
ELSEVIER Journal of Computational and Applied Mathematics 103 (1999) 263-279 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

Stability and error analysis of one-leg 
methods for nonlinear delay differential equations 1 

Chengming Huang a'b'*, Shoufu Li a, Hongyuan Fu b, Guangnan Chen b 
a Institute for Computational and Applied Mathematics, Xiangtan University, Hunan, 

411105, People's Republic of China 
b Graduate School CAEP, P.O. Box 2101, Beijing, 100088, People's Republic of China 

Received 2 July 1998; received in revised form 7 November 1998 

Abstract 

This paper is concerned with the numerical solution of delay differential equations (DDEs). We focus on the stability 
behaviour and error analysis of one-leg methods with respect to nonlinear DDEs. The new concepts of GR-stability, 
GAR-stability and weak GAR-stability are introduced. It is proved that a strongly A-stable one-leg method with linear 
interpolation is GAR-stable, and that an A-stable one-leg method with linear interpolation is GR-stable, weakly GAR-stable 
and D-convergent of order s, if it is consistent of order s in the classical sense. (~) 1999 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

In recent years, many papers discussed numerical methods for the solution of delay differential 
equations (DDEs) (see [1, 2, 9, 12-14, 19-24] and their references). They mainly focused on the 
stability of numerical methods for linear scalar model equation 

y ' ( t ) = a y ( t ) + b y ( t - z ) ,  t > 0 ,  

y ( t )  = ok(t), t <~ O, (1 .1)  
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where a, b are complex numbers which satisfy 

Ibl <-Re(a), 

z ( > 0 )  is constant delay, and ~b(t) is a continuous function. The concepts of P-stability and GP- 
stability were introduced and a significant number of results have already been found for both 
Runge-Kutta methods and linear multistep methods. Recently, the stability of ILK methods has been 
studied in [13] based on the following test problem: 

y ' ( t )  = L y ( t )  + M y ( t  - z), 

y ( t ) = c ~ ( t ) ,  t <<. O, 

t>O, 
(1.2) 

where L , M  denote constant, complex matrices. However, we can not say that a stable method for 
(1.1) or (1.2) is also valid for a more general system of nonlinear DDEs. The stability results of 
numerical methods for nonlinear DDEs are much less. Up to now, we only see the stability analysis 
of some methods (cf. [2, 20, 23]). In this paper, we investigate the stability of  one-leg methods with 
respect to nonlinear DDEs. 

On the other hand, error analysis of numerical methods for DDEs is mostly based on Lipschitz 
conditions. For stiff DDEs, however, the Lipschitz constant will be very large, so that the classical 
convergence theory can not be applied. In this paper, in addition to stability analysis, we will also 
investigate the error behaviour and obtain the global error bounds independent on the stiffness of 
the underlying system. We will continue to analyse stability and error behaviour of Runge-Kutta 
methods for nonlinear DDEs in other papers. 

This paper is structured as follows: In Section 2, we fix our attention on a particular class of  
DDEs, collecting several results from the literature. In Section 3, some new concepts of  stability are 
introduced for nonlinear DDEs. They are reminiscent of that for the stiff ODEs field. In Section 4, we 
analyse the stability of  A-stable one-leg methods with linear interpolation with respect to nonlinear 
DDEs. In Section 5, we investigate the error behaviour of  A-stable one-leg methods with respect to 
nonlinear stiff DDEs. In Section 6, we briefly discuss the numerical solution of DDEs with several 
delays. 

2. Test problems 

Let (., .) be an inner product on C N and II" II the corresponding norm. Consider the following 
nonlinear equation: 

y ' ( t )  = f ( t ,  y(t), y ( t  - z ) ) ,  t >1 O, 

y ( t )  = dp,(t), t <. O, (2.1) 

where z is a positive delay term, 4)1 is a continuous function, and f : [0, +c~)  x C N x C N -~ C N, is 
a given mapping. In order to make the error analysis feasible, we always assume that the problem 
(2.1) have a unique solution y ( t )  which is sufficiently differentiable and satisfies 

d i y ( t )  I 
dt  i <. Mi. 
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Definition 2.1. Let p , q  be real constants. The class of  all problems (2.1) with f satisfying the 
following conditions: 

Re(u1 - u2, f ( t ,  u l , v ) - f ( t ,  uz, v)) <. pl]ul - u21l 2, t >i O, ul,u2, vE  C N, (2.2) 

[If(t,U, Vl) - f ( t , u ,  v2)[[ <~ q[lvl - v211, t >>- O,u,v,, v2 E C N, (2.3) 

is denoted by Dp, q. 

Remark 2.2. In the literature with respect to nonlinear stability and B-convergence of  numerical 
methods for ODEs, the class Dp, o has been used widely as the test problem class (cf. [3, 4, 6, 7, 9, 
18]). 

Proposition 2.3. Sys tem (1.1) belongs to the class Dp, q where p = Re(a) and q = ]b]. 

Proposition 2.4. Sys tem (1.2) belongs to the class Op, q where p =/z(L) ,#( . )  is the logarithmic 
matr ix  norm corresponding to the inner-product norm on C N, and q = suPtlxll=~ IIMxll. 

For the nonlinear case, consider the following example (cf. [8]): 

by(t  - z) 
y ' ( t )  = - a y ( t )  + 

1 + [ y ( t  - z)]" 

where a > 0 and b are real parameters and n is an even positive integer. This equation is a model for 
respiratory diseases, where y( t )  represents the concentration of  carbon dioxide at time t. Obviously, 
this equation belongs to the class Dp, qwith p = - a  and q = I b] for n = 2 or 4. 

In order to discuss stability and asymptotic stability of  DDEs (2.1) of  the class Dp, q, we introduce 
another system, defined by the same function f ( t ,  u, v), but with another initial condition: 

z '( t)  = f ( t , z ( t ) , z ( t  - z)), t >>- O, 

z( t )  = dp2(t), t <. O. (2.4) 

Proposition 2.5. Suppose systems (2.1) and (2.4) belong to the class Op, q with q <~ - p .  Then the 
following is true: 

I[y(t) - z(t)[[ ~< max Iltkl(x) - ~b2(x)[], t ~> 0. 
x~<0 

(2.5) 

The proof  of  this proposition can be found in [20]. 

Proposition 2.6. Suppose systems (2.1) and (2.4) belong to the class Dp, q with q < - p .  Then the 
following holds: 

lim [ly(t) - z(t)ll = o. (2.6) 

The proof of  this proposition can be found in [23], where a more general result was given. 
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3. Some concepts 

We briefly recall the form of a one-leg method for the numerical solution of the ordinary differ- 
ential equation 

y ' ( t )  = f ( t , y ( t ) ) ,  t >i O, 

y(0)  = Y0. (3.1) 

The one-leg k step method is the following: 

p(E)y .  = h f (a (E) t . ,  a (E)y . ) ,  (3.2) 

where h > 0  is the step size, E is the translation operator: Ey .  = Y.+I, each y. is an approximation 
to the exact solution y(tn) with t. = nh, and p(x) = ~ = 0  ~J 'xj and a(x) = ~j=0k fljxJ are generating 
polynomials, which are assumed to have real cofficients, no common divisor. We also assume p (1 )=  
0, p'(1) = o-(1) = 1. 

Apply the one-leg k-step method (p,o-) to DDE (2.1) 

p(E)yn = hf( f f (E)tn ,  a(E)y.,35.),  n = 0, 1,2, . . . ,  (3.3) 

where the argument 35. denotes an approximation to y(a(E) t .  - z) that is obtained by a specific 
interpolation at the point t = a(E)t .  - z using {Yi}i~<.+~. 

Process (3.3) is defined completely by the one-leg method (p ,a)  and the interpolation procedure 
for 35.. 

It is well known that any A-stable one-leg method for ODEs has order at most 2. So we can use 
the linear interpolation procedure for 35.. Let z = ( m -  6)h with integer m >~ 1 and rE [0 ,1 ) .  We 
define 

35, = &r(E)y,_m+, + (1 - 6)¢r(E)yn_m, 

where Yt = q~l(lh) for l <~ 0. 
Similarly, apply the same method (p, o') to DDE (2.4) 

p(E)z ,  = h f ( a ( E ) t , , a ( E ) z , , ~ , ) ,  n = 0, 1,2, . . . ,  

7,n = (~¢r(E)zn_m+l -1- (1 - 6)a(E)z._m, 

where zt = ~b2(lh) for l ~< 0. 

(3.4) 

(3.5) 

(3.6) 

Definition 3.1. A numerical method for DDEs is called R-stable if, under the condition that q ~< - p, 
there exists a constant C which depends only on the method, z and q, such that the numerical 
approximations Yn and zn to the solutions of any given problems (2.1) and (2.4) of  the class Dp, q, 
respectively, satisfy the following inequality: 

/ \ 
][Yn -- Znll ~ C { max [[yj -- zj[ I + max I I ~ , ( t )  - q ~ 2 ( t ) l l /  

k O<<.j<~k--I t<~O 
(3.7) 
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for every n >~ k and for every stepsize h > 0 under the constraint 

hm = z, (3.8) 

where m is a positive integer. 
GR-stability is defined by dropping the restriction (3.8). 

Remark 3.2. Torelli [20] introduced RN- and GRN-stability for numerical methods applied to nonau- 
tonomous nonlinear DDEs. They require that the difference of  two numerical solutions is bounded 
by the maximum difference of the initial values which means that the method is contractive. Here 
we relax their requirements. R- and GR-stability only require the difference to be controlled and 
uniformly bounded. Therefore, R-stability is a weaker concept than R_N-stability. In fact, if a method 
is RN-stabte, then we can choose C = 1 such that the method is R-stable. 

Proposition 3.3. A n y  R-stable one-leg me thod  is A-stable. 

Definition 3.4. A numerical method for DDEs is called AR-stable if, under the condition that q < - 
p, the numerical approximations y, and z, to the solutions of  any given problems (2.1) and (2.4) 
of  the class Dp, q, respectively, satisfy the condition 

} i m  Ilyo - z ll = 0 (3.9)  

for every stepsize h > 0 under the constraint (3.8). 
GAR-stability is defined by dropping restriction (3.8). 

Definition 3.5. A numerical method for DDEs is called weak AR-stable if, under the assumptions 
of  Definition 3.4, (3.9) holds when f further satisfies 

[If(t, ul, v) - f ( t ,  u2, v)ll ~ L[[Ul -- u2 [1 b, t /> 0, Ul, u2, V E C N, (3.10) 

where b is a positive real number and L is a nonnegative real number. 
Weak GAR-stability is defined by dropping the restriction (3.8). 

Remark 3.6. If  the function f ( t ,  u, v) is uniformly Lipschitz continuous in variable u, then (3.10) 
holds. 

Remark 3.7. Both AR-stability and weak AR-stability can be regarded as the nonlinear analogues 
of  the concept of  P-stability [1]. 

Up to now, error analyses of numerical methods for DDEs are mostly based on the function 
f ( t ,  u, v) satisfying Lipschitz conditions for u and v. For stiff DDEs, however, the Lipschitz constant 
with respect to u will be very large, so that the classical convergence theory cannot be applied. 
Now, we introduce the concept of  D-convergence for stiff DDEs. 
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Definition 3.8. The one-leg method (3.3) with interpolation procedure (3.4) is said to be D-con- 
vergent of order s for the problem class Dp, q if this method when applied to any given problem 
(2.1) of the class Dp, q with yi • y(ti), i < k, produces an approximation sequence {y,}, and the 
global error satisfies a bound of the form 

I l y ( t ~ ) - y ~ l l  <~ c ( t . ) h  ~, n >~k, hE(O, ho], 

where the function C(t) and the maximum stepsize h0 depend only on the method, some of the 
bounds Mi, the delay z, the characteristic parameters p and q of the problem class Dp, q. 

Remark 3.9. D-convergence concept was firstly proposed by Zhang and Zhou [24] for Runge-Kutta 
methods. It was assumed that q ~< - p in [24]. Here we drop this restriction. The D-convergence 
concept is wider than the well-known B-convergence concept (see [6, 7, 9, 15, 16]). D-convergence 
for the problem class Dp, o is just B-convergence. B-convergence results of one-leg methods can 
be found in [11, 15]. 

4. Stabifity analysis 

In this section, we focus on the stability analysis of A-stable one-leg methods with respect to the 
nonlinear test problem class Dp, q. 

Let Yn, zn E C N, 

Yn+l Zn+l 
W n = 

kYn+k-I Zn+k-1 A 

and for a real symmetric positive definite k x k matrix G = [gij], the norm I[" I[G is defined by 

IIgllo ~ i j ( u i ,  u j )  , g - T T T T ~ c k N .  = - ( U l , U 2  . . . .  ,uk) 
i,j=l 

Theorem 4.1. Assume that the one-le9 k step method (p,a)  is G-stable for  a real symmetric 
positive definite matrix G and that the solved problems (2.1) and (2.4) belon9 to the class Dp, q, 
then 

IIw.+, lib ~ IIw0ll~ + h ~ [(2p + q) l l~ (E) (y j  - zj)]l 2 + 6qlla(E)(yj-m+l - Zjl'+1 ) ~ ] 2 
j=o 

+ (1 - O)ql[a(E)(ys_m - Zs_m)l[Z]. (4.1) 

Proof. Suppose the method is G-stable for G, then for all real ao, a l , . . . ,  ak, 

ATGAl --A~GAo <~ 2~(E)aop(E)ao, 
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where Ai = (ai, ai+t, . . . ,ai+k-1) ~, i = 0, 1. Therefore ,  w e  can easily obtain (e l .  [4, 15, 17 ] )  

[[w.+~ ][2 _ []w.[[~ ~< 2Re( t r (E)(y .  - z . ) ,  p ( E ) ( y .  - z . ) ) .  (4.2) 

Hence 

[[w.+~ I[ 2 - [[w. 1[2 ~< 2Re(tr(E)(yn - z.), h ( f ( a ( E ) t . ,  t r(E)y. ,  )5)  

- f ( ~r(E)t., cr(e)z. ,  Z. ) )) 

2Re(~r(E)(y. - z . ) ,  h ( f ( a ( E ) t . ,  a ( E ) y . ,  ~ . )  - f ( a ( E ) t . ,  cr(E)z,,, f :  ))) 

+2Re(cr (E) (y .  - z . ) ,  h ( f  (~r(E)t., ~r(E)z., y . )  - f (cr(E)t.,  ~r(E)z.,Y. ) )) 

<<. 2h[p[[~r(E)(y.  - z.)]] 2 + q[lcr(E)(y. - z.)[I.  1[35 - £.1]] 

~< (2p  + q)hllcr(E)(y.  - z.)][ 2 + qhl[P. - ~.112. 

It follows from (3.4) and (3.6) that 

ll)Sn - ~nl[ 2 ~ 6211~r(E)(yn_m+l -- Zn_m+l)[[ 2 -4- (1 -- 6)2lla(E)(yn_m -- Z,,_m)[I 2 

+ 26(1 -- 6)[[~(E)(y.-m+, -- z .-m+,)[[.  [[a(E)(y.-m - Z.-m)l[ 

<~ 6211~r(E)(y.-m+, -Z.-m+~)l l  + (1 -6 )2 ] [a (E) (y ._m - Z . - m ) l l  

+ 3 ( 1  - 6 ) ( l l ~ ( E ) ( y . - m + !  - Z.--m+,)ll  2 + II~(E)(Y.--m -- Z°-o,)II 2) 

= 6110(E)(Y.--~+, -- Z.-m+,)l[ 2 + (1 -- 6)[I~(E)(y.-. ,  -- Z.-~)II ~ 

Therefore, 

[Iw°+~ I1~ - [[Wn[[ 2 ~< (2p  + q)h l [a (E) (y ,  - z.)ll = + 6qhlla(E)(y,_m+, - Z.-m+,)115 

+ (1 - 6)qhll~r(E)(y,_m - Z,_m)[[ 2. 

By induction we have that (4.1) holds, which completes the proof  of  Theorem 4.1. [] 

Theorem 4.2. A n y  A-stable  one-le9 m e t h o d  (p, a)  is GR-stable.  

Proof.  Suppose the method is A-stable. Then flk/~k > 0 and the method is G-stable (cf. [5]). Ap- 
plication o f  Theorem 4.1 in combination with the condition that 0 ~< q ~< - p yields 

n--m+l 

IlW.+lll~ ~< IIw011~ + ph L I I ~ ( E ) ( y j -  zj)l[ = + 6qh ~ I lcr (E)(yj-  z:)ll 2 
j--O j ~ - - m + l  

n--m 

+ (1 - 6)qh ~ I I~(E)(yj  - zj)ll 2 
j = - - m  
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When m >~ 2 we have 

--1 

IlWn--'ll~ ~ IIw01I~ + 6qh 
j= - -m+l  

~< Ilwoll~ + (m - 1)6qh max II ,~(E)(yi - zJ)ll 2 
--rn+l ~<j~<--I 

+ ( 1  - 6)mqh max IIo(E)(yj -z j ) l l  2 
-- rn <~.j <~ -- I 

~< Ilwoll~ + (m - 3)qh max II,r(E)(yj - zj)ll 2 
--m<<.j<<.--I 

= [[Wol[ 2 + qz max [[a(E)(yj - z~)[[ 2. 
--m<~j<~--I 

On the other hand, when m = 1 we have 

[[W,+l 1[2 ~< [[w0[[2 + (1 - 6)qh[la(E)(y_~ - z- i  )l[ 2 

= [[w0[[~ + qz[[a(E)(y_~ - z_l)[[ 2. 

Combining (4.4) and (4.5) yields 

IIw.+,l[ 2 ~< Ilwoll~ + q z  max II,r(E)(yj-zj)ll 2, 
--m <~j <~ -- I 

-1  

II~(g)(yj -zj)ll  = + (1 - 6)qh ~ II~(g)(yj -ZAII = 
j ~ - m  

n ~ O , m ~ l .  

(4.4) 

(4.5) 

(4.6) 

Let 21 and ~,2 denote the maximum and minimum eigenvalue of  the matrix G, respectively. Then 
we have 

k--1 

22HY,+k - z,+k[[ 2 ~< 2t ~ [[Yi - gi[[ 2 -~- qz max ][o-(E)(yj - zj)[[ 2, n />  0. 
--m<~j <~-- i 

i=0 

Hence, 

k21 qz 
[[Yn+k -- Zn+k[[2 ~ --~2 o<~i<~k-lmax [ [ y ; - z , [ [ 2 +  ~ -m<~j<~-lmax ][a(E)(yj - zj)[[ 2, n >>- O. (4.7) 

This shows that the method is GR-stable. 
In the following, we further investigate the asymptotic stability o f  one-leg methods. A method is 

strongly A-stable if  it is A-stable and the modulus o f  any root o f  o-(x) is strictly less than 1. 

Theorem 4.3. A strongly A-stable one-le9 method is GAR-stable. 

Proof .  Analogous to Theorem 4.2, we can easily obtain 

[[wn+~ []~ + ( - p  - q)h ~ [[o-(E)(yj - zj)][ 2 
j=0  

~< ]]w0[]~ + q z  max [ l a ( E ) ( y j - z j ) [ [  2, n >/0. 
--m<~j<~--I 

Because - p  - q > 0 and h > 0, we have 

l i r a  II,~(E)(y° - z.)l l  = o. 

(4.8) 

(4.9) 
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On the other hand, 

k 

o'(E)(y, - z,,) = Z ~j(Yn+j - zn+j), 
j = 0  

which gives 

w,+l = Aw, + B,, 

A = 

where 

0 1 0 . . .  0 
0 0 1 .- .  0 

0 0 0 . . .  1 
~o ~l ~ ~k-, 

(4.10) 

(4.11) 

®IN, B , =  

0 
0 

0 
1 

-~k cr(E)(y. -- z, ) 

Here ® is the Kronecker product, and IN is the N x N-identity matrices. From the strong A-stability 
of  the method, we have the spectral radius of  the matrix A strictly less than 1. Therefore, there 
exists a norm I1" II. in C kN such that the corresponding operator norm IIAII, = supllxll=, IIAxll, < 1 
From IIBnlI* --' 0 we  M o w  that, for any e > 0, there exists l > 0 such that IIB.II, < (1 - IIAIt,)~/2 
when n ~> I. Hence, 

n-- l --I  

IIw.ll, = [IA'-'w, + ~ AJB.-j_,II, ~ IIAllT~-'llw, ll, + ~ / 2 ,  n/> I, (4.12) 
j = 0  

which shows that there exists No > l such that IlWnll < ~ when n > No. Therefore, we have 

lirn Ily,,- z.II = 0, 

which completes the proof of  Theorem 4.3. [] 

Lemma 4.4. Suppose {¢i(x)}L1 are a basis o f  polynomials for  pr-1, the space o f  polynomials o f  
deyree strictly less than r, then there is always a unique solution Yn,''',Yn+r--1 to the system o f  
equations 

~i(E)y, = bi, bi C C N, i = 1 . . . . .  r (4.13) 

and there exists a constant D, independent o f  the bi, such that 

max ly,+i[ ~ D max Ibil. (4.14) 
O<~i<~r--I l<~i<~r 

Theorem 4.5. Any A-stable one-leg method (p, a)  is weak GAR-stable. 

Proof. It follows from - p - q  > 0 and h > 0  that 

lim IIG(E)(y. - z.)ll = 0. 
n--+ o¢~ 

(4.15) 
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Considering (3.10), we further obtain 

l i r n  []p(E)(y, - z,)][ = 0. (4.16) 

On the other hand, p and a are coprime, and both are of  degree k. Hence, {xip(x),x~a(x); i =  
0, . . . ,  k - 1} form a basis for p2k-J. Considering (4.15), (4.16) and Lemma 4.4, we have 

l i r n  Ily. - z.II = 0, 

which completes the proof of  Theorem 4.5. [] 

Corollary 4.6. Any  A-stable one-le9 me thod  (p, a) is GP-stable. 

5. Error analysis of A-stable one-leg methods 

In this section, we focus on the error analysis of  A-stable one-leg methods applied to stiff DDEs. 
For the sake of  simplicity, we always assume that all constants hi, ci and di used later are dependent 
only on the method, some of the bounds M~, the characteristic parameters p and q of the problem 
class Dp, q, and z. 

Now, we consider scheme (3.3) and the following scheme: 

p(E)~,  + ~ke, = h f (G(E) t , ,  a(E))3 +/~ken, Yn), n = 0, 1 ,2 , . . . ,  (5.1) 

where 

flk "~ .2 _ fl, Z JflJ + -2 jf l j  , (5.2a) 1 fl; - ~-k ctJ) J c~--k j=o Cl = - - ~  j=0 

~, = y ( t , )  + clh2y"(t , ) ,  (5.2b) 

f .  = y ( c r ( E ) t .  - r ) ,  (5 .2c )  

where y( t )  is the exact solution of problem (2.1). Then for any n>~0, en is uniquely determined by 
Eq. (5.1). 

Theorem 5.1. Assume that the one-le9 me thod  (p, a) & G-stable with respect to G and that the 
funct ion  f ( t , u , v )  satisfies conditions (2.2) and (2.3). Then there exist  constant h l ,d l ,d2  and d3 

such that 

I1~.+~ II 2 ~ (1 + d~h)[l~.[12 -t- d2hllP~ - LII 2 + d 3 h  -111e.II 2, n = O, 1,2 . . . . .  (5.3) 

where ~, = ( (y ,  - fin) r, (Y,+I -- £+a )T,. . . ,  (Y,+k--I -- Yn+k-1 )T)T, 

Proof. In view of G-stability, analogous to Theorem 4.1, we have 

Ileo+, 112 ~< 11~°112 + 2Re(a(E)(y.  - 33,,) - f l ke , ,p (E) (y ,  -- ~,) -- ~ke,), (5.4) 
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where 

gn+~ = ((Y.+, - )3+, )V, (y.+ 2 -- )3.+2) T . . . . .  (Y.+~ -- )3.+k 

It follows from conditions (2.2) and (2.3) that 

Let 

then 

- e.)T) v. 

[Ig~+l lib ~ I1~.112 + 2 h R e ( a ( E ) ( y .  - )3.) - ~ke. ,  f ( ~ r ( E ) & ,  a ( E ) y . ,  ~ . )  

- f ( a ( E ) t . ,  a(E))3.  + fl~e., Y . ) )  

~< [[en[[~ + 2 h [ p [ [ a ( E ) ( y n  - )3.) - flke.[[ 2 + q [ l a ( E ) ( y .  - )3.) - fl~e.[[ . [[)3 - IY. [[] 

~< [[e.[[ 2 + h [ (2p  + q) l l~r(E)(y .  - )3.) - t/~e.ll z + qllP. - ?.ll:].  

0, 2 p + q  ~<0, 
C2 = 2 p + q ,  2 p + q > 0 ,  

Ilg,+1115 ~< II~,ll~ + h[c2H~r(E)(Y. - L )  -/~ke.II 2 + ql[)~. - ~.11=]. 

On the other hand, it follows from (3.3) and (5.1) 

~r(E)(y .  - f t .)  - Bke.  = ~_.  ~j  - ~k J l (Y'+J - )3"+J) 
j=0 

+ ~ h ( f ( o ( E ) ¢ . ,  ~ ( E ) y . ,  2'n) -- f ( ~ ( E ) t . ,  ~(E))3.  + ~ e . ,  L ) ) .  

From G-stability of  the method we have Bk/e~ > 0 (cf. [4, 5]). Then 

Ila(E)(Yn - 2,) -/~ke.II 2 

= R e  ~(E)(y°  - A )  - ~ e ° ,  ~ ~j - ~ j ]  (y°+j - )3.+j) 
j=0 

+ ~ k h R e ( ~ ( E ) ( y .  - )3~) - ~ke . ,  f ( ~ ( E ) & ,  ~ ( E ) y . ,  fi~) 
~k 

- f ( a ( E ) t . ,  a(E))3.  + ~ke . ,  L)> 

~ IIo(E)(y. - )3.)-/~ke.I, [ Z (/~j-/~k .'~ )3.+j) 
LiiJ=o ~k J,] (Y"+J - 

~ _ ] 
+ ~khpll~r(E)(Y"o~ - )3") - /~ke" l l  + ~ hqlly" - Y.II • 

When hp  ~k/ek < 1, we have 

, l c r ( E ) ( y _  )3.) _/~ke.ii . .  < ~k I /~k - ] ~1, - f lkhp c3[[enl[~ + ~ h q l l Y .  - r.II , 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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where 

flj i l k . ~  Ca= max -- ~ (5.9) 
O<~j<~k--1 ~k j / 

and 42 denotes the minimum eigenvalue of the matrix G. Therefore, together with (5.7) and (5.8) 

2c2~x2h [ c~['e'[[2G + f flk " ' 2 1 
I1~o+111~ ~< I1~.11~ + ( ~  ~ k h p )  2 ~--~nq) I1%- LII ~ + q h l l Y . -  IY,,[I 2 

2C2C3C~kh 2c2(fl~hq ) 2 
<~ 1 + ( ~  _ ~hp)~ II~nll~ + q + ( ~ - - - ~ - - ~  hll% - LII ~, ~ h p / ~  < 1. (5.1o) 

Let 21 denote the maximum eigenvalue of the matrix G, then 

Ile.+111~ ~< Ilgo+lll~ + 2111e.ll ~ + 2v/Z,lle.ll . lib.+lilt 

~<(1+ h)l,~.+ill~ + (1+ ~)2111e.ll 2. (5.11) 

Let 

1, p~<0, 
ht= min(1,2~p), p>0 ,  

2C2C~k2(1 + h) 
d l  = sup 1 + 

(5.12) 

(5.13a) 

2c2(fl~hq)2 ) 
d2 = sup q + (1 + h), (5.13b) 

h~(O, hll (~k -- fl~hP) 2 

d3= max (1 + h)21, (5.13c) 
hc(0,hl] 

then (5.3) holds, which completes the proof of Theorem 5.1. [] 

Theorem 5.2. Assume that the one-leg method (p, tr) applied to problem (2.1) of the class Dp, q 

is consistent of order s ~ 2 in the classical sense for ODEs and that flk/~k > 0, then there exists 
constant d4 such that 

Hen[[ <.d4h s+l, hE(0,  hl], 

where hi is defined by (5.12). 

Proof. Consider the following scheme: 

y(cr(E)t,) = Z flJ - ~k JJ fe"+j + 
j=0 

p(E)~, = hy'(a(E)t,) + R~ "). 

n = O, 1,2,..., (5.14) 

~ hy'(tr(E)t,) + R(I "), (5.15) 

(5.16) 
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By Taylor expansion, there exists constant c4 such that 

[]R]")I[ ~< c4 h3, 

[IR~n)l[ -~< C4 hs+l. 

From (5.1) and (5.15) we have 

y (a (E) t . )  - a(E)p.  - Eke. = #k h [ f (a (E ) t . ,  y (a(E) t . ) ,  y (a (E) t .  - r)) 
~k 

- f ( a ( E ) t . , a ( E ) ~ .  + flke., I7.)] + R~ "). 

In view of (2.2) we can obtain further 

[[y(a(E)t.) - a(E)~,. - flke.[[ 2 ~< ~hpllY(a(E)t.  ) - a(E)y. 

+ [[R{~)[[ • l[y(cr(E)t~) - (r(E)~ - ~ken[[, 

then 

[[y((r(E)t.) - ~r(E).v n -- flke,[[ ~< 2[[R]")[[, 

where hi is defined by (5.12). 
Substituting (5.19) with (5.20), we have 

(5.17) 

(5.18) 

(5.19) 

Theorem 5.3. I f  an A-stable one-leg k step method (p, G) is consistent o f  order s in the classical 
sense f o r  ODEs, then it is D-convergent o f  order s, where k >>- 1, s = 1,2. 

Proof. Suppose the method (p, o-) is A-stable. Then flk/~k >0  and the method is G-stable. From 
Theorems 5.1 and 5.2, we have 

[[e,+,[[~ ~< (1 +dth)[le,[I 2 +dzhllY . - LII 2 +d3d4h 2s+l, hE(0,hl] .  

By induction, it is easily seen that 
n 

I}~.+,l}~ ~< I1~011~ + h Y'~ [dzllP, - ?;11 z + d, ll~ell~ +d3d4h2S]. hE(0,h,]. 
i = 0  

3o~k R~n) , [[h[y'((r(E)t,) - f (~r(E)t , ,  ~r(E)~, + Eke,, 17,)]1[ ~< ~ [1 [1 h ~ (0, h,]. (5.21) 

On the other hand, a combination of (5.1) and (5.16) yields 

o~ke, = h f ( ( r (E) t , ,  a(E)~,  + flke,, 17~) - hy'(cr(E)t,) - R~ ~. 

Hence 

3 (~) 1 (.) 
[le.]l ~< ~-~IIR, II + ~ I I R 2  II, hE(0,hl].  (5.22) 

In view of (5.17) and (5.18), (5.14) holds, which completes the proof of Theorem 5.2. 

h ~ (0, h,], (5.20) 
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Therefore, 

21 
[[Yn+k- Yn+kll 2 ~< ~22 

On the other hand, 

k - I  h " 
II~. - / w l l :  + ~ ~--~[d2[l~i- ~,.II 2 

j=o i=o 
k-1 

_)3  2 + d , 2 , ~ l l Y , + j  i+sll +d3d4h2S], h E ( 0 , h , ] .  
j=0 

(5.23) 

I1£ - x~ill = II~, - y (~ (E) t ,  - ~)ll 

[[6~(E)(y~+,-m - ~÷a-m)[] + (1 -- 6)H~(E)(Yi_m - Yi--m)[] 

+ [[6a(E)2+,_ m + (1 - 6)a(Elf%m - y(a(E)t~ - "c)[[ 
k k 

< 6 Z Ifljl'[[Yi+j+l-m -- .Yi+j+l-m[[ + (1 -- 6) y~  [fljl'[lY~+j--m -- )3*+j-,. I[ 
j=o j=o 

k k 

+ [I 6 Z flYf~i+j+,-m + (1 -- 6 ) E  [3if~i+j--m -- y(~r(E)ti-  z)[[. 
j=O j=O 

By Taylor expansion, there exist constants h2 and d5 such that 

,If~n-frnH2~ds[~t-t-~[,Yi+j_m-Yi+j_ml,2+h4], L j=° h E (O, h2]. (5.24) 

Substituting (5.23) with (5.24), (5.2) and .~ = y(tj), j ~< k - 1, leads to 

I~1 2 2 4 I~ n+k--I 
NYn+k- .Yn+kH 2 < ~kc ,M~h  + ~ d , k h  ~_, [[Yi- )3i[12 

i=0 

h £ [d265 ( ~  [[Yi+j-m -- ~2i+j_m[]2 ~-h4) '~d3d4h2S] 

1 [ n+k-I 
< -~2 (~qkc~M2 + d2dsnh)h4 + nhd3d4h2" + ,~,dlkh Z I[Yi- )3i[[ 2 

i=0 

n+k+l -m ] 
+ d2ds(k + 2)h Z Ilyi-)3ell 2 , h c(O, h3], (5.25) 

i=--m 
where h3=min(hl,h2)<~ l, m~> l, n>~0,  s =  1,2. 

Therefore, whether m = 1 or m > 1, it is certain that there exist constants ho, co and do such that 

n+k-- 1 
IlY.+k - )~.+kl[ 2 ~< Co(1 +tn+k)h2"+hdo Z IlYi- 3~,112, n = 0 , 1 , 2  . . . . .  hE(0,ho].  (5.26) 

i=o 
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By induction we can obtain 

Ily.+k - P.+kl[ z ~ exp(dot,+k)(Co(1 + t,+k)h 2s + hdok max [[Yi - -  33i112), n = 0,  1,2 . . . . .  
O<~j<k 

h E (0,  h0]. ( 5 . 2 7 )  

In fact (5.27) obviously holds when n = 0. If  (5.27) holds for n < l, where 1 is a positive integer, 
then it follows from (5.26) that 

I+k-- 1 

Ily,+~ - Pt+kl[ 2 ~< Co(1 + t ,+k)h 2s + h d o  ~ I l Y i -  ~i112 
i=0  

l + k -  1 

~< c0(1 + t,+k)h zs + hdok m a x  IIY~ - p~112 + h d o  ~ [exp(dot,)(Co(1 + ti)h 2s 
O<.j<k 

i=k 

+hdok max Ilyi - P, II2)] 
O<~j<k 

( ) ~< [c0(1 + tt+~)h 2" + hdok max IlYi - .v~lr 2] 1 + h d o  ~ exp(dot~) 
O<~j <k i=k 

<<. exp(dot~+k)[co(1 + t,+k)h 2" + hdok max Ily~ - Pill2] • 
O<~j<k 

This shows that (5.27) holds for every n i> 0. From (5.2) we further obtain 

IlY.+k - y(t .+k)[I  ~< I c, IM2h 2 + exP(½dotn+k)[hSv/Co(1 + tn+k) + ~ [ c ~  [M2h2], 

n = 0, 1,2 . . . . .  h E (0,h0]. (5.28) 

This shows that the method is D-convergent of  order s,s---1,2, which completes the proof of 
Theorem 5.3. 

Now, we review results from the literature for one-leg methods. For ODEs, Dahlquist [5] proved 
that A-stability is equivalent to G-stability. Li [15] proved that A-stability implies B-convergence, 
and Huang [10] further proved that B-convergence implies A-stability. For DDEs, from Definition 3.1 
and Theorem 4.2, A-stability and GR-stability are equivalent. From Definition 3.8, D-convergence 
implies B-convergence. Theorem 5.3 shows that A-stability implies D-convergence. Therefore we 
have the following result. 

Theorem 5.4. For a one-leg k-step method (3.3) with linear interpolation (3.4), the following 
statements are equivalent: 

(1) (p,o-) is A-stable. 
(2) (p, a) is G-stable. 
(3) (p, ~) is B-convergent. 
(4) (p, cr) is GR-stable. 
(5) (p, a) is D-convergent. 

For solvability of  Eq. (3.3) with (3.4), we refer to [4] when m > 1. When m = 1, we have the 
following result whose proof  is similar to the proof of  Lemma 1.2 in [4]. 
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Theorem 5.5. Suppose that 

h(p + q) < ~k/flk. 

If tn, Yn-m, Y,-m+~,..., Y,+k-I are given, then Yn+k is uniquely determined by Eqs. (3.3) with (3.4). 

6. Equations with several delays 

Consider the following equation with several delays: 

y ' ( t )=  f ( t , y ( t ) , y ( t - - z l ) , y ( t - -  z2) , . . . ,y( t--Zr)) ,  t >lO, 

y(t)=gpl(t), t <<, O. (6.1) 

Because zl, z2,. . . ,  zr are positive constants, there are no additional difficulties with respect to (6.1). 
We can similarly define the concepts of stability and convergence in this case. All results given in 
this paper can be modified easily to this more general situation. But we do not list them here for 
the sake of brevity. 
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