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Abstract

We consider linear weakly singular Volterra integral equations of the second kind, with kernels of the
form k(x; v) = |x − v|−�K(x; v); 0 ¡�¡ 1, or k(x; v) = log|x − v|K(x; v), K(x; v) being a smooth function.
The solutions of such equations may exhibit a singular behaviour in the neighbourhood of the initial point
of the interval of integration. By a transformation of the unknown function we obtain an equation which is
still weakly singular, but whose solution is as smooth as we like. This resulting equation is then solved by
standard product integration methods.
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1. Introduction

Let us consider the linear Volterra integral equation of the second kind

’(x) = g(x) +
∫ x

a
p(x − v)K(x; v)’(v) dv; a6 x6X; (1.1)

where K(x; v) is a smooth function and p(x − v) is a kernel of the form

p(x − v) = |x − v|−�; 0 ¡�¡ 1 (1:2′)

or

p(x − v) = log|x − v|: (1:2′′)
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The numerical treatment of Eq. (1.1) is not simple, because, as it is well known, the solutions of
weakly singular Volterra integral equations usually have a weak singularity at x = a, even when the
inhomogeneous term g(x) is regular.

Speci>c methods have been proposed by several authors for equations with smooth solution [5]
and for equations with nonsmooth solution [1–3,7,9]. It has also been considered the possibility of
using a NystrDom method on a small interval [a; b] and a step-by-step method when x is “far enough”
from the initial point [12].

In this paper, we propose a completely diGerent approach, which allows to solve weakly singular
integral equations with nonsmooth solutions by using standard methods for regular integral equations,
and hence at a lower computational cost. Our approach consists in the application of a smoothing
technique, which has been successfully employed in [11] for the solution of weakly singular Fredholm
integral equations of the second kind. Taking advantage of the analysis of the behaviour of the
solution of (1.1) as x → a, we introduce in (1.1) a smoothing change of variable and obtain an
equation with a perturbed kernel, but with a smoother solution. The resulting equation is still weakly
singular, but it has a solution as smooth as we like and can be solved by standard product integration
methods of known order of convergence.

In Section 2 we recall some known results about the behaviour of equations of type (1.1), with
kernel of type (1:2′) and (1:2′′). In Section 3 we introduce the smoothing transformation. In Section
4 the transformed equation is solved by a NystrDom method. In Section 5 the same equation is solved
by a step-by-step method based on the product Simpson’s rule and the product three–eights rule as
an end rule. In Section 6 we give some numerical examples.

2. Solution behaviour

Since the rate of convergence of a numerical method depends on the regularity of the solution
of (1.1), the knowledge of the behaviour of the solution is very important in the choice of the
method; for this reason this section will be devoted to the analysis of the properties of the solution
of (1.1).

Given Eq. (1.1) with kernel (1:2′) or (1:2′′), it has been proved in [10] that the solution of
(1.1) is unique and continuous in [a; X ], if g∈L1(a; X ) and K ∈L∞, both as a function of x and
of v, a6 v6 x6X . (Strictly speaking in [10] the uniqueness was proved for an equation with
K(x; v) ≡ h(v), but the argument is easily generalized to our case.)

The unique solution of (1.1) is usually nonsmooth at x = a, even if g(x) is smooth. A deeper
insight into this problem is provided by many diGerentiability results for ’(x) obtained by various
authors under speci>c hypotheses on g(x) and K(x; v). We limit ourselves to remember some of
them.

Given Eq. (1.1) with kernel of type (1:2′) or (1:2′′),
(i) if g(x) and K(x; v) in (1.1) are of class C1 in a6 v6 x6X , then ’(x)∈C1(a; X ] [10,

Theorem 1];
(ii) if g; K ∈C2; a6 v6 x6X then ’(x)∈C2(a; X ] [10, Theorem 4].
In the special case where the kernel is of type (1:2′)
(i) if g(x) is real analytic in the neighbourhood of a6 x6X , K is analytic on an open set

containing (x; v); a6 x; v6X , then ’(x) is analytic in �¡x6X; �¿a, � as close as we like
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to a, [10, Theorem 6] and, as a corollary, if � is rational, � = p=q, then ’(xq) is analytic in a
neighbourhood of x = a [10, Corollary 4];

(ii) if g(x) and K(x; v) in (1.1) are of class C1 in a6 x6X and in a6 v6 x6X , respectively,
then [8]

’(x) = g(x) +
K(a; a)’(a)

1 − �
(x − a)1−� + O((x − a)2(1−�)); x → a: (2.1)

(iii) if g(x) = g1(x) + (x − a)�g2(x) and g1; g2; K ∈Cm for a6 x; v6X , then [6,4] ’(x)∈
C[a; X ] ∩ Cm(a; X ].

In the special case where the kernel is of type (1:2′′) under the same hypotheses of (2.1), the
following analogous asymptotic estimate holds [8]:

’(x) = g(x) + K(a; a)’(a)[(x − a) ln(x − a) − (x − a)] + O(((x − a) ln(x − a))2); x → a:
(2.2)

3. The smoothing transformation

Following [11] and taking into account the behaviour of the solution ’(x) at x = a described in
the previous section, we introduce in (1.1) a simple nonlinear transformation x = �(t).

The aim of this change of variable is to obtain an integral equation whose solution does not
involve anymore singularities in the >rst derivatives.

Having this objective in mind, we look for a �(t), with � suMciently smooth and monotonic, such
that �(a)=a and with a certain number of derivatives vanishing at t=a. A simple function satisfying
all these conditions is (see [11])

�(t) = (t − a)q + a; (3.1)

q an integer.
Suppose we introduce the change x = �(t) into (1.1). We get

’(�(t)) = g(�(t)) +
∫ �(t)

a
p(�(t) − v)K(�(t); v)’(v) dv; a6 �(t)6X: (3.2)

Setting v = �(s), we obtain

’(�(t)) = g(�(t)) +
∫ t

a
p(�(t) − �(s))K(�(t); �(s))’(�(s))�′(s) ds; (3.3)

a ≡ �−1(a)6 s6 t6 �−1(X ):

Multiply both sides of (3.3) by �′(t) and set

y(t) = �′(t)’(�(t)); f(t) = g(�(t))�′(t); (3.4)

we obtain

y(t) = f(t) +
∫ t

a
p(�(t) − �(s))K(�(t); �(s))y(s)�′(t) ds; a6 t6 �−1(X ): (3.5)

Eq. (3.5) has a kernel which is still weakly singular and has a unique continuous solution, since
the conditions of Section 2 are still satis>ed. However, the smoothness of this solution increases
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with q (the number of derivatives of �(t) vanishing at t = a), which implies that standard numerical
methods can be applied for solving (3.5). Once the “transformed” equation (3.5) has been solved,
the solution of the “original” equation is given by

’(x) =
y(�−1(x))
�′(�−1(x))

;

whose denominator vanishes only at x = a, where the solution is known.
In the sequel we introduce the transformation (3.1) into Eq. (1.1).

3.1. Kernels of Abel type

In the case of kernels of type (1:2′), the transformed equation (3.5) takes the form

y(t) = f(t) +
∫ t

a
[(t − a)q − (s − a)q]−�K[(t − a)q + a; (s − a)q + a]y(s)q(t − a)q−1 ds:

(3.6)

Following [11], we de>ne for computational convenience

��(t; s) =




∣∣∣∣(t − a)q − (s − a)q

t − s

∣∣∣∣
−�

; t �= s;

[q(s − a)q−1]−�; t = s

(3.7)

and rewrite (3.6) as

y(t) = f(t) +
∫ t

a
(t − s)−���(t; s)K((t − a)q + a; (s − a)q + a)y(s)q(t − a)q−1 ds: (3.8)

To evaluate the advantage of the smoothing, suppose for example g; K ∈C1; a6 v6 x6X in
(1.1). In this case the asymptotic expansion (2.1) holds and ’(x) is in general only continuous at
x → a, while, in force of (3.4),

y(t) = q(t − a)q−1

[
g((t − a)q + a) +

K(a; a)’(a)
1 − �

[(t − a)q]1−� + O((t − a)2q(1−�))
]
;

x → a: (3.9)

It appears from (3.9) that

y(t) = O((t − a)2q−1−q�); x → a; (3.10)

so that the solution of the transformed equation can be made as smooth as one likes by an appropriate
choice of q.

3.2. Logarithmic kernels

In this case the transformed equation (3.5) becomes

y(t) = f(t) +
∫ t

a
ln|(t − a)q − (s − a)q|K((t − a)q + a; (s − a)q + a)y(s)q(t − a)q−1 ds:
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If we de>ne, as in Eq. (3.6),

�0(t; s) =




ln
∣∣∣∣(t − a)q − (s − a)q

t − s

∣∣∣∣ ; t �= s;

ln(q(s − a)q−1); t = s;

(3.11)

we get

y(t) = f(t) +
∫ t

a
�0(t; s)K((t − a)q + a; (s − a)q + a)y(s)q(t − a)q−1 ds

+
∫ t

a
ln|t − s|K((t − a)q + a; (s − a)q + a)y(s)q(t − a)q−1 ds: (3.12)

At a >rst glance Eq. (3.12) looks more complex than Eqs. (1.1)–(1:2′′). But this is not the case,
because the perturbation kernel

�0(t; s)K(�(t); �(s))�′(t)

introduced by the transformation has only the >xed singularity at t = s = a and can be made as
smooth as we like, by means of the factor �′(t).

If we suppose g(x) and K(x; v) in (1.1) of class C1 in a6 x6X and in a6 v6 x6X , respec-
tively, so that (2.2) holds, then for the solution y(t) of (3.12) we have

y(t) = q(t − a)q−1[g((t − a)q + a) + K(a; a)’(a)[(t − a)q ln(t − a)q − (t − a)]

+O((t − a)2q ln2(t − a)q)]; x → a; (3.13)

that is

y(t) = O((t − a)2q−1−q�0); x → a; �0 ∈R; (3.14)

being as small as we like.

4. The Nystr�om-type method

Since the NystrDom-type method is based on whole interval integration rule, we consider a closed
integration interval [a; b], replacing the transformation (3.1) by

x = (b− a)1−q(t − a)q + a; q∈N (4.1)

mapping [a; b] into [a; b].

4.1. Abel-type kernels

In this case by means of (4.1) we obtain the following equation:

y(t) = f(t) +
∫ t

a
|t − s|−�K�(t; s)y(s) ds; a6 t6 b; (4.2)
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where

K�(t; s) = ((b− a)1−q)1−�q(t − a)q−1��(t; s)

×K((b− a)1−q(t − a)q + a; (b− a)1−q(s − a)q + a)

is a smooth function and

f(t) = q(t − a)q−1g((b− a)1−q(t − a)q + a):

The smoothness of the solution y(t) = q(t − a)q−1’((b − a)1−q(t − a)q + a) of (4.2) increases
with q.

To de>ne our NystrDom method, we >rst set z(t) =y((b−a)=2)t + (b+a)=2) and rewrite Eq. (4.2)
as

z(t) = f
(

b− a
2

t +
b + a

2

)
+
∫ t

−1
|t − s|−�H (t; s)z(s) ds; −16 t6 1; (4.3)

where

H (t; s) =
(

b− a
2

)1−�

K�

(
b− a

2
t +

b + a
2

;
b− a

2
s +

b + a
2

)
:

Then we choose N + 1 distinct points xn; n = 0; : :; N in the interval [−1; 1] (in particular, we have
chosen the nodes coinciding with the zeros of the Jacobi polynomial P(1;0)

N (x) in addition to the
endpoint x = 1) and collocate Eq. (4.3) at the nodes

z(xn) = f
(

b− a
2

xn +
b + a

2

)
+
∫ xn

−1
|xn − s|−�H (xn; s)z(s) ds; n = 0; 1; : : : ; N: (4.4)

We obtain the following scheme:

zN;n = f
(

b− a
2

xn +
b + a

2

)
+

N∑
j=0

wn;jH (xn; xj)zN;j; n = 0; 1; : : : ; N (4.5)

by replacing H (xn; s)z(s) with the corresponding Lagrange interpolation polynomial associated with
the Gauss–Radau nodes xn; n = 0; : : : ; N .

For the computation of the coeMcients

wn;j =
∫ xn

−1
|xn − s|−�lN;j(s) ds;

we use the method described in [12]. We obtain the approximate solution values zN;n; n=0; 1; : : : ; N ,
as solution of system (4.5), by means of the linear systems solver F04ARF of the NAG Library.
The corresponding values of ’(x) can now be deduced and, in particular, setting ’N;N 
 ’(b), we
have ’N;N = (b− a)1−qyN;N =q.

4.2. Logarithmic kernels

Let us now consider Eq. (1.1) with kernel (1:2′′) in a6 x6 b, and assume for the sake of
simplicity, and without loss of generality, K(x; v) ≡ 1. In this case the introduction of the smoothing
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transformation (4.1) leads to the new equation

y(t) = f(t) + (b− a)1−qq(t − a)q−1

×
[∫ t

a
�0(t; s)y(s) ds +

∫ t

a
ln|t − s|y(s) ds

]
; a6 t6 b; (4.6)

where

�0(t; s) =




ln
∣∣∣∣(b− a)1−q (t − a)q − (s − a)q

t − s

∣∣∣∣ ; t �= s;

ln|(b− a)1−qq(s − a)q−1|; t = s:

is a smooth function.
To de>ne our NystrDom method, we have now to compute the coeMcients wrn;j =

∫ xn

−1 lN;j(s) ds
corresponding to the >rst integral in (4.6) and wln;j =

∫ xn

−1 ln|xn − s|lN;j(s) ds corresponding to the
second integral in (4.6), where lN;j(s) is the fundamental Lagrange polynomial associated with the
Radau nodes xn ∈ [−1; 1]. To this aim, we have derived algorithms analogous to the ones used for
the evaluation of wn;j in (4.5).

The methods derived in Sections 4.1 and 4.2 are both convergent. We do not give here the proof
of this since the convergence proof given in [12] obviously is still valid in this case. But what is
to be focused here is that the rate of convergence of the NystrDom methods in the present case can
be chosen as high as one likes: this follows from Theorems 1 and 3 of [12] and from (3.10) and
(3.14).

5. Simpson’s product integration

5.1. Abel-type kernels

Suppose we have transformed equations (1.1)–(1:2′) into (3.8) as described in Section 3 and put,
for notational convenience,

K�(t; s) = q(t − a)q−1K((t − a)q + a; (s − a)q + a)��(t; s):

Then, we get

y(t) = f(t) +
∫ t

a
(t − s)−�K�(t; s)y(s) ds: (5.1)

Now, let us de>ne a grid tj = a + jh; j = 0; : : : ; N ; Nh = T − a. By collocating the equation (5.1)
on the grid points, we obtain

y(tj) = f(tj) +
∫ tj

a
(tj − s)−�K�(tj; s)y(s) ds; j = 1; 2; : : : ; N; (5.2)
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that is

y(tj) = f(tj) +
m−1∑

0

∫ a+(2l+2)h

a+2lh
(tj − s)−�K�(tj; s)y(s) ds if j = 2m; even; (5.3)

y(tj) = f(tj) +
m−2∑

0

∫ a+(2l+2)h

a+2lh
(tj − s)−�K�(tj; s)y(s) ds

+
∫ a+(2m+1)h

a+(2m−2)h
(tj − s)−�K�(tj; s)y(s) ds if j = 2m + 1; odd: (5.4)

For the computation of y(tj) we use product Simpson’s rule in (5.3) and product Simpson’s rule
ended by a product three–eights rule in (5.4).

By approximating the regular part of the integrands by means of the three points interpolating
Lagrange polynomial, and by introducing the change of variable s = a + 2lh + ph, we get

∫ a+(2l+2)h

a+2lh
(tj − s)−�K�(tj; s)y(s) ds≈ h1−�[K�(tj; s2l)y(s2l)b0(j − 2l)

+ K�(tj; s2l+1)y(s2l+1)b1(j − 2l)

+ K�(tj; s2l+2)y(s2l+2)b2(j − 2l)] (5.5)

with

b0(j − 2l) =
1
2

∫ 2

0
(j − 2l− p)−�(p − 1)(p − 2) dp;

b1(j − 2l) = −
∫ 2

0
(j − 2l− p)−�p(p − 2) dp; (5.6)

b2(j − 2l) =
1
2

∫ 2

0
(j − 2l− p)−�p(p − 1) dp:

By approximating the regular part of the integrand by means of the four points Lagrange interpolating
polynomial and by introducing the change of variable s = a + (2m− 2)h + ph, we get

∫ a+(2m+1)h

a+(2m−2)h
(tj − s)−�K�(tj; s)y(s) ds

≈ h1−�[K�(tj; s2m−2)y(s2m−2)d0(3)

+ K�(tj; s2m−1)y(s2m−1)d1(3) + K�(tj; s2m)y(s2m)d2(3)

+ K�(tj; s2m+1)y(s2m+1)d3(3)]; (5.7)



P. Baratella, A.P. Orsi / Journal of Computational and Applied Mathematics 163 (2004) 401–418 409

with

d0(3) = −1
6

∫ 3

0
(3 − p)−�(p − 1)(p − 2)(p − 3) dp;

d1(3) =
1
2

∫ 3

0
(3 − p)−�p(p − 2)(p − 3) dp;

d2(3) = −1
2

∫ 3

0
(3 − p)−�p(p − 1)(p − 3) dp;

d3(3) =
1
6

∫ 3

0
(3 − p)−�p(p − 1)(p − 2) dp: (5.8)

By substitution of (5.5) and (5.7) into (5.3) and (5.4), following [5], given the starting values
ỹ i; i = 0; 1 the discretization method can be written in the form

(I + h1−�AN )y − f = 0; (5.9)

where AN is a triangular matrix containing the weights and y = (y0; y1; : : : ; yN )T contains the
approximate values of y(tj) and f = (ỹ 0; ỹ 1; g(t2); : : : ; g(tN ))T. The triangular system is then solved
by forward substitution giving the values y2; : : : ; yN .

5.2. Logarithmic kernels

For the sake of simplicity set

OK(t; s) = �′(t)K(�(t); �(s))

and rewrite Eq. (3.12) in the form

y(t) = f(t) +
∫ t

a
�0(t; s) OK(t; s)y(s) ds +

∫ t

a
ln|t − s| OK(t; s)y(s) ds: (5.10)

Let de>ne a grid tj = a + jh; j = 0; 1; : : : ; N; Nh = T − a, and collocate (5.10) on these points. We
obtain

y(tj) = f(tj) +
∫ tj

a
�0(tj; s) OK(tj; s)y(s) ds +

∫ tj

a
ln|tj − s| OK(tj; s)y(s) ds; (5.11)

that is

y(tj) = f(tj) +
m−1∑

0

∫ a+(2l+2)h

a+2lh
ln(tj − s) OK(tj; s)y(s) ds

+
m−1∑

0

∫ a+(2l+2)h

a+2lh
�0(tj; s) OK(tj; s)y(s) ds if j = 2m; even; (5.12)
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y(tj) = f(tj) +
m−2∑

0

∫ a+(2l+2)h

a+2lh
ln(tj − s) OK(tj; s)y(s) ds

+
m−2∑

0

∫ a+(2l+2)h

a+2lh
�0(tj; s) OK(tj; s)y(s) ds

+
∫ a+(2m+1)h

a+(2m−2)h
ln(tj − s) OK(tj; s)y(s) ds

+
∫ a+(2m+1)h

a+(2m−2)h
�0(tj; s) OK(tj; s)y(s) ds if j = 2m + 1; odd: (5.13)

For the approximation of y(tj), we use product and nonproduct Simpson’s rule in (5.12) and product
and nonproduct Simpson’s rule ended by a product three–eights rule in (5.13). The analogous of
(5.5) and (5.7) are∫ a+(2l+2)h

a+2lh
ln(tj − s) OK(tj; s)y(s) ds

≈ h
[

OK(tj; s2l)y(s2l)
[

1
3

(ln h + �0(tj; s2l)) + a0(j − 2l)
]

+ OK(tj; s2l+1)y(s2l+1)
[

4
3

(ln h + �0(tj; s2l+1)) + a1(j − 2l)
]

+ OK(tj; s2l+2)y(s2l+2)
[

1
3

(ln h + �0(tj; s2l+2)) + a2(j − 2l)
]]

(5.14)

with

a0(j − 2l) =
1
2

∫ 2

0
ln((j − 2l− p)(p − 1)(p − 2) dp;

a1(j − 2l) = −
∫ 2

0
ln(j − 2l− p)p(p − 2) dp;

a2(j − 2l) =
1
2

∫ 2

0
ln(j − 2l− p)p(p − 1) dp (5.15)

and ∫ a+(2m+1)h

a+(2m−2)h
ln(tj − s) OK(tj; s)y(s) ds

≈ h
[

OK(tj; s2m−2)y(s2m−2)
[

3
8

(ln h + �0(tj; s2m−2)) + f0(3)
]

+ OK(tj; s2m−1)y(s2m−1)
[

9
8

(ln h + �0(tj; s2m−1)) + f1(3)
]



P. Baratella, A.P. Orsi / Journal of Computational and Applied Mathematics 163 (2004) 401–418 411

+ OK(tj; s2m)y(s2m)
[

9
8

(ln h + �0(tj; s2m)) + f2(3)
]

+ OK(tj; s2m+1)y(s2m+1)
[

3
8

(ln h + �0(tj; s2m+1)) + f3(3)
]]

(5.16)

with

f0(3) = −1
6

∫ 3

0
ln(3 − p)(p − 1)(p − 2)(p − 3) dp;

f1(3) =
1
2

∫ 3

0
ln(3 − p)p(p − 2)(p − 3) dp;

f2(3) = −1
2

∫ 3

0
ln(3 − p)p(p − 1)(p − 3) dp;

f3(3) =
1
6

∫ 3

0
ln(3 − p)p(p − 1)(p − 2) dp: (5.17)

By substitution of (5.14) and (5.16) into (5.12) and (5.13), knowing the starting values ỹ i; i = 0; 1,
the discretization method produces also in this case a triangular linear system, which is easily solved.

The convergence of product integration methods like those described in Section 5.1 for Eq. (1.1),
with a weakly singular kernel of type (1:2′), using three and four points, has been studied by several
authors. In particular, it follows from the results of [5] that such methods have order of convergence
4 − � in the three-points case and 4 in the four-points case, provided that the solution of (1.1) is
of class C3[a; T ]. Now this case does not frequently occur in practice, but, whatever the behaviour
of the solution ’(x) of (1.1)–(1:2′) is, the solution y(t) of Eq. (3.8) can be made as regular as
one needs, by means of the smoothing technique and by a suitable choice of the parameter q.
Therefore, the above maximum order of convergence can always be attained. As a matter of fact,
if g; K ∈C1; a6 v6 x6X , as it was already noticed, the solution ’(x) of (1.1) is in general
only continuous; to get a transformed equation with solution of class C(k) it is suMcient to take
q¿ (k + 1)=(2 − �).

To determine the order of convergence of the above-mentioned 3 and 4 point product integration
methods when the kernel is of type (1:2′′), it is suMcient to observe that

ln|x − s| =
ln|x − s‖x − s|�

|x − s|� = h(x; s)|x − s|�

for any �; 0 ¡�¡ 1, h being a continuous function. As a consequence of this, all the results valid
for Abel-type equations are still applicable and it is possible to say that the order of convergence
of the present method is 4 − �, with � as small as we like.

6. Numerical results

We have tested the NystrDom method of Section 4 and the “step-by-step” method of Section 5 on
some weakly singular linear integral equations with kernels of type (1:2′) and of type (1:2′′). We
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give in the following tables the results obtained for them. The equations and their exact solutions
are listed below:

’(x) =
1
2
-x +

√
x +

∫ x

0
−’(v)(x − v)−1=2 dv; 06 x6 10;

’(x) =
√

x; (6.1)

’(x) = 1 +
∫ x

0
−’(v)(x − v)−1=2 dv; 06 x6 10;

’(x) = exp(-x) erfc(
√

-x); (6.2)

’(x) = 1 − exp(−x) +
1√
-

∫ x

0
−’(v)(x − v)−1=2 dv; 06 x6 10;

’(x) =
1
2

(exp(x) erfc(
√

x) − exp(−x) + 2
√

-F(
√

x)); (6.3)

F(x) = exp(−x2)
∫ x

0
exp(t2) dt;

’(x) = g(x) +
∫ x

−1
−ln|x − v|’(v) dv; −16 x6 1; (6.4)

g(x) =
√

x + 1 + 4
3

√
x + 1(x + 1) ln(2

√
x + 1) − 16

9

√
x + 1(x + 1);

’(x) =
√

x + 1:

Tables 1–4 show the relative errors obtained in the original solution ’(x) by a 4, 8, 16 and
32-point NystrDom method applied to Eqs. (6.1)–(6.4), respectively. Tables 5–8 show the relative

Table 1
Relative errors obtained by NystrDom method for Eq. (6.1)

x N q = 1 q = 2 q = 3

0.2 4 1.7d-04 6.6d-06 3.1d-06
8 2.2d-05 1.1d-08 2.5d-08

16 3.0d-06 5.3d-11 1.5d-11
32 4.0d-07 2.6d-13 1.3d-14

1 4 2.4d-04 1.8d-05 1.1d-05
8 2.4d-05 3.4d-08 6.8d-08

16 2.6d-06 1.2d-10 3.7d-11
32 3.3d-07 5.0d-13 2.5d-14

10 4 6.9d-04 6.2d-05 4.3d-05
8 5.5d-05 2.2d-07 2.7d-07

16 3.1d-06 5.2d-10 1.7d-10
32 2.0d-07 1.1d-12 1.0d-13



P. Baratella, A.P. Orsi / Journal of Computational and Applied Mathematics 163 (2004) 401–418 413

Table 2
Relative errors obtained by NystrDom method for Eq. (6.2)

x N q = 1 q = 2 q = 3

0.2 4 2.9d-04 3.4d-05 1.1d-04
8 4.0d-05 1.9d-07 3.9d-08

16 5.4d-06 5.3d-09 1.4d-10
32 7.2d-07 1.0d-10 4.3d-13

1 4 1.5d-03 4.8d-04 8.3d-04
8 1.6d-04 3.5d-07 1.7d-06

16 1.9d-05 1.5d-08 2.7d-10
32 2.3d-06 3.2d-10 1.3d-12

10 4 1.5d-02 6.2d-03 1.8d-03
8 2.1d-03 1.7d-04 2.1d-05

16 1.7d-04 1.2d-07 1.9d-09
32 1.2d-05 6.7d-10 1.1d-12

Table 3
Relative errors obtained by NystrDom method for Eq. (6.3)

x N q = 1 q = 2 q = 3

0.2 4 4.0d-06 1.2d-05 1.1d-04
8 1.2d-07 2.2d-09 5.7d-09

16 3.9d-09 1.2d-13 3.1d-14
32 1.3d-10 3.3d-16 6.5d-16

1 4 3.8d-05 1.7d-04 1.8d-04
8 8.3d-07 3.1d-08 5.1d-07

16 2.2d-08 5.3d-12 2.2d-13
32 6.6d-10 9.7d-15 4.5d-15

10 4 7.3d-03 1.0d-02 3.0d-03
8 2.2d-04 6.7d-05 1.6d-04

16 2.0d-06 2.4d-09 4.2d-08
32 3.2d-08 3.0d-13 2.2d-14

errors obtained in the original solution ’(x) by the step-by-step method on 10, 50, 100, 200 and
300 points applied to the same equations.

We have tested the methods for values of the argument x lying close to the singularity of the
solution and for values lying where the solution is well-behaved. Of course, in each table the column
q = 1 is obtained by solving the original equation without any smoothing: in this case the methods
converge slowly in presence of a singularity.

In general the results improve as q increases; the case q = 2 is not signi>cant for Eqs. (6.1)
and (6.4), because with this choice of the smoothing parameter the singularity disappears and the
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Table 4
Relative errors obtained by NystrDom method for Eq. (6.4)

x N q = 1 q = 2 q = 3

−0:99 4 4.2d-05 8.3d-10 1.8d-07
8 7.0d-06 4.0d-12 3.0d-10

16 1.0d-06 7.2d-15 7.7d-13
32 1.4d-07 5.2d-17 1.9d-15

0.0 4 3.8d-03 1.0d-05 1.1d-05
8 5.9d-04 3.2d-08 1.3d-08

16 8.5d-05 5.8d-11 6.0d-11
32 1.2d-05 8.1d-14 1.5d-13

1.0 4 5.5d-03 9.3d-05 2.7d-04
8 5.9d-04 6.7d-08 8.9d-09

16 7.5d-05 9.9d-11 4.6d-11
32 9.7d-06 1.3d-13 1.2d-13

Table 5
Relative errors obtained by step-by-step method for Eq. (6.1)

x N q = 1 q = 2 q = 3

0.2 10 4.6d-04 6.8d-06 3.7d-05
50 3.6d-05 1.7d-08 1.3d-07

100 1.2d-05 1.3d-09 1.1d-08
200 4.3d-06 1.1d-10 1.0d-09
300 2.2d-06 2.5d-11 2.4d-10

1.0 10 4.7d-04 1.6d-05 7.3d-05
50 3.5d-05 3.4d-08 2.5d-07

100 1.1d-05 2.6d-09 2.2d-08
200 3.8d-06 2.1d-10 1.9d-09
300 2.0d-06 5.0d-11 4.7d-10

10 10 2.1d-05 7.5d-05 2.1d-04
50 2.2d-05 1.0d-07 7.6d-07

100 6.7d-06 8.1d-09 6.5d-08
200 2.1d-06 6.7d-10 5.6d-09
300 1.0d-06 1.5d-10 1.3d-09

solution becomes a polynomial. For these equations the comparison has to be made between the
columns q = 1 and 3; in any case the relative errors obtained with q = 3 are not signi>cantly worse
than those obtained with q = 2.

In general (see Tables 5–8), the application of a very simple method like Simpson’s method to
the equations transformed with q = 2 produces satisfactory relative errors.



P. Baratella, A.P. Orsi / Journal of Computational and Applied Mathematics 163 (2004) 401–418 415

Table 6
Relative errors obtained by step-by-step method for Eq. (6.2)

x N q = 1 q = 2 q = 3

0.2 10 1.4d-03 4.1d-05 5.2d-06
50 1.1d-04 4.0d-07 4.2d-08

100 4.0d-05 5.2d-08 4.4d-09
200 1.4d-05 6.6d-09 4.2d-10
300 7.9d-06 1.9d-09 1.0d-10

1.0 10 4.0d-03 1.2d-04 9.3d-06
50 3.3d-04 1.4d-06 1.8d-07

100 1.2d-04 1.7d-07 1.6d-08
200 4.4d-05 2.2d-08 1.4d-09
300 2.4d-05 6.5d-09 3.6d-10

10 10 3.2d-03 6.1d-05 2.8d-04
50 7.0d-04 5.3d-06 3.4d-07

100 3.1d-04 6.8d-07 2.6d-08
200 1.3d-04 8.5d-08 2.1d-09
300 7.5d-05 2.5d-08 4.7d-10

Table 7
Relative errors obtained by step-by-step method for Eq. (6.3)

x N q = 1 q = 2 q = 3

0.2 10 2.6d-05 1.1d-05 3.2d-05
50 4.7d-07 5.0d-08 4.9d-08

100 8.1d-08 4.5d-09 2.9d-09
200 1.3d-08 4.0d-10 1.7d-10
300 3.8d-09 8.4d-11 3.0d-11

1.0 10 1.3d-04 5.4d-05 2.0d-04
50 2.3d-06 1.6d-07 1.0d-06

100 3.9d-07 1.3d-08 9.2d-08
200 6.4d-08 1.0d-09 8.2d-09
300 1.9d-08 2.1d-10 1.9d-09

10 10 3.5d-03 1.2d-04 1.7d-04
50 7.4d-05 1.4d-07 1.7d-07

100 1.3d-05 1.6d-08 1.3d-08
200 2.1d-06 1.5d-09 2.3d-09
300 6.2d-07 3.4d-10 5.3d-10

A few words are needed about the choice of the smoothing parameter q: even if in theory it was
shown that the order of convergence of our methods increases with q, in practice we suggest not to
exceed q = 3.
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Table 8
Relative errors obtained by step-by-step method for Eq. (6.4)

x N q = 1 q = 2 q = 3

−0:99 10 6.7d-03 6.2d-08 3.5d-06
50 6.7d-04 8.8d-11 8.1d-09

100 3.9d-06 5.3d-12 5.7d-10
200 1.4d-06 3.3d-13 3.9d-11
300 7.6d-07 6.4d-14 8.3d-12

0.0 10 8.5d-03 7.9d-05 6.3d-04
50 8.7d-04 9.1d-08 1.9d-06

100 3.1d-04 5.0d-09 1.4d-07
200 1.1d-04 2.9d-10 1.0d-08
300 6.1d-05 5.8d-11 2.2d-09

1.0 10 7.1d-03 4.5d-05 1.7d-03
50 7.2d-04 9.4d-08 5.2d-06

100 2.6d-04 6.5d-09 3.9d-07
200 9.3d-05 4.4d-10 2.9d-08
300 5.1d-05 9.6d-11 6.3d-09

Table 9
Comparison with [12]

Eq. N2 NS

(6.1) 2.5d-14 3.0d-08
(6.2) 1.3d-12 2.0d-07
(6.3) 4.5d-15 1.8d-09
(6.4) 1.2D-13 2.6D-04

As a matter of fact, higher values of q make the solution of the transformed equation more “Qat”,
as t → a, (see Eq. (3.1)); this implies an initial loss of accuracy for the very small values of N . Of
course an optimal value of q could exist for each particular problem, and this value would depend
on the behaviour of the solution of the problem itself; but the results obtained by q = 2 and 3 are
more than satisfactory.

On the other side, we observe that with the recommended moderate values of q, the inverse
transformation of Section 3 allows to compute the solution of the original Eq. (1.1) very close to
the singularity x = a. As an example, we were able to compute accurately the solution of the test
equations at points lying at a distance of 10−8 from a.

The comparison of our results with those obtained by means of some of the methods cited in
Section 1 is encouraging. In [12] one of the authors proposed to couple NystrDom method with
Simpson’s method and apply them to Eq. (1.1). In Table 9, we compare the relative errors obtained
for the Eqs. (6.1)–(6.4) at x = 1 by means of 32-points NystrDom method applied to equations
transformed with q = 3 (N2) and by means of 32-point NystrDom method plus 80-points Simpson’s
method applied to the original equation (NS): the advantage of the new approach is evident.
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Table 10
Comparison between Simpson’s, NystrDom’s and Lubich’s methods

x N Eq. (6.2) Eq. (6.3)

Simpson NystrDom Lubich Simpson NystrDom Lubich

0.2 4 1.1d-04 1.9d-08 1.1d-04 3.2d-09
8 3.9d-08 1.8d-08 5.7d-09 3.2d-09

16 1.4d-10 6.2d-09 3.1d-14 1.0d-09
32 4.3d-13 1.1d-09 6.5d-16 1.7d-10
64 1.8d-08 2.8d-15 1.4d-10 1.7d-08 2.1d-11

128 1.0d-09 1.3d-11 1.0d-09 3.1d-12

1 4 8.3d-04 4.4d-06 1.8d-04 1.0d-07
8 1.7d-06 3.1d-06 5.1d-07 1.2d-07

16 2.7d-10 1.1d-06 2.2d-13 6.8d-08
32 1.3d-12 2.2d-07 4.5d-15 1.4d-08
64 7.8d-08 9.1d-15 2.9d-08 4.3d-07 1.8d-09

128 7.0d-09 2.9d-09 3.9d-08 1.7d-10

10 4 1.8d-03 8.9d-04 3.0d-03 1.7d-03
8 2.1d-05 6.2d-04 1.6d-04 3.8d-04

16 1.9d-09 2.6d-04 4.2d-08 6.9d-05
32 1.1d-12 6.8d-05 2.2d-14 2.8d-05
64 1.3d-07 2.5d-14 1.3d-05 4.4d-09 3.0d-06

128 1.0d-08 1.7d-06 7.5d-09 1.7d-07

For equations with kernel of type (2:1′), with � = 1
2 , we were able to compare our method with

the method introduced in [9], which is considered the most eMcient for such equations, but that
cannot be straightly extended to diGerent kernels. We have applied Lubich’s method to Eqs. (6.2)
and (6.3) and the NystrDom method and the step-by-step method to the same equations transformed
with q = 3.

Looking at Table 10, we can observe that for N = 4 the fractional linear method gives very good
approximations, but the convergence is very slow, in particular when the solution is singular. The
NystrDom method combined with the smoothing procedure has a much higher rate of convergence.
While it gives lower accuracy for N = 4, it becomes rapidly superior for the larger values of N .

To make our analysis more reliable we have also computed the time requested by the diGerent
methods to achieve a prescribed accuracy of the solution. Also from this point of view we can
aMrm that NystrDom method applied after smoothing is the most eMcient, because it results to be
from three (close to the singularity) to ten and more times (going far from the singularity) faster
than the others.
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