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1. Introduction

Eigenvalue problems in optimal shape design have fundamental importance for science and engineering, especially in
structural mechanics (see. e.g., [1-8]). A structure theorem was built by Zolésio for general shape functionals on general
domains. By the structure theorem, the Eulerian derivative can be expressed as a concise boundary integral. The boundary
formulation of Eulerian derivative has been used widely in numerical algorithms [4,7]. But it actually fails to hold when
the boundary is not smooth enough. The Eulerian derivative can be expressed as a domain integral, which is more general
than the boundary formulation [4]. These two formulations of Eulerian derivatives are equivalent through integration by
parts if the boundary is regular enough.

The effectiveness and high accuracy of the boundary Eulerian derivative for solving shape optimization problems has
been shown, when the solver is based on the spectral methods of particular solution [9-12] (see [13,14] for highly accurate
numerical methods of particular solution for computing the eigenpairs on polygonal domains in 2D). Thus, in that case,
the boundary Eulerian derivative is very effective and allows the dimension reduction of calculating the shape gradient
just by evaluating surface integrals, instead of volume integrals of the distributed shape gradient.

Comparing with the (meshless) methods of particular solution, the finite element method is a mesh-type method. It
is widely used to discretize the PDE constraints for shape gradient computations in shape optimization (see e.g. [15,16]).
This approach based on domain triangulation is flexible to shape representation and shape changes. The sensitivity
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information-directional derivatives of objective functions and constraints needs to be very accurately computed in order
for the optimization algorithms to fully converge [17]. For finite element approximations of eigenvalue optimization, the
boundary shape gradients are widely used (see e.g., [1,2,4-7,18]). The boundary expression of Eulerian derivative, although
popular, is actually not suitable for use since the finite element solution does not have the appropriate smoothness
under which the boundary integral formula can be obtained (pp. 531 [4]). The use of domain expressions is natural and
promising. Recently, Hiptmair et al. [19] showed that the finite element approximations of distributed shape gradients
converge faster and are more accurate than the boundary versions for linear elliptic problems. Similar behaviors are
shown for shape optimization in the Stokes equation [20]. But convergence of shape gradients is not performed in “real”
descent direction in optimization algorithms. We refer to [21-23] for more applications of the distributed shape gradients.
To best of our knowledge, no literature reported numerical shape optimization examples with comparisons shows that
the distributed shape gradients are more effective. For shape optimization of Dirichlet eigenvalue problems [24], our
numerical evidence shows that the algorithm using the distributed shape gradients is more initially independent. A priori
error estimates are obtained in an infinite-dimensional operator norm [25]. The volume formulation of Eulerian derivative
offers more accuracy [25]. To ensure the “real” descent direction in optimization algorithms, convergence analysis should
be performed for discretizations of the popular H' shape gradient flows, which are used in algorithms of [24]. H! shape
gradient flows have been actually used widely in shape design and topology optimization (see e.g., [16,22-24]).

In this paper, we prove convergence for Galerkin finite element approximations of H' shape gradient flows in
eigenvalue optimization. Both boundary and distributed shape gradients are considered with comparisons. Numerical
results are presented for verifying convergence of approximate shape gradients as well as effectiveness of shape gradient
algorithms. The rest of the paper is organized as follows. The Laplace eigenvalue optimization problems are presented
in Section 2. Finite element approximations of H' shape gradient flows associated with boundary and volume Eulerian
derivatives are given. In Section 3, we present a priori error estimates in H' and > norms for H' shape gradient flows.
In Section 4, numerical results are presented. Brief conclusions are drawn in Section 5.

2. Finite element approximations of H! shape gradient flows for eigenvalue optimization

In shape gradient algorithms for shape optimization, it is desirable to introduce auxiliary flows for increasing the
smoothness of descent/ascent directions. The H' shape gradient flow is typically useful for regularization [22,24]. We
first introduce the eigenvalue problem and the Eulerian derivatives in shape optimization. Then, we present finite element
approximations of H! shape gradient flows for eigenvalue optimization.

2.1. H' shape gradient flows in eigenvalue optimization

Let £2 be a bounded domain in RY (d = 2, 3) with Lipschitz continuous boundary 3£2. We consider the Laplace
eigenvalue problem:

— Au=\u in 2
du (M
u=0 or — =0 onads.
an
We consider the eigenvalue problems in shape optimization [2,3,5,6,18]:
min A (Dirichlet) and max A (Neumann), (2)
|2l=c 12l=C

where |£2| denotes the geometric measure of £2 and C > 0 is a prescribed number.

We recall basic shape calculus using the speed method (Section 2.9, pp. 54 and pp. 98 of [7]) for solving (2). For a
variable t € [0, T) with T > 0, we introduce a velocity field V(t, x) € C([0, z]; D'(R?, R?Y)) with D'(R?, R?Y) being the
space of continuously differentiable transformations of RY. Then, we define a family of transformations T; : 2 — £2; with
2 = T(V)(2). For x = x(t, X) € £, with X € £, it satisfies

dx
E(t,X) = V(t, x(t, X)), x(0,X)=X. (3)
Denote Vv, = V(0)|3n.
The variational formulation of (1) is to find A € R, 0 # u € V such that

(Vu, Vo) = AMu,v) YveV, (4)

where V = H(}(.Q) (V = HY(£2)) for the Dirichlet (Neumann) boundary condition. It is well-known that there exists a
sequence of eigenpairs of (4). For a simple eigenvalue A, let (1, u) be an eigenpair of (4). Then, A(£2) is shape differentiable
and we have the Eulerian derivative (see e.g., [24,25] for derivations)

N(2;V)g = / [—2Vu - DVYVu + divy(| Vul* — Au?)]dx, (5)
(%)
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where DV denotes the Jacobian of V. If, furthermore, 2 is convex or if it is of class C?, then the boundary Eulerian
derivative of Dirichlet eigenvalue

2
N2, Ve = —/ (87u> Vpds. (6)
FYe) on

Let V- denote tangential gradient. If £2 is of class C3 for the Neumann case, then

(2 Vg = / (IVrul? — ) vyds, (7)

EXe
The H! shape gradient flows we consider are the two variational formulations associated with two different Eulerian

derivatives:

find ¢V € H'(22) such that Au", V) = —A'(2; V) VYV eH'(R) (8)
and

find ©® € H'(£2)? such that AU®, v) = =) (2; Ve VYV eH(2), 9)
where the bilinear form A(-, -) : H'(£2)¢ x H'(£2)! — R is defined as

AU, V) :=/(Du:DV~|—u-v)dx Yu,veH(2)
2

with Du/: DV = Y| dithdyn.

2.2. Finite element approximations of H' shape gradient flows

We consider the standard Ritz-Galerkin finite element method [26,27] for discretization of the variational formulations
(4), (8) and (9). For the shape gradient deformation algorithm we shall present, the domain 2 here at each iteration is
naturally assumed to be a polygon/polyhedron, which can be triangulated exactly with no geometric error introduced.
Consider a family of triangulations {7;}n-o satisfying that 2 = UKeThK where the mesh size h := maxge7; hx with
hg := diam{K} for any K € 7. Let {V}}n-o be a family of finite-dimensional subspaces of H&(.Q). For the linear Lagrange
elements, Vj, = {vy € C°(£2) N HJ(£2) : vnlk€ P1(K) VK € 75} in the Dirichlet case with P1(K) denoting the set of
piecewise linear polynomials on K and V;, = {v, € C%2) : vplxe P1(K) VK € 75} in the Neumann case. Throughout,
we shall denote by C a general constant, which may differ at different occurrences and depend on the eigenvalue and
the mesh aspect ratio, but is always independent of h. We assume that the mesh family {7}x-0 is regular so that the
following approximation property holds [26]:

U}igﬁ(uu — wnll2ggy + hlIVU = Vopll20) < Ch|ulyzq) Yu € H(£2). (10)
Suppose moreover that the mesh is quasi-uniform, i.e., minge7, hy > Ch Yh > 0, based on which the inverse inequality
holds (see e.g. Theorem 4.5.11 [26]).

The weak formulation for conforming finite element approximation of the problem (4) reads: find A, € R and
0 # uy € V} such that

(Vup, Vup) = Ap(up, vp) Yoy € Vi, (11)
For (11), there exist a finite sequence of eigenvalues

O<tp=<Xip=<--=<Aiyn N=dim V,
and corresponding eigenvectors

Uy p, Uzp -« - UNR,
which can be assumed to satisfy

(Uins Ujp) = dj- (12)

In the following, we omit the index number of a specific eigenvalue/eigenfunction for simplicity. Let (A;, uy) be an
eigenpair of (11). We refer to [25] for convergence analysis of shape gradients associated with the multiple eigenvalue
case. We have the following a priori error estimates on approximating eigenvalues and eigenfunctions ([28] and Theorem
5.1 [29]).

Lemma 1. Assume that £2 is a convex polygon/polyhedron or C?> domain and {Ty}no are quasi-uniform. Then,

A< hp < A+ CPulpz g,
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and
2
||u —_ uh”LZ(Q) + h||Vu —_ VUh”LZ(Q) < Ch |u|H2(Q).

Let V), = {vy € [CO(2)1%vnl € P1(K)¢ VK € Ty} C H'(£2)% The finite-dimensional approximations of (8) and (9) read
respectively as

find ¢ € Vi such that Ay, Vi) = —A(2; Vi)en VY Vh € Vy (13)
and
find ¢ € Vy such that AUE, Vi) = —1(2; Viagw Y Vi € Vi, (14)
where
(825 Vo = / [—2Vup, - DVy Vg + divva(|Vug|* — dpup)|dx
2
and

dup \ 2
N2 Vi)aan ;=_/ (#) Vy - nds (or/ (|vpuh|2—xhu§)vh.nds)
e n el

denote the finite element approximations of A'(£2; V)e and A/(£2; V);., respectively.
3. Convergence analysis

In this part, We perform convergence analysis with a priori error estimates for finite element approximations of H'
shape gradient flows associated with both boundary and volume expressions of Eulerian derivatives. We consider the
Dirichlet case for simplicity. It may be generalized similarly to the Neumann case.

Let us first define the Ritz projection Py, : H&(Q) — Vj, such that

(Vphll, Vvh) = (VU, Vvh) Yo, € V. (15)

Lemma 2. Let assumptions in Lemma 1 hold. Then,

IV(Phu — up)ll 20y < Ch*[ulp2 q)-

Proof. We take v, = Pou — up, in (4), (11) and (15). Then, we have
(V(Pru — up), V(Ppu — up)) = (AU — Aplp, Paut — up)
= (Mu — up) + (A — Ap)up, Ppu — uy).
Then, by the Cauchy-Schwarz inequality and triangle inequality,
IV (PR — un)lIZy ) < (Mllu = tllizgg) + 12 = Aalllunllizgey) IPsu — unllzq)
= (A||u — Ul + 12— )Lh|)||PhU — unll2(g)
< C(Alu = unllzigy + 14 = Anl) I V(Prtt — up)ll 20y,
where the normalization fact that [luy[l;2(o) = 1 and the Poincaré inequality are used in the last inequality. Therefore,
V(P — un)ll 20y < C(Allu — upllzq) + A — Anl)
< C(ACH* + CI?)[ulp2 ) (16)
< Ch?|uly2q)

using Lemma 1. O

Lemma 3. Assume that u € W>*(2). Then,

VU — V|l 4q) < Chluly2.4(g)- (17)

Proof. By triangle inequality, we have
IVu — Vup 4oy < IVu — VPl a0y + IVPrU — Vg |lpag)- (18)
By (8.5.4) on pp. 230 [26] and the approximation property (4.4.28) on pp. 110 [26],

[Vu — VPpulljaq) < C vlgvf Vu — Vulliaq
" (19)
< Ch|U|W2v4(.Q)7
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By inverse inequality and Lemma 2, we have
_d
VP — Vupllpaoy = Ch™4 || VPyu — Vgl 2 o)
d
< C"127Z |u|H2(.Q)
A combination of (18), (19) and (20) allows the conclusion to hold. O
Lemma 4. Let 2 be a C?> domain. Let (A, u) be a simple eigenpair of (4). Assume that u € W>*(£2). Then, there exists a
unique solution 14" € H'(£2)? of (8) such that
lled” 2oy < CK|U|W2 40y
where « denotes the mean curvature on 952.
Proof. The bilinear form A(, -) is obviously continuous and coercive on H!(£2) . By Lax-Milgram theorem, there exists a
unique solution ¢/ € H'(£2)? for (8). Moreover, we get

U112, o < A" u")

HI(2) =
= / [2VuDu’ Vu — div ¢’ (| Vul* — Ju?)]dx
2
< 20| Vull 2y DU ll 200y Vttllise(ey + 1div 2 |2 | VU = A 1200,
which implies the a priori estimate
e 1y < C(IVUll2@) | Vulliei@) + VUl Fy o) + Al fag))-

Furthermore, we have from (8) using the fact that u € H%(£2), Green’s theorem, and g—; = dn Yn; on 982

. ( ou el 5 ) .
— AU; + U; = =2div[ —Vu )| + —(|Vu|* —ru“)=0 in 2
3X,‘ axi

(21)
o du du 5
=2— — —|Vul®n; = |Vu*n; on 32,
an dx; on
where ¢V = (Z/l,-)i=1 and n = (n,—)f=1 fori = 1,2,...,d. Then, the standard regularity estimate (see e.g., [26]) for elliptic

problems implies that

Ui <C|||Vul*n; .
I24ll52qy <CIIVulPmll 3

Let b be the oriented distance function associated with £2 satisfying Vb|;,= n and « = divn (see Chapter 6 [4]). We have
b € H?(£2) since £2 is C2. By the trace theorem, triangle inequality and Cauchy-Schwarz inequality, we have

ob
el 2y < C|[|Vul® —
11 H#(£2) 8X, W)
, b , _ b db
<c| [1vuP— + [2vuvu— [Vu|’V—
Xl 12(2) Xi LZ(Q axl 12(2)

< Clul, i @) Plue) + Clulwaag) [Uulwice o) Vbliag) + Clul?, i @bl
=< C|ulw2.4(g)|b|H2(9)’

where Sobolev embedding theorems are used. O

Theorem 1. Let assumptions in Lemma 4 hold. Then,

||L{ —Z/lh 20 +h||Ll —L{h lhe) < ch? |U|Wz4(9

Proof. We first prove the error estimate in the H' norm. Let us define a family of Lagrange interpolation operators
Ty : VN CYU2)Y — V,, which satisfy

U — Znth g1 (o) < ChiUlpey YU € H*(82). (22)
Since by the triangle inequality, (22), and Lemma 4

" =ty gy < Mt = Zad Ny + 1Z0d" — Uyl ) (23)
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what left is to estimate [|Zyt/" — 4y || 1. Denote Xy, := Tyt — 4y . We first have

”Xh”zll(g) = A(Xn, Xh)
=A@’ —u", )+ AU’ — U, A) (24)
= Az — U, xn) — N (82; Xn)g + N (2; Xn)a b

By continuity and (22), (24) implies that

Il gy < IZntd" — U 1| Xl ) + 1A (25 Xh)e — 2'(825 Xi)e.nl

. , (25)
< ChIU |2y | Xnll 1oy + 12 (25 Ao — 2'(82; Xi)enl,
in which
|)»/(.Q; Xh)_q — )»/(.Q; Xh)g$h| < / 2(Vu-Dx,Vu — Vuy, - Dthuh)dX
7
(26)
+ ‘ / div x((|Vul* — au?) — (|Vup|* — Apud))dx|.
fe)
We estimate the two terms on the R.H.S. of (26). For the first term, we have
f 2(Vu - DAy, Vu — Vuy - DA, Vuy)dx
fe)
= / [ZVu DX(Vi — Vi) 4+ 2(Vu — Vup) - DXV — 2(Vu — V) - DXy(Vit — Vuh)]dx
2
= / 2(Vu — Vuy) - (DA, + D& )Vudx — / (Vu — Vup) - (DX, + D} )(Vu — Vuy)dx (27)
2 2
<2 f (Vu — Vup) - (DX, + DA} )Vudx| + ‘ / (Vu — Vup) - (DX, + DX} )(Vu — Vuy)dx
2 2
<ClIVu — Vup|l a2y DX | 2021 VUllaoy + I VU — Vgl j4e))
<Chluly2.4)ll Xl g1 o)([Ulwraey + Chluly2ag),
where Lemma 3 was used in last inequality. For the second term, we have
‘ / div X((|Vul? — au?) — (|Vup|? — Apud))dx
2
<Idiv Xy ll 200y (VU = [VupPlle) + 1062 — Al 2(0))
<CllXillia) ( 20 Vullya )V = Vunllage) + IV = Vugl% o) o8)

+ A - )\h|||u||f4(m + Anllt — upllao) (Il — unllag) + 2llullae)) )
<CllAaliey (219Ul Vi = Vunllsgay + V1 = Vil
= Anllul gy + Anllu = unllgran( e = Ul + 2lulaey) )

using the Cauchy-Schwarz inequality, triangle inequality and Sobolev embedding theorem. By a priori error estimates in
Lemmas 1 and 3, (28) implies that

/Q div 4((IVul* = 2u?) = (IVunl® = Anti))dX| < Cll Xl ()hlulyyaa o) (29)
A combination of (26), (27), and (29) implies that

V(825 Ah)e — 2(825 Xi)enl < CllXnlyo)hlulyy.a o) (30)
Thus, we obtain from (25), (30) and Lemma 4

1%l < ChluZ . (31)

Now we prove [? error estimate |2/ — U}Y li2()- Let U be the solution of the continuous problem with perturbated
R.H.S. corresponding to its discrete formulation (13):

find & € H'(2)" such that A, V) = —A'(2; V)an YV e H'(2), (32)
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which is well-posed by Lax-Milgram theorem. Then, the Galerkin orthogonality reads:

AU —U , Vi) =0 YV € Vp.
By the triangle inequality,

It = Npey < ¥ = Ullziy + 10 = Uy ll2(0)- (33)
In order to bound [[¥ — i l12(2), we introduce an auxiliary problem with the Laplacian operating componentwise:

— A2+ =uU"-U inQ

o (34)
— =0 on d52,
an
which is well-posed and has the a priori estimate
1P llp20) < Clled” —ﬁ”LZ(gy (35)
We have
v 2 v _ 5y
= [N(2; @)on — M(82; D) (36)

< Ch?July2.ai0)| P20y,

where the last inequality can be obtained similarly by modifying proof arguments (26)-(30) with X, € H!(£2)? replaced
by @ € H?(£2)! (we omit details for simplicity). From (35) and (36), thus

" — Ul 20y < CH*|uly2ag).
To estimate || — u,‘,’IILz(Q), we first introduce a dual problem

find 2z e H'(2)? such that A(v, 2) = (U —u),V) YV e H(2),
which has the a priori estimate

1Zllh2(2) < CIA = Uy ll20). (37)
Then

17 — vy 1> ) = AUy, 2)

=AU-U, Z — TZ)

T (38)
< CllU — Uy lg )12 — ZnZll g1y
< Chlld =ty Nl @y Zlipey  (by (22).
By (37) and (38), we get
It — u}‘{”LZ(Q) < Ch|ld — U}Y”m((z)
Vv ~ Vv \'4 (39)
< Ch(llU” = Ullgygy + U™ — Uy I 2))-
Since [t¥ — U lly1(2) = O(h) has been proved, we require to bound [t/ — U] |1(g).
V72 _ VYV 5y
=N(2;U—-uU")g — N (2;U — U ) n.
Using (30) with A&; replaced by ¢V — 7, (40) implies that
lled” _{]”Hl(g) = Ch|u|5vz,4(m~
Therefore, the conclusion holds. O
Lemma 5. Let assumptions in Lemma 1 hold. Assume further that
lullwzrey < CoAllulle2)
for 1 < p < u with some u > d and
1Pt — g llwrco(y < Cllogh*Phlulyzg), d=3. (41)

Then

_1
flu— Uh||w1<0<>(:2)§C|10gh|1 dhluly2.000)-
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Proof. First, we split the error and use the triangle inequality to obtain
lu — unllwreo(gy < Il — Prtllwi.co(gy + [IPhlt — Unllwr.co(g), (42)

where Py, : H(}(.Q) — Vj, is defined in (15). In (42), the error estimate for the first term on the R.H.S. is standard (Corollary
8.1.12 [26]):

llu = Prullyioo(a) < Chltly2.00(g)- (43)

What left now is to estimate [|Phu — uplly1.0(q) for d = 2. By the inverse inequality (see e.g., [26]), discrete Sobolev
inequality (Lemma 4.9.2 of [26]) and Lemma 2, we obtain

[[Phu — uh||W1=°0(Q) =< Ch™! 1Pyt — up||rooe)
< Ch™log h|"? ||V (Pyut — un)ll2g) (44)
< Cllog h|"?hluly2g). O
Remark 1. To the best of our view, there is no similar result in 3D as the discrete Sobolev inequality in 2D. The proof

thus cannot be performed for 3D In Lemma 5 and the assumption (41) is required. If we do not assume (41), then we
obtain lower convergence rate for d = 3. More precisely,

1Pt — upllyr.00(y < Ch™>? |V (Phu — un)lli2ce)
< CVhlulypg)

by inverse inequality and Lemma 2.
Theorem 2. Let assumptions in Theorem 1 hold. Assume further that u € W>%(£2). Then,
U4 — U N1 ) < Chllog I~ 4 Julyy2.c -
Proof. The smoothness of domain £2 allows the problem (9) to be equivalent to the Neumann boundary value problem

(21), i.e., u® = 1. Thus, we have ¢/® € H?(£2)? by Lemma 4. We define the Ritz projection Pf : V — V,, and consider the
variational problem: find Pf/® € Vj, such that

APPUP W) = AUE, W) YW € V.
We have
Ie® = PtdP 1) < ChIL lly2 - (45)
Then, we split ¢ — uf = 1 — PPu® + Pfu® — 14f and have
IU® — U NIy < 1U° = PRUP oy + IPRUP — U [l )- (46)
We now estimate ||PE® — 14| 1) Denote Yy := Pfu® — u4f. Then,
”yh”,z.,l(_Q)
< A(Yn, Vn)
=AU® —uf, o)
= —X)(82; Vuaa + X(82; Ynlosz.ns

ou o(u — uy) ou  dup 2 (47)
< |V nllape) 2‘ A T Ao
on  on 13009 on  on | ;3,0
< 134l (2 ‘ ou_ Ot ou +111Vu = VusP| )
= IIYhli4ae an a - h 4
(842) on 0n 1350 100 |10 13(82)

3
< 10217 1 Vhll a0y (21 Ve = Vinlliao) | Vitllicae) + VU = Vitgllfxg))-

Considering that u € W2°°(£2) and Vuy, is piecewise constant on each element, we have further

3
191210, < 10213 [Dhlitgp0) (21 V1t = Vitnll ooy | Vitlleqy + V2 = Va2 ). (48)
in which
<C
1Vl 2y < ||37h||w%.2(am (49)

< ClYnllgigg
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Fig. 1. One level of meshes used for the square and L-shaped domain.

by Sobolev embedding theorem. By (48) and (49), we obtain

3
19010y <CIOR2I3 (201 = e Il + 18 = U1y ) 50)

<Chllog h|"~@ [ul 2o,

where the continuity from £2 to £2 and Lemma 5 are used. A combination of (45), (46) and (50) allows the conclusion to
hold. O

4. Numerical results

We perform numerical experiments with FreeFem++ [30]. We consider only cases of the first (simple) Dirichlet
eigenvalue and the first non-zero Neumann eigenvalue for simplicity. For more numerical examples involving high
eigenvalue optimization as well as multiple cases, we refer to [24]. Examples corresponding to both Dirichlet and
Neumann boundary conditions are presented. We choose two computational domains in R?: unit square and a L-
shaped domain ((—1, 1)*> missing the upper right quarter). In Fig. 1, one level of triangulation is illustrated. To study
h-convergence, uniform refinement is employed. The eigenfunction on square has enough smoothness, whereas the
eigenfunction associated with the first eigenvalue on the L-shaped domain has a singularity at the reentrant corner.
Lagrange Linear element is employed. We approximate the first Dirichlet eigenvalue and the first non-zero Neumann
eigenvalue. We compute a numerical solution on a very fine mesh and use it as an “approximate” exact solution for
reference in computing numerical errors. We also present shape optimization examples using a H! shape gradient
algorithm. We calculate the volume integrals involved in the calculation of the volume Eulerian derivatives by numerical
integration with Gaussian quadrature.

4.1. H' shape gradient flows

We present numerical shape gradients for both H'!-flows associated with the boundary and distributed Eulerian
derivatives. In Fig. 2, the theoretical convergence rates are verified numerically on square. In Fig. 3, we see that the
distributed shape gradient is nearly the same as the boundary shape gradient in the H' norm. But for the L?> norm, higher
and super-linear convergence rate and more accuracy can be observed. For the square with Neumann condition, we can see
there is no advantage of distributed shape gradient in convergence and accuracy. The quadratic convergence of boundary
shape gradient in L? norm is again unexpected. For the L-shaped domain with Neumann condition, similar phenomenon
in Fig. 5 can be obtained as the Dirichlet case of Fig. 3. (See Fig. 4.)

4.2. Shape optimization

To demonstrate the performance of the shape gradients of H! flows, we solve numerically two shape optimization
models in (2): minimizing the first Dirichlet eigenvalue and maximizing the first nonzero Neumann eigenvalue with
prescribed fixed volume. Disk is the well-known optimal solution for each problem. We refer to [ 16] for numerical results
when optimizing other Dirichlet eigenvalues with domain type Eulerian derivatives. We deal with the volume constraint
by homothety [5,6] and consider the following unconstrained formulations instead:

min A|Q|% (Dirichlet) and max A|Q|% (Neumann). (51)

£2 is open £2 is open
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H' errors of approximate shape gradients of H' flows: Square

L2 errors of approximate shape gradients of H' flows: Square
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Fig. 2. Convergence history on errors of approximate shape gradients of H' flows: Square and Dirichlet boundary condition.

H' errors of approximate shape gradients of H' flows: L-shaped domain L2 errors of approximate shape gradients of H' flows: L-shaped domain
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Fig. 3. Convergence history on errors of approximate shape gradients of H' flows: L-shaped domain and Dirichlet boundary condition.

H' errors of approximate shape gradients of H' flows: Square
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Fig. 4. Convergence history on errors of approximate shape gradients of H' flows: Square and Neumann boundary condition.
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H' errors of approximate shape gradients of H' flows: L-shaped domain L2 errors of approximate shape gradients of H' flows: L-shaped domain
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Fig. 5. Convergence history on errors of approximate shape gradients of H' flows: L-shaped domain and Neumann boundary condition.

The volume Eulerian derivatives of 1|§2| for both cases are
, 2 2 2.4 ., 2 . 2 2
V@iVl + Jreli el = [|9|d(—2w DYV + divv(|Vul? — Au ))
o)

2
n amszﬁ*%uw] dx

by (5). The boundary Eulerian derivatives are
u\® 2
/ [—|9|§ (—) +A|9|5—1}vnds (52)
90 on d

2
/ (IA’ZI%(IVFUI2 —ku2)+ak|9|%_l> Vnds (53)
a2

and

for the Dirichlet and Neumann cases, respectively. We check numerically multiplicity of the eigenvalue using the rule with
threshold in [2,6] and modify the Eulerian derivative if necessary. We observe that the multiplicity of the Neumann case
is two during deformations. The linear combination of the first two (non-trivial) Neumann eigenvalues are considered
as an objective, when they are close to each other. The gradient is modified correspondingly [6]. The step size should be
chosen by trial and error for the objective to decrease. Set an initial step 8 = 1 and a tolerance ¢ = 10~%. At each iteration,
we reduce the current step size by half repeatedly until it becomes feasible to avoid reversed triangles to appear during
deformations. The algorithm we present below allows deformations only without topological changes. Shape gradient
descent flow and ascending flow correspond to the Dirichlet case and Neumann case, respectively.

In order to evaluate better the performance of our algorithms for shape optimization, we compare the H! shape
gradient flows with the traditional L shape gradient flow (see e.g. [6]) in effectiveness and efficiency. The L? flow typically
moves the boundary of the current domain according to the boundary Eulerian derivative. By (52)-(53), the L? flows
require the “discrete” velocity fields to be

123 (2 2+2A 12137 |n
on at

2 2 2
[mw(wrumz — hpup) + ammﬂ”]n

Vh

and

Vh

for gradient descent and ascent, respectively. The step size is determined similarly as in the H! flows. After the new
boundary is determined, remeshing is required at each iteration. The computational cost for remeshing (even with a very
fine mesh) is neglectable compared with that for the (nonlinear) eigenvalue forward solver.

In Fig. 6-7, we show that both shape gradients of H! descent flows and L? flow converge to the “right” optimal domain
disk from the same initial square. If the initial domain is L-shape however, we can see from Fig. 8 that the volume H'
flow converges to disk while the boundary H' flow fails due to the inaccurate shape gradient computation as proved and
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Fig. 6. Shape evolutions of the Dirichlet eigenvalue (from left to right): intermediate design, final result by volume Eulerian derivative, intermediate
design, and final result by boundary Eulerian derivative (initial square in Fig. 1) (We refer to [24] for more other eigenvalue optimization examples).
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Fig. 7. Shape evolutions of the Dirichlet eigenvalue with the L? shape gradient flow from initial square: step 2, 5 and 15 (from left to right).

verified numerically above. Comparing with H! shape gradient flows, [? flow converges to disk as shown in Fig. 9 for
shape evolutions. In Fig. 10 for the initial square case, the convergence history of objectives show that the volume H'
shape gradient descent algorithm converges more efficiently than the boundary H! type. Both H! flows are more efficient
than L? flow. For the initial L-shape case, the boundary H' flow fails. The volume H' flow converges more efficiently
than the L? flow by counting and comparing the total costs of their corresponding algorithms. The algorithm with less
iterations in optimization implies more efficiency when comparing the volume H' flows and L? flow. The volume H' flow
requires less iterations than L? flow for shape optimization, although it requires to solve an additional elliptic problem
besides an eigenvalue problem. We observe that the eigenvalue problem is nonlinear and the gradient flow problem is
linear. The computational cost for solving former is less than that for solving latter.

For Neumann case, both algorithms associated with H! volume and boundary formulations converge to the right disk
as shown in Fig. 11 with initial square. Fig. 12 shows that the L? flow is also effective. When starting with initial L-shape
however, all H' and L? flows fail to converge to disk. For efficiency comparison, in Fig. 13 both H! flows are more efficient
than the I? flow. No numerical evidence observed shows that the volume H! flow is more efficient or effective than
the boundary H! flow. This is mainly because that the boundary H! shape gradient compared with the volume type is
competitive in convergence rate as well as accuracy as noticed numerically above.

In Fig. 14 for 3D, the Dirichlet/Neumann eigenvalues are optimized effectively using the algorithms with volume H!
shape gradients. We remark that the boundary H! flows fail to converge to the right ball for optimizing the Dirichlet
eigenvalue, when the initial domain is L-shaped.

Algorithm 1: Boundary/Distributed shape gradient algorithm for eigenvalue optimization

Given an initial guess £2¢, set k =0, ¢, §;
while [(2i.1) —J(20)]> (i) do
Solve the Dirichlet/Neumann eigenvalue problem:;
Solve the H'! shape gradient flow;
while reversed triangle/tetrahedron appears do
| 8« 68/2;
end
Moving meshes: 241 < 2k + 8y with Uy = Uy or Uf;
k< k+1;
end

5. Conclusions

We have performed convergence analysis for finite element approximations of boundary and distributed H' shape
gradient flows for eigenvalue problems. For the Dirichlet case, theoretical analysis as well as numerical comparisons
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