the three-

dimensional fully localised solitary gravity-capillary water waves governed by





φxx + φyy + φzz = 0, 0 < y < 1 + η,

φy = 0, y = 0,

ηt = φy − ηxφx − ηzφz, y = 1 + η,

φt = −1

2

(
φ2
x + φ2

y + φ2
z

)
− η

+ β

[
ηx√

1 + η2
x + η2

z

]

x

+ β

[
ηz√

1 + η2
x + η2

z

]

z

, y = 1 + η

where the function η relies on the two horizontal spatial directions z and x; β =

σ/gh2 in which h is the depth of the water in its undisturbed state and g is the

acceleration due to gravity; and σ > 0 is the coefficient of surface tension.

Groves and Wahlén [7] established the existence and conditional energetic sta-

bility of solitary water waves with weak surface tension. Groves and Wahlén[8]

presented an existence theory for small-amplitude Stokes and solitary gravity water

waves solutions to the classical water-wave problem with an arbitrary distribution

of vorticity. Wahlén [4] studied the governing equations for a Hamiltonian formu-

lation of water waves with constant vorticity, and the results obtained generalized

the well-known formulation established by Zakharov. Groves, Sun and Wahlén [9]

showed the existence of three-dimensional periodically modulated solitary waves

which are periodic in the transverse direction and have a solitary-wave profile in

the direction of propagation. Lair [11] gave a necessary and sufficient condition for

the existence of large solutions to a class of sublinear elliptic systems. It is well

known that many elliptic equations arise from physical phenomena.

Takahashi [18] studied the following elliptic systems





−∆u+ u = 0, on Ω,

u > 0, on Ω,

∂u

∂ν
= up on ∂Ω,

(1.2)

where Ω is a bounded smooth domain in R2, p > 1 is any positive number, ν is the

outer unit normal vector to ∂Ω. The author considered the asymptotic behavior
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of least energy solutions to the problem (1.2) and showed that the least energy

solutions remain bounded uniformly in p.

Li and Zhang et al [16] showed the existence of entire positive radial solutions

to the following elliptic system

{
∆u = p(|x|)f(v), x ∈ RN (N ≥ 3),

∆v = q(|x|)g(u), x ∈ RN ,
(1.3)

where p, q, f, g : R −→ R are continuous, in which R := [0,+∞).

Feng [5] investigated the existence, uniqueness and exact asymptotic behavior

of solutions of semilinear elliptic problems with boundary blow-up of the form

{
−∆u = λg(u)− b(x)f(u), in Ω,

u = +∞ on ∂Ω,
(1.4)

where λ ∈ N,Ω is a smooth bounded domain of R, and b(x) ∈ Cα(Ω,R+) for some

α ∈ (0, 1).

Inspired and motivated by the works mentioned above, in this work we consider

the existence of positive solutions to the nonlinear Schrödinger equations (1.1) in

planar exterior domains. We shall first prove that problem (1.1) has a monotone

positive solution, and then construct a weighted norm. Finally, by employing the

Banach fixed point theorem, some sufficient conditions guaranteeing the existence

of a unique positive monotone solution are established for the nonlinear Schrödinger

equations (1.1) in planar exterior domains. We should address here that our new

results extend and complement some known results.

The rest of the article is organized as follows. In section 2, the main results and

proofs are presented. Then some examples are given in section 3 to demonstrate

the application of our main results, followed by some discussion in section 4.

2 Main results

For all L > 0, denote BL = {y ∈ C([m1,+∞)) : 0 ≤ y(t) ≤ L, t ≥ m1 > 0}.

Throughout the paper we make the following assumptions:

(A1) g ∈ C([m1, +∞), [0, +∞)), b ∈ C([0, +∞), [0, +∞)), and b(y) satisfies the

locally Lipschitz condition;

(A2) 0 <
∫ +∞
m1

t ln
(

t
m1

)
g(t)dt < +∞;

(A3) there exists a constant c such that 0 ≤ lim sup
y→0+

b(y)
y
< 1

c
.
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(A4) ∫ r

m1

1

t

∫ t

m1

sg(s)b(y(s))dsdt < +∞.

Denote

M1 =

∫ r

m1

1

t

∫ t

m1

sg(s)b(y(s))dsdt. (2.1)

Lemma 2.1. Equation (1.1) can be changed into the following equation

ry′′(r) + y′(r) + rg(r)b(y(r)) = 0 (2.2)

on [m1, +∞).

Proof. Let y = y(r), where r =
√
s2 + t2. Then

∂y

∂s
=
dy

dr
· ∂r
∂s

=
s

r
· dy
dr

=
s

r
· y′(r), ∂y

∂t
=
t

r
· y′(r),

∂2y

∂s2
= (

∂2y

∂r2
· ∂r
∂s

)
s

r
+
∂y

∂r
(
1

r
− s

r2
· ∂r
∂s

) =
d2y

dr2
· s

2

r2
+
dy

dr
(
1

r
− s2

r3
),

By the same way, we have

∂2y

∂t2
=
d2y

dr2
· t

2

r2
+
dy

dr
(
1

r
− t2

r3
).

Therefore

∆y =
∂2y

∂s2
+
∂2y

∂t2
=
d2y

dr2
· s

2 + t2

r2
+
dy

dr
(
2

r
− s2 + t2

r3
) =

d2y

dr2
+
dy

dr
· 1

r
.

Then

∆y + g(|r|)b(y(r)) = 0⇐⇒ ry′′(r) + y′(r) + rg(r)b(y(r)) = 0, r ∈ R2.

Thus finding the radial symmetric solution of equation (1.1) is equivalent to

solving equation (2.2). �

Lemma 2.2. Suppose that (A1) − (A4) hold. Let y(r) be a positive radial sym-

metric solution of equation (2.2), then y(r) is a bounded solution on [m1, +∞) and

equation (1.1) has a positive bounded radial symmetric solution.

Proof. Let z = y′, and denote y(m1) = a1. From (2.2), we have

z′(r) +
1

r
z(r) + g(r)b

(
a1 +

∫ r

m1

z(s)ds

)
= 0. (2.3)

Using the formula of variation of constants, we get a special solution of (2.3) as

follows:

z(r) =
1

r

∫ r

m1

g(t)b

(
a1 +

∫ t

m1

z(s)ds

)
dt. (2.4)
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Integrating (2.4) from m1 to r and noticing z = y′, we get

y(r) = a1 −
∫ r

m1

1

t

∫ t

m1

sg(s)b(y(r))dsdt (2.5)

By making use of (2.1), we see that y(r) in (2.5) is bounded on [m1, +∞).

Therefore equation (2.2) has a bounded solution on [m1, +∞). Thus from Lemma

2.1, equation (1.1) has a bounded solution on ED. �

Lemma 2.3. The equation (2.2) can be changed into the following equation

h′′(s) + e2sg(es)b(h(s)) = 0. (2.6)

Proof. Let r = es, then y(r) = y(es) = h(s),

h′(s) =
dy

ds
=
dy

dr
· dr
ds

= y′(r) · es, h′′(s) =
d2y

ds2
= y′′(r) · es · es + y′(r)es.

Therefore

h′′(s) + e2sg(es)b(h(s)) = 0⇐⇒ d2y

ds2
+ e2sg(es)b(y(es)) = 0

⇐⇒ y′′(r)e2s + y′(r)es + e2sg(es)b(y(es)) = 0

⇐⇒ y′′(r) +
1

r
y′(r) + g(r)b(y(r)) = 0.

This completes the proof. �

Remark 2.1. Denote a =
∫ +∞
m1

t ln
(

t
m1

)
g(t)dt. Then it follows from (A2) that

a > 0 is a constant.

Theorem 2.1. Suppose that (A1) − (A3) hold. Then equation (1.1) has a radial

positive solution.

Proof. The proof of Theorem 2.1. is divided into four steps:

(I) Firstly we show that there exists L > 0 sufficiently small such that for all

y ∈ BL, we have ∫ +∞

m1

tln

(
t

m1

)
g(t)b(y(t))dt ≤ L. (2.7)

In fact, from (A3), there exists L > 0 (L may be chosen sufficiently small) such

that for 0 ≤ y ≤ c
a
· L, we have b(y)

y
< 1

c
, that is b(y) < 1

c
y. Thus, for y ∈ BL, by

virtue of (A2), we get that

∫ +∞

m1

t ln

(
t

m1

)
g(t)b(y(t))dt ≤

∫ +∞

m1

t ln

(
t

m1

)
g(t)

1

c
y(t)dt

≤ c

a
· L
c

∫ +∞

m1

t ln

(
t

m1

)
g(t)dt = L.
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Hence,
∫ +∞
m1

t ln
(

t
m1

)
g(t)b(y(t))dt ≤ L.

(II) Choose L > 0 sufficiently small such that (2.7) holds. Define integral

operator A on BL:

(Ax)(t) = L−
∫ +∞

t

(s− t)g(s)b(x(s))ds, x ∈ BL, t ≥ m1. (2.8)

Obviously, (Ax)(t) ≥ 0, t ≥ m1. By simple computation we know that the

following conclusions hold:

(1) If x ∈ BL, then (Ax)′′(t) = −g(t)b(x), t ≥ m1, Ax ∈ BL ∩ C2(0,+∞).

(2) If x ∈ BL is a solution of equation (2.6), then Ax = x. Thus, we only need

to study the operator equation y(t) = Ay(t), t ≥ m1.

Hence, ∀x ∈ BL, t ≥ m1, from (I) we get that

0 ≤
∫ +∞

t

(s− t)g(s)b(y(s))ds ≤
∫ +∞

0

sg(s)b(y(s))ds ≤ L.

Thus, 0 ≤ Ax ≤ L. So Ax ∈ BL. Consequently ABL ⊆ BL.

It follows from (2.3) that the integral
∫ +∞
t

(s−t)g(s)b(y(s))ds is non-increasing.

Thus, if there exists a solution y(t) of the equation (2.6), then y(t) must be non-

decreasing, and y(t) → L for t → +∞. By virtue of (2.7) we get that y(t) is

nonnegative and y(t) > 0 for t > 0.

(III) From (A1), there exists a positive constant k > 0 such that |b(x)−b(y)| ≤
k|x− y| for x, y ∈ [0, L]. Define the function

f(t) := exp

{
α

∫ ∞

t

ksg(s)ds

}
, t ≥ m1, α > 2.

We then introduce the norm ‖ · ‖g on BC(R+), the space of bounded continuous

functions y : R+ −→ R+, defined by

‖y‖g = sup
t≥0

{ |y(t)|
f(t)

}
, y ∈ BC(R+).

Obviously the weighted norm ‖·‖g is equivalent to the used supremum norm on

BC(R+). Since BL is a closed subset of BC(R+) with the supremum norm ‖ · ‖BL
,

BL is also a closed subset of BC(R+) with the supremum norm ‖·‖g. Consequently,

it follows that a closed subset of a complete metric space is a complete metric space.

Hence we know that BL is a complete normed space under the corresponding norm

generated by ‖ · ‖g.

(IV) We now prove that equation (2.6) has a bounded monotone positive so-

lution. We only need to prove that A is a contraction mapping on (BL, ‖ · ‖g). For
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all x, y ∈ B, we have

| (Ax)(t)− (Ay)(t) |
f(t)

≤ 1

f(t)

∫ +∞

t

(s− t)g(s) | b(x(s))− b(y(s)) | ds

≤ 1

f(t)

∫ +∞

t

ksg(s) | x(s)− y(s) | ds

≤ 1

f(t)
‖x− y‖g

∫ +∞

t

ksg(s)f(s)ds

=
1

f(t)
‖x− y‖g

∫ +∞

t

(
− 1

α

)
f ′(s)ds

=
1

α

f(t)− 1

f(t)
‖x− y‖g ≤

1

α
‖x− y‖g.

Thus, ‖Ax− Ay‖g ≤ 1
α
‖x− y‖g, 0 < 1

α
< 1

2
. Hence, A is a contraction mapping.

Therefore, by virtue of the Banach fixed point theorem we get that equation (2.6)

has a unique bounded monotone positive solution. From Lemma 2.1. we then get

that equation (1.1) has a radial positive solution. �

Theorem 2.2. Suppose that (A1) and (A2) are satisfied. In addition, assume that

b(y) satisfies

(A5) 0 ≤ lim sup
y→+∞

b(y)
y
< 1

c
, where c is a constant.

Then equation (1.1) has a radial positive solution.

Proof. We only need to prove that there exists L > 0 (L is chosen sufficiently

large) such that
∫ +∞

m1

t ln

(
t

m1

)
g(t)b(y(t))dt ≤ L, for y ∈ BL. (2.9)

In fact, from (A5), we get that there exists K > 0, 0 < ε < 1
c

such that 0 ≤ b(y)
y
≤

ε < 1
c

for y > K. Since b(y) is continuous on [0, K], there exists a sufficiently large

number L > K such that b(y) ≤ (1
c
− ε) c

a
· L for y ∈ [0, K]. Thus, for y ∈ BL, by

virtue of (A2) we get that
∫ +∞

m1

t ln

(
t

m1

)
g(t)b(y(t))dt =

∫

0≤y(t)≤K
t ln

(
t

m1

)
g(t)b(y(t))dt

+

∫

K<y(t)≤L
t ln

(
t

m1

)
g(t)b(y(t))dt

≤
(

1

c
− ε
)
c

a
· L
∫ +∞

m1

t ln

(
t

m1

)
g(t)dt

+εL

∫ +∞

m1

t ln

(
t

m1

)
g(t)dt

≤ L.

7



Therefore,
∫ +∞
m1

t ln
(

t
m1

)
g(t)b(y(t))dt ≤ L, ∀y ∈ BL.

The rest of the proof of Theorem 2.2 is the same as the proof of Theorem 2.1,

and thus is omitted here. �

Remark 2.2. By virtue of constructing the weighted norm method, under the

integral
∫ +∞

m1

t ln

(
t

m1

)
g(t)b(y(t))dt = a < +∞,

where a may be 1, we have proved that operator A is a contraction mapping and

established that equation (1.1) has a radial positive solution.

Denote

G(r) =

∫ r

0

1

t

∫ t

0

sg(s)dsdt.

Theorem 2.3. Let

(A6) b ∈ C((0, +∞); (0, +∞)), b is non-increasing on (0, +∞), and there exist

positive constants m, M, α and α ≥ 1 such that

m := inf
y>0

b(y)

yα
> 0, M := sup

y>0

b(y)

yα
< +∞.

Then equation (1.1) has a positive entire radial solution y if and only if the function

g(t) satisfies ∫ +∞

0

1

t

∫ t

0

sg(s)dsdt = +∞. (2.10)

Proof. For a ≥ 1, r > 0 sufficiently large, the problem



y

′′
+

1

r
y′ + g(r)b(y) = 0, r > 0,

y′ ≥ 0, on [0, ∞), y(0) = a > 0
(2.11)

has a solution y in [0, +∞).

From (2.11), we have

y(r) = a−
∫ r

0

1

t

∫ t

0

sg(s)b(y(s))dsdt (2.12)

By using (2.12), we can generate a positive non-increasing sequence {yk}+∞k=0,

which is bounded above on [0, R] for any fixed R > 0.

To do this, let {yk}+∞k=0 be a sequence of positive continuous functions defined

on [0, +∞) by

y0(r) = a, yk(r) = a−
∫ r

0

1

t

∫ t

0

sg(s)b(yk−1(s))dsdt, ∀r ≥ 0. (2.13)

8



Obviously, for all r ≥ 0, we have

yk(r) ≤ a, y0(r) ≥ y1(r), · · ·

The monotonicity of b yields

y1(r) = a−
∫ r

0

1

t

∫ t

0

sg(s)b(y0(s))dsdt

≥ a−
∫ r

0

1

t

∫ t

0

sg(s)b(y1(s))dsdt = y2(r).

Repeating such arguments we deduce that

yk(r) ≥ yk+1(r), r ≥ 0, k ≥ 1.

Thus {yk}∞k=0 is a non-increasing sequence on [0,+∞).

On the other hand, from equation (2.13) and condition (A6), we have

yk(r) = a−
∫ r

0

1

t

∫ t

0

sg(s)b(yk−1(s))dsdt

= a−
∫ r

0

1

t

∫ t

0

sg(s)
b(yk−1(s))

yαk−1(s)
yαk−1(s)dsdt

≤ a−m
∫ r

0

1

t

∫ t

0

sg(s)yαk−1(s)dsdt

≤ a−m
∫ r

0

1

t

∫ t

0

sg(s)yαk−1(r)dsdt

≤ a−mG(r)yαk (r) ≤ a−mG(r)yk(r)

which implies that the sequence {yk} is also bounded on bounded intervals and

hence converges for all 0 ≤ r < +∞. Let y = lim
k→+∞

yk. It is clear that y is an

entire solution of equation (2.2), and therefore an entire solution of equation (1.1).

We now assume that (2.14) holds. Then by making use of condition (A6), we

get immediately from an easy estimate

y(r) = a−
∫ r

0

1

t

∫ t

0

sg(s)b(y(s))dsdt

= a−M
∫ r

0

1

t

∫ t

0

sg(s)yα(s)dsdt

≥ a− aαM
∫ r

0

1

t

∫ t

0

sg(s)dsdt

which implies that y(r) −→ +∞ as r −→ +∞. Therefore y is a positive entire

radial solution of equation (1.1). �

Theorem 2.4. Let

9



(A7) b ∈ C((0, +∞); (0, +∞)), b is non-increasing on (0, +∞), and there exist

positive constants m, M, α and α > 1 such that

m := inf
y>0

b(y)

yα
> 0, M := sup

y>0

b(y)

yα
< +∞.

Then equation (1.1) has a positive entire radial solution y if and only if the function

satisfies ∫ +∞

0

1

t

∫ t

0

sg(s)dsdt = +∞. (2.14)

3 Examples

Example 3.1. Consider equation

∆y +
1

ln t
e−2t sin y = 0, t ≥ 2. (3.1)

Proof. Let g(t) = 1
ln t
e−2t, t ≥ 2, b(y) = sin 2y, y ∈ [0,+∞). Obviously condition

(A1) is satisfied. Since

∫ +∞

2

t ln
t

2
· 1

ln t
e−2tdt < +∞,

condition (A2) is satisfied. Since lim
y→+∞

sin y
y

= 0, condition (A4) is satisfied. Con-

sequently, it follows from Theorem 2.2 that equation (3.1) has a positive radial

solution. �

Example 3.2. The following equation

∆y +
y5

t3 ln t
= 0, t ≥ 1, (3.2)

has a positive radial solution.

Proof. Obviously, equation (3.2) satisfies all the conditions of Theorem 2.1. There-

fore, by Theorem 2.1, equation (3.2) has a positive radial solution. �

4 Discussions on the conditions of Theorems

We discuss the conditions in this paper. It is easy to see that the functions satisfying

the conditions of the theorems are rather wide. For example, we can obtain the

following corollary:

Corollary 4.1. Suppose that all bi(y) (i = 0, 1, · · · , m) are nonnegative contin-

uous functions and satisfy the locally Lipschitz condition on [0, +∞). In addition,

if
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0 ≤ lim sup
y→+0

m∑
i=1

bi(y)

y
< 1

c
, where c is a constant.

Then the following equation

∆y + e−3t

m∑

i=1

bi(y) = 0, t > 0 (4.1)

has a radial positive solution.

Proof. Let g(t) = e−3t, b(y) =
m∑
i=1

bi(y), y ∈ [0,+∞). Obviously, condition (A1)

is satisfied. Since
∫ +∞

m

t ln
t

m
· e−3tdt < +∞,

condition (A2) is satisfied. Consequently, it follows from Theorem 2.1 that equation

(4.1) has a positive radial solution. This completes the proof. �

Corollary 4.2. For any constant α > 1, the following equation

∆y + e−6tyα = 0, t > 0. (4.2)

has a radial positive solution.

Proof. Obviously, equation (4.2) satisfies all the conditions of Theorem 2.1. There-

fore, from Theorem 2.1, equation (4.2) has a positive radial solution. This com-

pletes the proof. �

Corollary 4.3. Suppose that all bi(y) (i = 0, 1, · · · , m) are nonnegative contin-

uous functions and satisfy the locally Lipschitz condition on [0, +∞). If

0 ≤ lim sup
y→+∞

m∑
i=1

bi(y)

y
< 1

c
, where c is a constant,

then the following equation

∆y + e−7t

m∑

i=1

bi(y) = 0, t > 0 (4.3)

has a radial positive solution.

Proof. Let g(t) = e−7t, b(y) =
m∑
i=1

bi(y), y ∈ [0,+∞). Obviously condition (A1) is

satisfied. Since
∫ ∞

m

t ln
t

m
· e−7tdt < +∞,

condition (A2) is satisfied. Consequently, it follows from Theorem 2.2 that equation

(4.3) has a positive radial solution. This completes the proof. �
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Corollary 4.4. For any constant β satisfying 0 < β < 1, the following equation

∆y + e−5tyβ = 0, t > 0 (4.4)

has a radial positive solution.

Proof. Let g(t) = e−5t, b(y) = yβ, y ∈ [0,+∞). Obviously condition (A1) is

satisfied. Since
∫ ∞

m

t ln
t

m
· e−5tdt < +∞,

condition (A2) is satisfied. Consequently, from Theorem 2.2, equation (4.4) has a

positive radial solution. This completes the proof. �

Remark 4.1. The key condition in [2] requires the integral is strictly less than 1

for the existence of a positive bounded solution in E1. Here in our work, we only

require the integral to be a constant a, and the constant a may be 1. From above

discussions, it is clear that our results improve and extend the results in [2] and

[19].
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