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a b s t r a c t

The boundary and distributed shape gradients of elliptic eigenvalues in shape opti-
mization are approximated by the finite element method. We show a priori error
estimates for the two approximate shape gradients in H1 shape gradient flows. The
convergence analysis shows that the volume integral formula converges faster and offers
higher accuracy when the finite element method is used for discretization. Numerical
results verify the theory for the Dirichlet case. Shape optimization examples solved
by algorithms illustrate the more effectiveness of distributed shape gradients for the
Dirichlet case. For optimizing a Neumann eigenvalue, the boundary and volume H1 flows
have the same efficiency. Moreover, we observe that the distributed H1 shape gradient
flow is more efficient than the boundary L2 shape gradient flow in literature.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Eigenvalue problems in optimal shape design have fundamental importance for science and engineering, especially in
structural mechanics (see. e.g., [1–8]). A structure theorem was built by Zolésio for general shape functionals on general
domains. By the structure theorem, the Eulerian derivative can be expressed as a concise boundary integral. The boundary
formulation of Eulerian derivative has been used widely in numerical algorithms [4,7]. But it actually fails to hold when
the boundary is not smooth enough. The Eulerian derivative can be expressed as a domain integral, which is more general
than the boundary formulation [4]. These two formulations of Eulerian derivatives are equivalent through integration by
parts if the boundary is regular enough.

The effectiveness and high accuracy of the boundary Eulerian derivative for solving shape optimization problems has
been shown, when the solver is based on the spectral methods of particular solution [9–12] (see [13,14] for highly accurate
numerical methods of particular solution for computing the eigenpairs on polygonal domains in 2D). Thus, in that case,
the boundary Eulerian derivative is very effective and allows the dimension reduction of calculating the shape gradient
just by evaluating surface integrals, instead of volume integrals of the distributed shape gradient.

Comparing with the (meshless) methods of particular solution, the finite element method is a mesh-type method. It
is widely used to discretize the PDE constraints for shape gradient computations in shape optimization (see e.g. [15,16]).
This approach based on domain triangulation is flexible to shape representation and shape changes. The sensitivity
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information-directional derivatives of objective functions and constraints needs to be very accurately computed in order
for the optimization algorithms to fully converge [17]. For finite element approximations of eigenvalue optimization, the
boundary shape gradients are widely used (see e.g., [1,2,4–7,18]). The boundary expression of Eulerian derivative, although
popular, is actually not suitable for use since the finite element solution does not have the appropriate smoothness
under which the boundary integral formula can be obtained (pp. 531 [4]). The use of domain expressions is natural and
promising. Recently, Hiptmair et al. [19] showed that the finite element approximations of distributed shape gradients
converge faster and are more accurate than the boundary versions for linear elliptic problems. Similar behaviors are
shown for shape optimization in the Stokes equation [20]. But convergence of shape gradients is not performed in ‘‘real’’
descent direction in optimization algorithms. We refer to [21–23] for more applications of the distributed shape gradients.
To best of our knowledge, no literature reported numerical shape optimization examples with comparisons shows that
the distributed shape gradients are more effective. For shape optimization of Dirichlet eigenvalue problems [24], our
numerical evidence shows that the algorithm using the distributed shape gradients is more initially independent. A priori
error estimates are obtained in an infinite-dimensional operator norm [25]. The volume formulation of Eulerian derivative
offers more accuracy [25]. To ensure the ‘‘real’’ descent direction in optimization algorithms, convergence analysis should
be performed for discretizations of the popular H1 shape gradient flows, which are used in algorithms of [24]. H1 shape
gradient flows have been actually used widely in shape design and topology optimization (see e.g., [16,22–24]).

In this paper, we prove convergence for Galerkin finite element approximations of H1 shape gradient flows in
eigenvalue optimization. Both boundary and distributed shape gradients are considered with comparisons. Numerical
results are presented for verifying convergence of approximate shape gradients as well as effectiveness of shape gradient
algorithms. The rest of the paper is organized as follows. The Laplace eigenvalue optimization problems are presented
in Section 2. Finite element approximations of H1 shape gradient flows associated with boundary and volume Eulerian
derivatives are given. In Section 3, we present a priori error estimates in H1 and L2 norms for H1 shape gradient flows.
In Section 4, numerical results are presented. Brief conclusions are drawn in Section 5.

2. Finite element approximations of H1 shape gradient flows for eigenvalue optimization

In shape gradient algorithms for shape optimization, it is desirable to introduce auxiliary flows for increasing the
smoothness of descent/ascent directions. The H1 shape gradient flow is typically useful for regularization [22,24]. We
first introduce the eigenvalue problem and the Eulerian derivatives in shape optimization. Then, we present finite element
approximations of H1 shape gradient flows for eigenvalue optimization.

2.1. H1 shape gradient flows in eigenvalue optimization

Let Ω be a bounded domain in Rd (d = 2, 3) with Lipschitz continuous boundary ∂Ω . We consider the Laplace
eigenvalue problem:⎧⎨⎩ −∆u = λu in Ω

u = 0 or
∂u
∂n
= 0 on ∂Ω.

(1)

We consider the eigenvalue problems in shape optimization [2,3,5,6,18]:

min
|Ω|=C

λ (Dirichlet) and max
|Ω|=C

λ (Neumann), (2)

where |Ω| denotes the geometric measure of Ω and C > 0 is a prescribed number.
We recall basic shape calculus using the speed method (Section 2.9, pp. 54 and pp. 98 of [7]) for solving (2). For a

variable t ∈ [0, τ ) with τ > 0, we introduce a velocity field V(t, x) ∈ C([0, τ ]; D1(Rd,Rd)) with D1(Rd,Rd) being the
space of continuously differentiable transformations of Rd. Then, we define a family of transformations Tt : Ω → Ωt with
Ωt = Tt (V)(Ω). For x = x(t, X) ∈ Ωt with X ∈ Ω , it satisfies

dx
dt

(t, X) = V(t, x(t, X)), x(0, X) = X . (3)

Denote Vn = V(0)|∂Ω ·n.
The variational formulation of (1) is to find λ ∈ R, 0 ̸= u ∈ V such that

(∇u,∇v) = λ(u, v) ∀v ∈ V , (4)

where V = H1
0 (Ω) (V = H1(Ω)) for the Dirichlet (Neumann) boundary condition. It is well-known that there exists a

sequence of eigenpairs of (4). For a simple eigenvalue λ, let (λ, u) be an eigenpair of (4). Then, λ(Ω) is shape differentiable
and we have the Eulerian derivative (see e.g., [24,25] for derivations)

λ′(Ω;V)Ω =
∫

Ω

[
−2∇u · DV∇u+ divV(|∇u|2 − λu2)

]
dx, (5)
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where DV denotes the Jacobian of V . If, furthermore, Ω is convex or if it is of class C2, then the boundary Eulerian
derivative of Dirichlet eigenvalue

λ′(Ω;V)∂Ω = −

∫
∂Ω

(
∂u
∂n

)2

Vnds. (6)

Let ∇Γ denote tangential gradient. If Ω is of class C3 for the Neumann case, then

λ′(Ω;V)∂Ω =

∫
∂Ω

(
|∇Γ u|2 − λu2)Vnds, (7)

The H1 shape gradient flows we consider are the two variational formulations associated with two different Eulerian
derivatives:

find UV
∈ H1(Ω)d such that A(UV ,V) = −λ′(Ω;V)Ω ∀ V ∈ H1(Ω)d (8)

and

find UB
∈ H1(Ω)d such that A(UB,V) = −λ′(Ω;V)∂Ω ∀ V ∈ H1(Ω)d, (9)

where the bilinear form A(·, ·) : H1(Ω)d × H1(Ω)d → R is defined as

A(U,V) :=
∫

Ω

(DU : DV + U · V)dx ∀ U,V ∈ H1(Ω)d

with DU : DV =
∑d

i,j=1 ∂jUi∂jVi.

2.2. Finite element approximations of H1 shape gradient flows

We consider the standard Ritz–Galerkin finite element method [26,27] for discretization of the variational formulations
(4), (8) and (9). For the shape gradient deformation algorithm we shall present, the domain Ω here at each iteration is
naturally assumed to be a polygon/polyhedron, which can be triangulated exactly with no geometric error introduced.
Consider a family of triangulations {Th}h>0 satisfying that Ω = ∪K∈ThK , where the mesh size h := maxK∈Th hK with
hK := diam{K } for any K ∈ Th. Let {Vh}h>0 be a family of finite-dimensional subspaces of H1

0 (Ω). For the linear Lagrange
elements, Vh := {vh ∈ C0(Ω) ∩ H1

0 (Ω) : vh|K∈ P1(K ) ∀K ∈ Th} in the Dirichlet case with P1(K ) denoting the set of
piecewise linear polynomials on K and Vh = {vh ∈ C0(Ω) : vh|K∈ P1(K ) ∀K ∈ Th} in the Neumann case. Throughout,
we shall denote by C a general constant, which may differ at different occurrences and depend on the eigenvalue and
the mesh aspect ratio, but is always independent of h. We assume that the mesh family {Th}h>0 is regular so that the
following approximation property holds [26]:

inf
vh∈Vh

(∥u− vh∥L2(Ω) + h∥∇u−∇vh∥L2(Ω)) ≤ Ch2
|u|H2(Ω) ∀u ∈ H2(Ω). (10)

Suppose moreover that the mesh is quasi-uniform, i.e., minK∈Th hK ≥ Ch ∀h > 0, based on which the inverse inequality
holds (see e.g. Theorem 4.5.11 [26]).

The weak formulation for conforming finite element approximation of the problem (4) reads: find λh ∈ R and
0 ̸= uh ∈ Vh such that

(∇uh,∇vh) = λh(uh, vh) ∀vh ∈ Vh, (11)

For (11), there exist a finite sequence of eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λN,h, N = dim Vh,

and corresponding eigenvectors

u1,h, u2,h . . . uN,h,

which can be assumed to satisfy

(ui,h, uj,h) = δij. (12)

In the following, we omit the index number of a specific eigenvalue/eigenfunction for simplicity. Let (λh, uh) be an
eigenpair of (11). We refer to [25] for convergence analysis of shape gradients associated with the multiple eigenvalue
case. We have the following a priori error estimates on approximating eigenvalues and eigenfunctions ([28] and Theorem
5.1 [29]).

Lemma 1. Assume that Ω is a convex polygon/polyhedron or C2 domain and {Th}h>0 are quasi-uniform. Then,

λ ≤ λh ≤ λ+ Ch2
|u|H2(Ω),
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and

∥u− uh∥L2(Ω) + h∥∇u−∇uh∥L2(Ω) ≤ Ch2
|u|H2(Ω).

Let Vh = {vh ∈ [C0(Ω̄)]d|vh|K ∈ P1(K )d ∀K ∈ Th} ⊂ H1(Ω)d. The finite-dimensional approximations of (8) and (9) read
respectively as

find UV
h ∈ Vh such that A(UV

h ,Vh) = −λ′(Ω;Vh)Ω,h ∀ Vh ∈ Vh (13)

and

find UB
h ∈ Vh such that A(UB

h ,Vh) = −λ′(Ω;Vh)∂Ω,h ∀ Vh ∈ Vh, (14)

where

λ′(Ω;Vh)Ω,h :=

∫
Ω

[
−2∇uh · DVh∇uh + divVh(|∇uh|

2
− λhu2

h)
]
dx

and

λ′(Ω;Vh)∂Ω,h := −

∫
∂Ω

(
∂uh

∂n

)2

Vh · nds
(
or
∫

∂Ω

(
|∇Γ uh|

2
− λhu2

h

)
Vh · nds

)
denote the finite element approximations of λ′(Ω;V)Ω and λ′(Ω;V)∂Ω , respectively.

3. Convergence analysis

In this part, We perform convergence analysis with a priori error estimates for finite element approximations of H1

shape gradient flows associated with both boundary and volume expressions of Eulerian derivatives. We consider the
Dirichlet case for simplicity. It may be generalized similarly to the Neumann case.

Let us first define the Ritz projection Ph : H1
0 (Ω)→ Vh such that

(∇Phu,∇vh) = (∇u,∇vh) ∀vh ∈ Vh. (15)

Lemma 2. Let assumptions in Lemma 1 hold. Then,

∥∇(Phu− uh)∥L2(Ω) ≤ Ch2
|u|H2(Ω).

Proof. We take vh = Phu− uh in (4), (11) and (15). Then, we have

(∇(Phu− uh),∇(Phu− uh)) = (λu− λhuh, Phu− uh)
=
(
λ(u− uh)+ (λ− λh)uh, Phu− uh

)
.

Then, by the Cauchy–Schwarz inequality and triangle inequality,

∥∇(Phu− uh)∥2L2(Ω) ≤
(
λ∥u− uh∥L2(Ω) + |λ− λh|∥uh∥L2(Ω)

)
∥Phu− uh∥L2(Ω)

=
(
λ∥u− uh∥L2(Ω) + |λ− λh|

)
∥Phu− uh∥L2(Ω)

≤ C
(
λ∥u− uh∥L2(Ω) + |λ− λh|

)
∥∇(Phu− uh)∥L2(Ω),

where the normalization fact that ∥uh∥L2(Ω) = 1 and the Poincaré inequality are used in the last inequality. Therefore,

∥∇(Phu− uh)∥L2(Ω) ≤ C
(
λ∥u− uh∥L2(Ω) + |λ− λh|

)
≤ C

(
λCh2
+ Ch2)

|u|H2(Ω)

≤ Ch2
|u|H2(Ω)

(16)

using Lemma 1. □

Lemma 3. Assume that u ∈ W 2,4(Ω). Then,

∥∇u−∇uh∥L4(Ω) ≤ Ch|u|W2,4(Ω). (17)

Proof. By triangle inequality, we have

∥∇u−∇uh∥L4(Ω) ≤ ∥∇u−∇Phu∥L4(Ω) + ∥∇Phu−∇uh∥L4(Ω). (18)

By (8.5.4) on pp. 230 [26] and the approximation property (4.4.28) on pp. 110 [26],

∥∇u−∇Phu∥L4(Ω) ≤ C inf
v∈Vh
∥∇u−∇v∥L4(Ω)

≤ Ch|u|W2,4(Ω),
(19)
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By inverse inequality and Lemma 2, we have

∥∇Phu−∇uh∥L4(Ω) ≤ Ch−
d
4 ∥∇Phu−∇uh∥L2(Ω)

≤ Ch2− d
4 |u|H2(Ω).

(20)

A combination of (18), (19) and (20) allows the conclusion to hold. □

Lemma 4. Let Ω be a C2 domain. Let (λ, u) be a simple eigenpair of (4). Assume that u ∈ W 2,4(Ω). Then, there exists a
unique solution UV

∈ H1(Ω)d of (8) such that

∥UV
∥H2(Ω) ≤ Cκ|u|2W2,4(Ω),

where κ denotes the mean curvature on ∂Ω .

Proof. The bilinear form A(·, ·) is obviously continuous and coercive on H1(Ω)d. By Lax–Milgram theorem, there exists a
unique solution UV

∈ H1(Ω)d for (8). Moreover, we get

∥UV
∥
2
H1(Ω) ≤ A(UV ,UV )

=

∫
Ω

[
2∇uDUV

∇u− div UV (|∇u|2 − λu2)
]
dx

≤ 2∥∇u∥L2(Ω)∥DU
V
∥L2(Ω)∥∇u∥L∞(Ω) + ∥div UV

∥L2(Ω)∥|∇u|
2
− λu2

∥L2(Ω),

which implies the a priori estimate

∥UV
∥H1(Ω) ≤ C

(
∥∇u∥L2(Ω)∥∇u∥L∞(Ω) + ∥∇u∥2L4(Ω) + λ∥u∥2L4(Ω)

)
.

Furthermore, we have from (8) using the fact that u ∈ H2(Ω), Green’s theorem, and ∂u
∂xi
=

∂u
∂nni on ∂Ω⎧⎪⎪⎨⎪⎪⎩

−∆Ui + Ui = −2div
(

∂u
∂xi
∇u
)
+

∂

∂xi
(|∇u|2 − λu2) = 0 in Ω

∂Ui

∂n
= 2

∂u
∂xi

∂u
∂n
− |∇u|2ni = |∇u|2ni on ∂Ω,

(21)

where UV
= (Ui)di=1 and n = (ni)di=1 for i = 1, 2, . . . , d. Then, the standard regularity estimate (see e.g., [26]) for elliptic

problems implies that

∥Ui∥H2(Ω) ≤C∥|∇u|
2ni∥

H
1
2 (∂Ω)

.

Let b be the oriented distance function associated with Ω satisfying ∇b|∂Ω= n and κ = div n (see Chapter 6 [4]). We have
b ∈ H2(Ω) since Ω is C2. By the trace theorem, triangle inequality and Cauchy–Schwarz inequality, we have

∥Ui∥H2(Ω) ≤ C
|∇u|2 ∂b

∂xi


H1(Ω)

≤ C
(|∇u|2 ∂b

∂xi


L2(Ω)
+

2∇2u∇u
∂b
∂xi


L2(Ω)
+

|∇u|2∇ ∂b
∂xi


L2(Ω)

)
≤ C |u|2W1,∞(Ω)|b|H1(Ω) + C |u|W2,4(Ω)|u|W1,∞(Ω)|∇b|L4(Ω) + C |u|2W1,∞(Ω)|b|H2(Ω)

≤ C |u|2W2,4(Ω)|b|H2(Ω),

where Sobolev embedding theorems are used. □

Theorem 1. Let assumptions in Lemma 4 hold. Then,

∥UV
− UV

h ∥L2(Ω) + h∥UV
− UV

h ∥H1(Ω) ≤ Ch2
|u|2W2,4(Ω).

Proof. We first prove the error estimate in the H1 norm. Let us define a family of Lagrange interpolation operators
Ih : V ∩ C0(Ω̄)d → Vh, which satisfy

∥U − IhU∥H1(Ω) ≤ Ch|U|H2(Ω) ∀ U ∈ H2(Ω). (22)

Since by the triangle inequality, (22), and Lemma 4

∥UV
− UV

h ∥H1(Ω) ≤ ∥U
V
− IhUV

∥H1(Ω) + ∥IhUV
− UV

h ∥H1(Ω) (23)
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what left is to estimate ∥IhUV
− UV

h ∥H1(Ω). Denote Xh := IhUV
− UV

h . We first have

∥Xh∥
2
H1(Ω) = A(Xh,Xh)

= A(IhUV
− UV ,Xh)+ A(UV

− UV
h ,Xh)

= A(IhUV
− UV ,Xh)− λ′(Ω;Xh)Ω + λ′(Ω;Xh)Ω,h.

(24)

By continuity and (22), (24) implies that

∥Xh∥
2
H1(Ω) ≤ ∥IhUV

− UV
∥H1(Ω)∥Xh∥H1(Ω) + |λ

′(Ω;Xh)Ω − λ′(Ω;Xh)Ω,h|

≤ Ch|UV
|H2(Ω)∥Xh∥H1(Ω) + |λ

′(Ω;Xh)Ω − λ′(Ω;Xh)Ω,h|,
(25)

in which

|λ′(Ω;Xh)Ω − λ′(Ω;Xh)Ω,h| ≤

⏐⏐⏐⏐ ∫
Ω

2(∇u · DXh∇u−∇uh · DXh∇uh)dx
⏐⏐⏐⏐

+

⏐⏐⏐⏐ ∫
Ω

div Xh((|∇u|2 − λu2)− (|∇uh|
2
− λhu2

h))dx
⏐⏐⏐⏐. (26)

We estimate the two terms on the R.H.S. of (26). For the first term, we have⏐⏐⏐⏐ ∫
Ω

2(∇u · DXh∇u−∇uh · DXh∇uh)dx
⏐⏐⏐⏐

=

⏐⏐⏐⏐ ∫
Ω

[
2∇u · DXh(∇u−∇uh)+ 2(∇u−∇uh) · DXh∇u− 2(∇u−∇uh) · DXh(∇u−∇uh)

]
dx
⏐⏐⏐⏐

=

⏐⏐⏐⏐ ∫
Ω

2(∇u−∇uh) · (DXh + DX T
h )∇udx−

∫
Ω

(∇u−∇uh) · (DXh + DX T
h )(∇u−∇uh)dx

⏐⏐⏐⏐
≤2
⏐⏐⏐⏐ ∫

Ω

(∇u−∇uh) · (DXh + DX T
h )∇udx

⏐⏐⏐⏐+ ⏐⏐⏐⏐ ∫
Ω

(∇u−∇uh) · (DXh + DX T
h )(∇u−∇uh)dx

⏐⏐⏐⏐
≤C∥∇u−∇uh∥L4(Ω)∥DXh∥L2(Ω)(∥∇u∥L4(Ω) + ∥∇u−∇uh∥L4(Ω))
≤Ch|u|W2,4(Ω)∥Xh∥H1(Ω)(|u|W1,4(Ω) + Ch|u|W2,4(Ω)),

(27)

where Lemma 3 was used in last inequality. For the second term, we have⏐⏐⏐⏐ ∫
Ω

div Xh((|∇u|2 − λu2)− (|∇uh|
2
− λhu2

h))dx
⏐⏐⏐⏐

≤∥div Xh∥L2(Ω)
(
∥|∇u|2 − |∇uh|

2
∥L2(Ω) + ∥λu

2
− λhu2

h∥L2(Ω)
)

≤C∥Xh∥H1(Ω)

(
2∥∇u∥L4(Ω)∥∇u−∇uh∥L4(Ω) + ∥∇u−∇uh∥

2
L4(Ω)

+ |λ− λh|∥u∥2L4(Ω) + λh∥u− uh∥L4(Ω)(∥u− uh∥L4(Ω) + 2∥u∥L4(Ω))
)

≤C∥Xh∥H1(Ω)

(
2∥∇u∥L4(Ω)∥∇u−∇uh∥L4(Ω) + ∥∇u−∇uh∥

2
L4(Ω)

+ |λ− λh|∥u∥2L4(Ω) + λh∥u− uh∥H1(Ω)(∥u− uh∥H1(Ω) + 2∥u∥L4(Ω))
)

(28)

using the Cauchy–Schwarz inequality, triangle inequality and Sobolev embedding theorem. By a priori error estimates in
Lemmas 1 and 3, (28) implies that⏐⏐⏐⏐ ∫

Ω

div Xh((|∇u|2 − λu2)− (|∇uh|
2
− λhu2

h))dx
⏐⏐⏐⏐ ≤ C∥Xh∥H1(Ω)h|u|

2
W2,4(Ω). (29)

A combination of (26), (27), and (29) implies that

|λ′(Ω;Xh)Ω − λ′(Ω;Xh)Ω,h| ≤ C∥Xh∥H1(Ω)h|u|
2
W2,4(Ω). (30)

Thus, we obtain from (25), (30) and Lemma 4

∥Xh∥H1(Ω) ≤ Ch|u|2W2,4(Ω). (31)

Now we prove L2 error estimate ∥UV
− UV

h ∥L2(Ω). Let Ũ be the solution of the continuous problem with perturbated
R.H.S. corresponding to its discrete formulation (13):

find Ũ ∈ H1(Ω)d such that A(Ũ,V) = −λ′(Ω;V)Ω,h ∀ V ∈ H1(Ω)d, (32)
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which is well-posed by Lax–Milgram theorem. Then, the Galerkin orthogonality reads:

A(Ũ − UV
h ,Vh) = 0 ∀Vh ∈ Vh.

By the triangle inequality,

∥UV
− UV

h ∥L2(Ω) ≤ ∥U
V
− Ũ∥L2(Ω) + ∥Ũ − UV

h ∥L2(Ω). (33)

In order to bound ∥UV
− Ũ∥L2(Ω), we introduce an auxiliary problem with the Laplacian operating componentwise:⎧⎨⎩ −∆Φ +Φ = UV
− Ũ in Ω

∂Φ

∂n
= 0 on ∂Ω,

(34)

which is well-posed and has the a priori estimate

∥Φ∥H2(Ω) ≤ C∥UV
− Ũ∥L2(Ω). (35)

We have
∥UV
− Ũ∥2L2(Ω) = A(UV

− Ũ, Φ)

= |λ′(Ω;Φ)Ω,h − λ′(Ω;Φ)|

≤ Ch2
|u|W2,4(Ω)|Φ|H2(Ω),

(36)

where the last inequality can be obtained similarly by modifying proof arguments (26)–(30) with Xh ∈ H1(Ω)d replaced
by Φ ∈ H2(Ω)d (we omit details for simplicity). From (35) and (36), thus

∥UV
− Ũ∥L2(Ω) ≤ Ch2

|u|W2,4(Ω).

To estimate ∥Ũ − UV
h ∥L2(Ω), we first introduce a dual problem

find Z ∈ H1(Ω)d such that A(V,Z) = (Ũ − UV
h ,V) ∀V ∈ H1(Ω)d,

which has the a priori estimate

∥Z∥H2(Ω) ≤ C∥Ũ − UV
h ∥L2(Ω). (37)

Then
∥Ũ − UV

h ∥
2
L2(Ω) = A(Ũ − UV

h ,Z)

= A(Ũ − UV
h ,Z − IhZ)

≤ C∥Ũ − UV
h ∥H1(Ω)∥Z − IhZ∥H1(Ω)

≤ Ch∥Ũ − UV
h ∥H1(Ω)|Z|H2(Ω) (by (22)).

(38)

By (37) and (38), we get

∥Ũ − UV
h ∥L2(Ω) ≤ Ch∥Ũ − UV

h ∥H1(Ω)

≤ Ch(∥UV
− Ũ∥H1(Ω) + ∥U

V
− UV

h ∥H1(Ω)).
(39)

Since ∥UV
− UV

h ∥H1(Ω) = O(h) has been proved, we require to bound ∥UV
− Ũ∥H1(Ω).

∥UV
− Ũ∥2H1(Ω) = A(UV

− Ũ,UV
− Ũ)

= λ′(Ω; Ũ − UV )Ω − λ′(Ω; Ũ − UV )Ω,h.
(40)

Using (30) with Xh replaced by UV
− Ũ , (40) implies that

∥UV
− Ũ∥H1(Ω) ≤ Ch|u|2W2,4(Ω).

Therefore, the conclusion holds. □

Lemma 5. Let assumptions in Lemma 1 hold. Assume further that

∥u∥W2,p(Ω) ≤ Cpλ∥u∥Lp(Ω)

for 1 < p < µ with some µ > d and

∥Phu− uh∥W1,∞(Ω) ≤ C |log h|2/3h|u|H2(Ω), d = 3. (41)

Then

∥u− uh∥W1,∞(Ω)≤C |log h|
1− 1

d h|u|W2,∞(Ω).
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Proof. First, we split the error and use the triangle inequality to obtain

∥u− uh∥W1,∞(Ω) ≤ ∥u− Phu∥W1,∞(Ω) + ∥Phu− uh∥W1,∞(Ω), (42)

where Ph : H1
0 (Ω)→ Vh is defined in (15). In (42), the error estimate for the first term on the R.H.S. is standard (Corollary

8.1.12 [26]):

∥u− Phu∥W1,∞(Ω) ≤ Ch|u|W2,∞(Ω). (43)

What left now is to estimate ∥Phu − uh∥W1,∞(Ω) for d = 2. By the inverse inequality (see e.g., [26]), discrete Sobolev
inequality (Lemma 4.9.2 of [26]) and Lemma 2, we obtain

∥Phu− uh∥W1,∞(Ω) ≤ Ch−1∥Phu− uh∥L∞(Ω)

≤ Ch−1|log h|1/2∥∇(Phu− uh)∥L2(Ω)

≤ C |log h|1/2h|u|H2(Ω). □

(44)

Remark 1. To the best of our view, there is no similar result in 3D as the discrete Sobolev inequality in 2D. The proof
thus cannot be performed for 3D In Lemma 5 and the assumption (41) is required. If we do not assume (41), then we
obtain lower convergence rate for d = 3. More precisely,

∥Phu− uh∥W1,∞(Ω) ≤ Ch−3/2∥∇(Phu− uh)∥L2(Ω)

≤ C
√
h|u|H2(Ω)

by inverse inequality and Lemma 2.

Theorem 2. Let assumptions in Theorem 1 hold. Assume further that u ∈ W 2,∞(Ω). Then,

∥UB
− UB

h∥H1(Ω) ≤ Ch|log h|1−
1
d |u|W2,∞(Ω).

Proof. The smoothness of domain Ω allows the problem (9) to be equivalent to the Neumann boundary value problem
(21), i.e., UB

= UV . Thus, we have UB
∈ H2(Ω)d by Lemma 4. We define the Ritz projection PB

h : V → Vh and consider the
variational problem: find PB

hU
B
∈ Vh such that

A(PB
hU

B,Wh) = A(UB,Wh) ∀Wh ∈ Vh.

We have

∥UB
− PB

hU
B
∥H1(Ω) ≤ Ch∥UB

∥H2(Ω). (45)

Then, we split UB
− UB

h = UB
− PB

hU
B
+ PB

hU
B
− UB

h and have

∥UB
− UB

h∥H1(Ω) ≤ ∥U
B
− PB

hU
B
∥H1(Ω) + ∥P

B
hU

B
− UB

h∥H1(Ω). (46)

We now estimate ∥PB
hU

B
− UB

h∥H1(Ω). Denote Yh := PB
hU

B
− UB

h . Then,

∥Yh∥
2
H1(Ω)

≤ A(Yh,Yh)

= A(UB
− UB

h ,Yh)
= −λ′(Ω;Yh)∂Ω + λ′(Ω;Yh)∂Ω,h,

≤ ∥Yh · n∥L4(∂Ω)

(
2
∂u

∂n
∂(u− uh)

∂n


L
4
3 (∂Ω)

+

⏐⏐⏐⏐∂u∂n
−

∂uh

∂n

⏐⏐⏐⏐2
L
4
3 (∂Ω)

)

≤ ∥Yh∥L4(∂Ω)

(
2
∂u

∂n
−

∂uh

∂n


L
4
3 (∂Ω)

∂u
∂n


L∞(∂Ω)

+ ∥|∇u−∇uh|
2
∥
L
4
3 (∂Ω)

)
≤ |∂Ω|

3
4 ∥Yh∥L4(∂Ω)

(
2∥∇u−∇uh∥L∞(∂Ω)∥∇u∥L∞(∂Ω) + ∥∇u−∇uh∥

2
L∞(∂Ω)

)
.

(47)

Considering that u ∈ W 2,∞(Ω) and ∇uh is piecewise constant on each element, we have further

∥Yh∥
2
H1(Ω) ≤ |∂Ω|

3
4 ∥Yh∥L4(∂Ω)

(
2∥∇u−∇uh∥L∞(Ω̄)∥∇u∥L∞(Ω̄) + ∥∇u−∇uh∥

2
L∞(Ω̄)

)
, (48)

in which
∥Yh∥L4(∂Ω) ≤ C∥Yh∥

W
1
2 ,2(∂Ω)

≤ C∥Yh∥H1(Ω)

(49)
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Fig. 1. One level of meshes used for the square and L-shaped domain.

by Sobolev embedding theorem. By (48) and (49), we obtain

∥Yh∥H1(Ω) ≤C |∂Ω|
3
4

(
2∥u− uh∥W1,∞(Ω)∥u∥W1,∞(Ω) + ∥u− uh∥

2
W1,∞(Ω)

)
≤Ch|log h|1−

1
d |u|W2,∞(Ω),

(50)

where the continuity from Ω to Ω̄ and Lemma 5 are used. A combination of (45), (46) and (50) allows the conclusion to
hold. □

4. Numerical results

We perform numerical experiments with FreeFem++ [30]. We consider only cases of the first (simple) Dirichlet
eigenvalue and the first non-zero Neumann eigenvalue for simplicity. For more numerical examples involving high
eigenvalue optimization as well as multiple cases, we refer to [24]. Examples corresponding to both Dirichlet and
Neumann boundary conditions are presented. We choose two computational domains in R2: unit square and a L-
shaped domain ((−1, 1)2 missing the upper right quarter). In Fig. 1, one level of triangulation is illustrated. To study
h-convergence, uniform refinement is employed. The eigenfunction on square has enough smoothness, whereas the
eigenfunction associated with the first eigenvalue on the L-shaped domain has a singularity at the reentrant corner.
Lagrange Linear element is employed. We approximate the first Dirichlet eigenvalue and the first non-zero Neumann
eigenvalue. We compute a numerical solution on a very fine mesh and use it as an ‘‘approximate’’ exact solution for
reference in computing numerical errors. We also present shape optimization examples using a H1 shape gradient
algorithm. We calculate the volume integrals involved in the calculation of the volume Eulerian derivatives by numerical
integration with Gaussian quadrature.

4.1. H1 shape gradient flows

We present numerical shape gradients for both H1-flows associated with the boundary and distributed Eulerian
derivatives. In Fig. 2, the theoretical convergence rates are verified numerically on square. In Fig. 3, we see that the
distributed shape gradient is nearly the same as the boundary shape gradient in the H1 norm. But for the L2 norm, higher
and super-linear convergence rate and more accuracy can be observed. For the square with Neumann condition, we can see
there is no advantage of distributed shape gradient in convergence and accuracy. The quadratic convergence of boundary
shape gradient in L2 norm is again unexpected. For the L-shaped domain with Neumann condition, similar phenomenon
in Fig. 5 can be obtained as the Dirichlet case of Fig. 3. (See Fig. 4.)

4.2. Shape optimization

To demonstrate the performance of the shape gradients of H1 flows, we solve numerically two shape optimization
models in (2): minimizing the first Dirichlet eigenvalue and maximizing the first nonzero Neumann eigenvalue with
prescribed fixed volume. Disk is the well-known optimal solution for each problem. We refer to [16] for numerical results
when optimizing other Dirichlet eigenvalues with domain type Eulerian derivatives. We deal with the volume constraint
by homothety [5,6] and consider the following unconstrained formulations instead:

min
Ω is open

λ|Ω|
2
d (Dirichlet) and max

Ω is open
λ|Ω|

2
d (Neumann). (51)
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Fig. 2. Convergence history on errors of approximate shape gradients of H1 flows: Square and Dirichlet boundary condition.

Fig. 3. Convergence history on errors of approximate shape gradients of H1 flows: L-shaped domain and Dirichlet boundary condition.

Fig. 4. Convergence history on errors of approximate shape gradients of H1 flows: Square and Neumann boundary condition.
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Fig. 5. Convergence history on errors of approximate shape gradients of H1 flows: L-shaped domain and Neumann boundary condition.

The volume Eulerian derivatives of λ|Ω| for both cases are

λ′(Ω;V)|Ω|
2
d +

2
d
λ|Ω|

2
d−1|Ω|′ =

∫
Ω

[
|Ω|

2
d

(
−2∇u · DV∇u+ divV(|∇u|2 − λu2)

)
+

2
d
λ|Ω|

2
d−1divV

]
dx

by (5). The boundary Eulerian derivatives are∫
∂Ω

[
−|Ω|

2
d

(
∂u
∂n

)2

+
2
d
λ|Ω|

2
d−1
]
Vnds (52)

and ∫
∂Ω

(
|Ω|

2
d (|∇Γ u|2 − λu2)+

2
d
λ|Ω|

2
d−1
)

Vnds (53)

for the Dirichlet and Neumann cases, respectively. We check numerically multiplicity of the eigenvalue using the rule with
threshold in [2,6] and modify the Eulerian derivative if necessary. We observe that the multiplicity of the Neumann case
is two during deformations. The linear combination of the first two (non-trivial) Neumann eigenvalues are considered
as an objective, when they are close to each other. The gradient is modified correspondingly [6]. The step size should be
chosen by trial and error for the objective to decrease. Set an initial step δ = 1 and a tolerance ϵ = 10−4. At each iteration,
we reduce the current step size by half repeatedly until it becomes feasible to avoid reversed triangles to appear during
deformations. The algorithm we present below allows deformations only without topological changes. Shape gradient
descent flow and ascending flow correspond to the Dirichlet case and Neumann case, respectively.

In order to evaluate better the performance of our algorithms for shape optimization, we compare the H1 shape
gradient flows with the traditional L2 shape gradient flow (see e.g. [6]) in effectiveness and efficiency. The L2 flow typically
moves the boundary of the current domain according to the boundary Eulerian derivative. By (52)–(53), the L2 flows
require the ‘‘discrete’’ velocity fields to be

Vh = −

[
−|Ω|

2
d

(
∂uh

∂n

)2

+
2
d
λh|Ω|

2
d−1
]
n

and

Vh =

[
|Ω|

2
d (|∇Γ uh|

2
− λhu2

h)+
2
d
λh|Ω|

2
d−1
]
n

for gradient descent and ascent, respectively. The step size is determined similarly as in the H1 flows. After the new
boundary is determined, remeshing is required at each iteration. The computational cost for remeshing (even with a very
fine mesh) is neglectable compared with that for the (nonlinear) eigenvalue forward solver.

In Fig. 6–7, we show that both shape gradients of H1 descent flows and L2 flow converge to the ‘‘right’’ optimal domain
disk from the same initial square. If the initial domain is L-shape however, we can see from Fig. 8 that the volume H1

flow converges to disk while the boundary H1 flow fails due to the inaccurate shape gradient computation as proved and
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Fig. 6. Shape evolutions of the Dirichlet eigenvalue (from left to right): intermediate design, final result by volume Eulerian derivative, intermediate
design, and final result by boundary Eulerian derivative (initial square in Fig. 1) (We refer to [24] for more other eigenvalue optimization examples).

Fig. 7. Shape evolutions of the Dirichlet eigenvalue with the L2 shape gradient flow from initial square: step 2, 5 and 15 (from left to right).

verified numerically above. Comparing with H1 shape gradient flows, L2 flow converges to disk as shown in Fig. 9 for
shape evolutions. In Fig. 10 for the initial square case, the convergence history of objectives show that the volume H1

shape gradient descent algorithm converges more efficiently than the boundary H1 type. Both H1 flows are more efficient
than L2 flow. For the initial L-shape case, the boundary H1 flow fails. The volume H1 flow converges more efficiently
than the L2 flow by counting and comparing the total costs of their corresponding algorithms. The algorithm with less
iterations in optimization implies more efficiency when comparing the volume H1 flows and L2 flow. The volume H1 flow
requires less iterations than L2 flow for shape optimization, although it requires to solve an additional elliptic problem
besides an eigenvalue problem. We observe that the eigenvalue problem is nonlinear and the gradient flow problem is
linear. The computational cost for solving former is less than that for solving latter.

For Neumann case, both algorithms associated with H1 volume and boundary formulations converge to the right disk
as shown in Fig. 11 with initial square. Fig. 12 shows that the L2 flow is also effective. When starting with initial L-shape
however, all H1 and L2 flows fail to converge to disk. For efficiency comparison, in Fig. 13 both H1 flows are more efficient
than the L2 flow. No numerical evidence observed shows that the volume H1 flow is more efficient or effective than
the boundary H1 flow. This is mainly because that the boundary H1 shape gradient compared with the volume type is
competitive in convergence rate as well as accuracy as noticed numerically above.

In Fig. 14 for 3D, the Dirichlet/Neumann eigenvalues are optimized effectively using the algorithms with volume H1

shape gradients. We remark that the boundary H1 flows fail to converge to the right ball for optimizing the Dirichlet
eigenvalue, when the initial domain is L-shaped.

Algorithm 1: Boundary/Distributed shape gradient algorithm for eigenvalue optimization
Given an initial guess Ω0, set k = 0, ϵ, δ;
while |J(Ωk+1)− J(Ωk)|≥ ϵJ(Ωk) do

Solve the Dirichlet/Neumann eigenvalue problem;
Solve the H1 shape gradient flow;
while reversed triangle/tetrahedron appears do

δ← δ/2;
end
Moving meshes: Ωk+1 ← Ωk + δUh with Uh = UV

h or UB
h ;

k← k+ 1;
end

5. Conclusions

We have performed convergence analysis for finite element approximations of boundary and distributed H1 shape
gradient flows for eigenvalue problems. For the Dirichlet case, theoretical analysis as well as numerical comparisons



S. Zhu, X. Hu and Q. Wu / Journal of Computational and Applied Mathematics 365 (2020) 112374 13

Fig. 8. Shape evolutions of the Dirichlet eigenvalue: initial domain (2672 triangles), intermediate domain, optimal domain with volume Eulerian
derivative, and optimal domain with boundary Eulerian derivative (from left to right).

Fig. 9. Shape evolutions of the Dirichlet eigenvalue with the L2 shape gradient flow: step 5, 20, 50, 150 (from left to right).

Fig. 10. Comparisons among L2 , boundary H1 , and volume H1 shape gradient flows: convergence histories of shape functional for Dirichlet boundary
condition with initial square (left) and initial L-shape (right).

Fig. 11. Shape evolutions of the Neumann eigenvalue: initial domain (3200 triangles), intermediate domain, optimal domain with volume Eulerian
derivative and optimal domain with boundary Eulerian derivative (from left to right).

have shown that the distributed shape gradient converges faster and offers higher accuracy. For the Neumann case,
the boundary formulation is surprisingly competitive with the distributed type. Moreover, shape gradient algorithms
are presented. Theoretical convergence analysis provides possible explanations for the effectiveness of the algorithms
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Fig. 12. Shape evolutions of the Neumann eigenvalue with L2 shape gradient flows: intermediate domain and optimal domain.

Fig. 13. Comparisons among L2 , boundary H1 , and volume H1 shape gradient flows: convergence histories of shape functional for Neumann boundary
condition with initial square.

Fig. 14. Initial L-shaped domain (31841 mesh nodes) for optimizing Dirichlet eigenvalue, optimal domain, initial cube (35937 mesh nodes) for
optimizing Neumann eigenvalue and its optimal domain (from left to right).

associated with different type shape gradients. For optimizing a Dirichlet eigenvalue, the distributed shape gradients
are shown more effective. For maximizing a Neumann eigenvalue, the two type shape gradients perform equally well.
Numerical evidence shows that the distributed H1 shape gradient flow is more efficient than the boundary L2 shape
gradient flow in literature.
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