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Analogs of the m-function in the theory of orthogonal
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Dedicated to Norrie Everitt, on his 80th birthday, a bouquet to the master of the m-function

Abstract

We show that the multitude of applications of the Weyl–Titchmarsh m-function leads to a multitude of
di4erent functions in the theory of orthogonal polynomials on the unit circle that serve as analogs of the
m-function.
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1. Introduction

Use of the Weyl–Titchmarsh m-function has been a constant theme in Norrie Everitt’s opus, so
I decided a discussion of the analogs of these ideas in the theory of orthogonal polynomials on
the unit circle (OPUC) was appropriate. Interestingly enough, the uses of the m-functions are so
numerous that OPUC has multiple analogs of the m-function!

m-functions are associated to solutions of

− u′′ + qu = zu (1.1)

with q a real function on [0;∞) and z a parameter in C+ = {z|Im z¿ 0}. The most fundamental
aspect of the m-function is its relation to the spectral measure, �, for (1.1) by

m(z) = c +
∫

d�(x)
[

1
x − z

− x
1 + x2

]
; (1.2)
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where c is determined by (see [3,13]):

m(z) =
√−z + o(1) as z → i∞: (1.3)

Eqs. (1.2) plus (1.3) allow you to compute m given d�, and d� is determined by m via

lim
e↓0

1
�

∫ b

a
m(x + i�) dx =

1
2

[�((a; b)) + �([a; b])]: (1.4)

Of course, I have not told you what m or � is. This is done by deIning m, in which case � is
deIned by (1.4). Under weak conditions on q at ∞, for z ∈C+, (1.1) has a solution u(x; z) which
is L2 at inInity, and it is unique up to a constant multiple. Then, m is deIned by

m(z) =
u′(0; z)
u(0; z)

: (1.5)

With this deInition, d� is a spectral measure for u 
→ −u′′ +qu=Hu in the sense that H is unitarily
equivalent to multiplication by � on L2(R; d�). (1.5) is often written in the equivalent form,

 (x; z) + m(z)’(x; z) ∈L2;

where ’;  solve (1.1) with initial conditions ’(0) = 0; ’′(0) = 1;  (0) = 1;  ′(0) = 0.
Note that if one deInes

m(x; z) =
u′(x; z)
u(x; z)

; (1.6)

the m-function for qx(·) = q(· + x), then m obeys the Riccati equation

m′ = q − z − m2: (1.7)

It could be said that this is backwards: deInition (1.5) should come Irst, before (1.2). I put it
in this order because it is (1.2) that makes m such an important object both in classical results
[2,5,7–9,16,23,33] and very recent work [4,10,21,25,27,31].

To describe the third role of the m-function, it will pay to switch to the case of Jacobi matrices.
We now have, instead of q, two sequences {an}∞

n=1, {bn}∞
n=1 with an ¿ 0, bn ∈R which we will

suppose uniformly bounded. DeIne an inInite matrix

J =




b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .


 (1.8)

which is a bounded self-adjoint operator. One deInes

m(z) = 〈�1; (J − z)−1�1〉: (1.9)

In terms of the spectral measure, �, for �1 for J ,

m(z) =
∫

d�(x)
x − z

: (1.10)
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If un is the ‘2 solution of an−1un−1 + (bn−z)un + anun+1 = 0 with Im z¿ 0, one has the analog of
(1.5)

m(z) =
u1(z)
u0(z)

: (1.11)

This process of going from a and b to m and then to � can be reversed. One way is by iterating
(1.5) below, which lets one go from � to m (by (1.10)) and then gets the a’s and b’s as coe7cients in
a continued fraction expansion of m. From our point of view, an even more important way of going
backwards uses orthogonal polynomials on the real line (OPRL). Given � (of bounded support),
one forms the monic orthogonal polynomials Pn(x) for d� and shows they obey a recursion relation

Pn+1(x) = (x − bn+1)Pn(x) − a2
nPn−1(x) (1.12)

which yields the Jacobi parameters a and b. The orthonormal polynomials, pn(x), are related to Pn

by

pn(x) = (a1 : : : an)−1Pn(x) (1.13)

and obey

an+1pn+1(x) = (x − bn+1)pn(x) − anpn−1(x): (1.14)

Eq. (1.7) has the analog

m(z; J ) = (b1 − z − a2
1m(z; J (1)))−1; (1.15)

where J (1) is the Jacobi matrix with parameters ãm=am+1b̃m=bm+1 (i.e., the top row and left column
are removed).

If m(x + i�; J ) has a limit as � ↓ 0, (1.15) says that m(x + i�; J (1)) has a limit, and by (1.15),
Im m(x; J )

Im m(x; J (1))
= |a1m(x; J )|2: (1.16)

Im m is important because if � is given by (1.10), then

d�ac =
1
�

Im m(x + i0) dx: (1.17)

This property of m, that its energy is the ratio of Im’s, is a critical element of recent work on sum
rules for spectral theory [6,19,28–30].

The interesting point is that, for OPUC, the analogs of the functions obeying (1.2), (1.5), and
(1.16) are di4erent! In Section 2, we will give a quick summary of OPUC. In Section 3, we discuss
(1.2); in Section 4, we discuss (1.16); and Inally, in Section 5, the analog of (1.5).

Happy 80th, Norrie. I hope you enjoy this bouquet.

2. Overview of OPUC

We want to discuss here the basics of OPUC, although we will only scratch the surface of a rich
and beautiful subject [29]. The theory reverses the usual passage from di4erential/di4erence equations
to measures, and instead follows the discussion of OPRL in Section 1. � is now a probability measure
on 9D= {z| |z| = 1}. We suppose � is nontrivial, that is, not supported on a Inite set. One can then
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form, by the Gram–Schmidt procedure, the monic orthogonal polynomials �n(z) and the orthonormal
polynomials, ’n(z) = �n(z)=‖�n‖ where ‖ · ‖ is the L2 (9D; d�) norm.

Given Ixed n∈ {0; 1; 2; : : :}, we deIne an anti-unitary operator on L2(9D; d�) by

f∗(z) = zn f(z): (2.1)

The use of a symbol without “n” is terrible notation, but it is standard! If Qn is a polynomial of
degree n, Q∗

n is also a polynomial of degree n. Indeed,

Q∗
n (z) = zn Qn(1= Pz)

so if Qn(z) = anzn + an−1zn−1 + · · · + a0, then Q∗
n (z) = Pa0zn + Pa1zn−1 + · · · + Pan.

Since �n is monic, �∗
n(0) = 1, and thus, N (z) ≡ (�∗

n+1(z) − �∗
n(z))=z is a polynomial of degree

n. Since ∗ is anti-unitary,

〈zm; N (z)〉 = 〈zm+1; �∗
n+1 − �∗

n〉
= 〈�n+1; zn+1−(m+1)〉 − 〈�n; zn−m−1〉
= 0;

for m = 0; 1; : : : ; n − 1. Thus N (z) must be a multiple of �n(z), that is, for some !n ∈C,

�∗
n+1(z) = �∗

n(z) − !nz�n(z) (2.2)

and its ∗,

�n+1(z) = z�n(z) − P!n�∗
n(z): (2.3)

(2.2)/(2.3) are the Szegő recursion formulae ([32]); the !n’s are the Verblunsky coe7cients (after
[34]). The derivation I have just given is that of Atkinson [2].

Since �∗
n ⊥ �n+1, (2.3) implies

‖�n+1‖2 + |!n|2‖�∗
n‖2 = ‖z�n‖2:

Since ‖�∗
n‖ = ‖z�n‖ = ‖�n‖, we have

‖�n+1‖ = (1 − |!n|2)1=2‖�n‖: (2.4)

This implies Irst of all that

|!n|¡ 1 (2.5)

and if

�n ≡ (1 − |!n|2)1=2; (2.6)

then

‖�‖n = �0�1 : : : �n−1 (2.7)

so

’n = (�0 : : : �n−1)−1�n (2.8)
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and (2.2), (2.3) becomes

z’n = �n’n+1 + P!n’∗
n ; (2.9)

’∗
n = �n; ’∗

n+1 + !nz’n: (2.10)

The !n’s not only lie in D, but it is a theorem of Verblunsky [34] that as � runs through all
nontrivial measures, the set of !’s runs through all of ×∞

n=0D. The !’s are the analogs of the a’s
and b’s in the Jacobi case or of V in the SchrQodinger case.

We will later have reason to consider Szegő’s theorem in Verblunsky’s form [35].

Theorem 2.1. Let

d� = w
d%
2�

+ d�s: (2.11)

Then
∞∏
j=0

(1 − |!j|2) = exp
(∫

log(w(%))
d%
2�

)
: (2.12)

Remark. The log integral can diverge to −∞. The theorem says the integral is −∞ if and only if
the product on the left is 0, that is, if and only if

∑ |!j|2 = ∞.
If

∞∑
j=0

|!j|2 ¡∞; (2.13)

we say the Szegő condition holds. This happens if and only if∫
|log(w(%))| d%

2�
¡∞: (2.14)

In that case, we deIne the Szegő function on D by

D(z) = exp
(∫

ei% + z
ei% − z

log (w(%))
d%
4�

)
: (2.15)

3. The Carath�eodory and Schur functions

Given (1.10) (and (1.2)), the natural “m-function” for OPUC is the CarathTeodory function, F(z),

F(z) =
∫

ei% + z
ei% − z

d�(%): (3.1)

The Cauchy kernel (ei% + z)=(ei% − z) has the Poisson kernel

Re
(

ei% + z
ei% − z

)∣∣∣∣
z=rei’

=
1 − r2

1 + r2 − 2cos(% − ’)
(3.2)
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as its real part, and this is positive, so

ReF(z)¿ 0 for z ∈D; F(0) = 1: (3.3)

This replaces Im m¿ 0 if Im z¿ 0.
One might think the “correct” analog of m is

R(z) =
∫

1
ei% − z

d�(%): (3.4)

R and F are related by

R(z) = (2z)−1(F(z) − 1): (3.5)

If one rotates d� and z (i.e., d�(%) → d�(% − ’); z → ei’z); F is unchanged but R is multiplied
by e−i’, so the set of values R can take are essentially arbitrary—which shows F , which obeys
ReF(z)¿ 0, is a nicer object to take. That said, we will see R again in Section 5.

F has some important analogs of m:

(1) limr↑1 F(rei%) exists for a.e. %, and if (2.11) deInes w, then

w(%) = ReF(ei%): (3.6)

(2) %0 is a pure point of � if and only if limr↑1(1 − r)ReF(rei%0) �= 0 and, in general,

lim
r↑1

(1 − r)ReF(rei%0) = �({%0}):

(3) d�s is supported on {%|limr↑1 F(rei%) = ∞}.

In fact, the proof of the analogs of these facts for m proceeds by mapping C+ to D and using
these facts for F!

These properties provide a strong analogy, but one can note a loss of “symmetry” relative to the
ODE case. The m-function maps C+ to C+. F though maps D to −iC+. One might prefer a map
of D to D. In fact, one deInes the Schur function, f, of � via

F(z) =
1 + zf(z)
1 − zf(z)

; (3.7)

then f maps D to D and (3.7) sets up a one-one correspondence between F’s with ReF ¿ 0 on
D and F(0) = 1 and f mapping D to D (this fact relies on the Schwarz lemma that f maps D to
D with f(0) = 0 if and only if f = zg where g maps D to D).

For at least some purposes, f is a “better” analog of m than F , for example, in regard to its analog
of the recursion (1.10). If f is the Schur function associated to Verblunsky coe7cients {!0; !1; : : :}
and fn is the Schur function associated to {!n; !n+1; : : :}, then

f =
!0 + zf1

1 + P!0zf1
; (3.8)

a result of Geronimus (see [29] for lots of proofs of this fact).
Interestingly enough, Schur, not knowing of the connection to OPUC, discussed (3.8) for !0=f(0)

as a map of f → (!0; f1) and, by iteration, to a parametrization of functions of D to D by parameters
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!0; : : : ; !n; : : : . There is, of course, a formula relating F to F1 that can be obtained from (3.7) and
(3.8) or directly [22], but it is more complicated than (3.8).

Finally, in discussing f, we note that there is a natural family {d��}�∈9D of measures related
to d� (with d��=1 = d�) that corresponds to “varying boundary conditions.” We will discuss those
more fully in Section 5, but we note

f(z; d��) = �f(z; d�); (3.9)

while the formula for F(d��) is more involved.
The Schur function and Schur iterates, fn, have been used by Khrushchev [14,17,18] as a powerful

tool in the analysis of OPUC.

4. The relative Szegő function

As explained in the Introduction, a critical property of m is (1.16), which is the basis of step-by-step
sum rules (see [28]). The left side of (1.16) enters as the ratio of a.c. weights of d�J and d�J (1) .
Thus, we are interested in Im F(ei%; {!j}∞

j=0) divided by Im F(ei%; {!j+1}∞
j=0), that is, Im F=Im F1 in

the language of the last section. Neither |F | nor |f| is directly related to this ratio, so we need a
di4erent object to get an analog of (1.16). The following was introduced by Simon in [29]:

(�0D)(z) =
1 − P!0f

�0

1 − zf1

1 − zf
: (4.1)

It is called the “relative Szegő function” for reasons that will become clear in a moment.
In (4.1), f1 is the Schur function for Verblunsky coe7cients

!(1)
j = !j+1: (4.2)

Here is the key fact:

Theorem 4.1. Let d� and d�(1) be measures on 9D with Verblunsky coe7cients related by (4.2).
Suppose d� = w(%)d%=2� + d�s and d�(1) = w(1)d%=2� + d�s. Then

(1) For a.e. %; limr↑1(�0D)(rei%) ≡ �0D(ei%) exists.
(2) If w(%) �= 0, then ( for a.e. % w.r.t. d%=2�), w1(%) �= 0 and

w(%)
w1(%)

= |(�0D)(ei%)|2: (4.3)

Sketch of Proof. Each of the functions 1− P!0f; 1− zf1, and 1− zf takes values in {w| |w−1|¡ 1}
on D, so their arguments lie in [ − �=2; �=2], so their logs are in all Hp; 1¡p¡∞. That is, they
are outer functions, and so �0D is an outer function, which means that assertion (1) holds (see Rudin
[24] for a pedagogic discussion of outer functions).

To get (4.3), we note that (3.7) implies

ReF(z) =
1 − |f|2|z|2
|1 − zf|2 ;
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so

ReF(z)
ReF1(z)

=
∣∣∣∣1 − zf1

1 − zf

∣∣∣∣
2 1 − |f|2|z|2

1 − |f1|2|z|2 : (4.4)

On the other hand, (3.8) implies

zf1 =
f − !0

1 − P!0f
; (4.5)

which implies

1 − |zf1|2 =
�2

0 (1 − |f|2)
|1 − P!0f|2 (4.6)

so, putting these formulae together,

ReF(z)
ReF1(z)

= |(�0D)(z)|2
(

1 − |z|2|f|2
1 − |f|2

)
(4.7)

which, as |z| → 1, yields (4.3).

In particular, one has the nonlocal step-by-step sum rule that if w(%) �= 0 for a.e. %, then

(�0D)(z) = exp
(∫ 2�

0

ei% + z
ei% − z

log
(

w(%)
w1(%)

)
d%
4�

)
(4.8)

and, in particular, setting z = 0,

�2
0 = exp

(∫ 2�

0
log

(
w(%)
w1(%)

)
d%
2�

)
(4.9)

which is not only consistent with Szegő’s theorem (2.11) but, using semicontinuity of the entropy,
can be used to prove it (see [19,29]) as follows:

(1) Iterating (4.9) yields

(�0 : : : �n−1)2 = exp
(∫ 2�

0
log

(
w(%)
wn(%)

)
d%
2�

)
: (4.10)

(2) Since exp (
∫ 2�

0 log (wn(%)d%=2�)6
∫ 2�

0 wn(%)d%=2�6 1, (4.10) implies

(�0 : : : �n−1)2¿ exp
(∫ 2�

0
log(w(%))

d%
2�

)
: (4.11)

(3) If w(n) is the weight associated to the measure with

!(n)
j =

{
!j; j6 n − 1

0; j¿ n;

(4.10) proves

(�0 : : : �n−1)2 = exp
∫ 2�

0
log (w(n)(%))

d%
2�

: (4.12)
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(4) d� → ∫ 2�
0 log (w(%))d%=2� is an entropy, hence, weakly upper semicontinuous. Since w(n)d%=

2� → d� weakly as n → ∞, this semicontinuity shows

lim
n→∞ (�n : : : �n−1)26 exp

(∫ 2�

0
log (w(%))

d%
2�

)
: (4.13)

Eqs. (4.11) and (4.13) is Szegő’s theorem.

Two other properties of �0D that we should mention are:

(A) If
∑∞

n=0 |!n|2 ¡∞, then

(�0D)(z) =
D(z; !0; !1; !2; : : :)
D(z; !1; !2; !3; : : :)

: (4.14)

(B) In general, one has

�0D(z) = lim
n→∞

’∗
n−1(z; !1; !2; : : :)
’∗

n(z; !0; !1; : : :)
: (4.15)

5. Eigenfunction ratios

Finally, we look at the analogs of m as a function ratio, its initial deInition by Weyl and Titch-
marsh. The key papers on this point of view are by Geronimo–Teplyaev [11] and Golinskii–Nevai
[15]. We will see from one point of view [15] that F(z) plays this role, but from other points of
view [11] that other functions are more natural.

The recursion relations (2.9)/(2.10) can be rewritten as(
’n+1

’∗
n+1

)
= A(!n; z)

(
’n

’∗
n

)
; (5.1)

where

A(!; z) = �−1

(
z − P!n

−!nz 1

)
(5.2)

(with �= (1 − |!2)1=2). From this point of view, the analog of the fundamental di4erential/di4erence
equation in the real case is

-n = Tn(z)-0 (5.3)

with

Tn(z) = A(!n−1; z) · · ·A(!0; z): (5.4)

The correct boundary conditions for the usual OPUC are -0 =
( 1

1

)
.

One can ask for what other initial conditions the polynomials associated with the top component
of Tn(z)-0 are OPUC for some measure. Note that(

1

�

)
= U (�)

(
1

1

)
(5.5)



420 B. Simon / Journal of Computational and Applied Mathematics 171 (2004) 411–424

with

U (�) =

(
1 0

0 �

)
(5.6)

and that

U (�)−1A(!; z)U (�) = �−1

(
z − P!n�

−!n�−1z 1

)
: (5.7)

We see from this that P�=�−1, that is, |�|= 1 will yield U (�)−1A(!1; z)U (�) =A( P�!; z). Changing
� to P�, we see that

Proposition 5.1. Let |�| = 1. If ’(�)
n (z) are the OPUC for Verblunsky coe7cients !(�)

n = �!n, then(
’(�)

n (z)

P�’(�)∗
n (z)

)
= Tn(z; {!j}∞

j=1)

(
1

P�

)
: (5.8)

This suggests that one look at the family d�� or measures with

!j(d��) = �!j(d�) (5.9)

called the family of Aleksandrov measures associated to {!j}∞
j=0 after [1]. The special case � = −1

goes back to Verblunsky [35] and Geronimus [12], and are called the second kind polynomials,
denoted  n(z). The following goes back to Verblunsky [35].

Theorem 5.2. For z ∈D, uniformly on compact subsets of D,

lim
n→∞

 ∗
n (z)

’∗
n(z)

= F(z): (5.10)

Clearly related to this is the following result of Golinskii–Nevai [15]:

Theorem 5.3. Let z ∈D. Then

∞∑
n=0

∣∣∣∣∣
(

 n(z)

− ∗
n (z)

)
+ 0

(
’n(z)

’∗
n(z)

)∣∣∣∣∣
2

¡∞ (5.11)

if and only if

0 = F(z): (5.12)

From this point of view, F is again the “correct” analog of m! Indeed, the Golinskii–Nevai [15]
proof uses Weyl limiting circles to prove the theorem (one is always in limit point case!).

But this is not the end of the story. DeIne

uk =  k + F(z)’k; u∗
k = − ∗

k + F(z)’∗
k (5.13)
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so
(

uk
u∗
k

)
is the unique solution of -n = Tn(z)-0 which is in ‘2. In the OPRL case, the basic vector

solution is of the form
(

un
un+1

)
, so we have the analog of (1.11),

m̃(z) =
u∗

0

u0
=

−1 + F
1 + F

= zf: (5.14)

So one analog of the m-function is zf.
In particular, (5.14) implies

|u∗
k |¡ |uk | (5.15)

for z ∈D, and thus the rate of exponential decay of
∣∣∣( uk

u∗
k

)∣∣∣ is that of uk . If there is such exponential
decay in the sense that

22 = lim
n→∞



∣∣∣∣∣
∣∣∣∣∣
(

un

u∗
n

)∣∣∣∣∣
∣∣∣∣∣
1=n

 (5.16)

exists, then, by (5.15),

22 = lim
n→∞

1
n

n−1∑
j=0

log |m+
n |; (5.17)

where

m+
n =

un+1

un
: (5.18)

For n = 0; u1 =  1 + F’1; u0 = 1 + F;  1 = �−1
0 (z + P!0); ’1 = �−1

0 (z − P!0), so by a direct calculation,

m+
0 (z) = �−1

0 z(1 − P!0f); (5.19)

yet another reasonable choice for an m-function.
Indeed, if 2(z)=limn→∞(1=n) log ‖Tn(z)‖ exists, the fact that det (Tn)=zn implies that 2=log |�|−

22, and one Inds in the case of stochastic Verblunsky coe7cients that [11,29]

E(log |m+
!(z)|) = log |z| − 2(z); (5.20)

an analog of a fundamental formula of Kotani [20,26] that in his case uses m!
Finally, we turn to the connection of m to whole-line Green’s functions. Given V on (−∞;∞)

and z ∈C+, it is natural to look at the two solutions of (1.1), u±(x; z), which are ‘2 on ±(0;∞)
and the m-functions,

m±(z) = ± u′±(0; z)
u±(0; z)

: (5.21)

m± are the m-functions for V (±x)[0;∞). Standard Green’s function formulae show that the integral
kernel, G(x; y; z), of (−d2=dx2 + V − z)−1 is

G(x; y; z) =
u−(x¡)u+(x¿)

(u+(0)u′−(0) − u′
+(0)u−(0))

;

where x¡ = min(x; y) and x¿ = max(x; y). In particular,

G(0; 0; z) = −(m+(z) + m−(z))−1: (5.22)
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A complete description of the OPUC analog would require too much space, so we sketch the
ideas, leaving the details to [29]. Just as the di4erence equation is associated to a tridiagonal self-
adjoint matrix whose spectral measure is the one generating the OPRL, any set of !’s is associated
to a Ive-diagonal unitary matrix, called the CMV matrix, whose spectral measure is the d� with
!j (d�) = !j.

The CMV matrix is one-sided, but given {!j}∞
j=−∞, one can deIne a two-sided CMV matrix, E,

in a natural way. If G(z) is the 00 matrix element of (E − z)−1, then (see [11,17,29])

G(z) =
f+(z)f−(z)

1 − zf+(z)f−(z)
; (5.23)

where f+ is the Schur function for (!0; !1; !2; : : :) and f− the Schur function for (− P!−1;− P!−2; : : :).
On the basis of the analogy between (5.23) and (5.22), Geronimo–Teplyaev [11] called f+ and zf−
the m+ and m− functions.

6. Summary

We have thus seen that there are many analogs of the m-function in the theory of OPUC:

(1) The CarathTeodory function, F(z), given by (3.1), an analog of (1.2) and also related to the
classic Weyl deInition (5.11)/(5.12).

(2) The Schur function, f(z), given by (3.7) with a recursion, (3.8), closer to the recursion (1.15)
for the m-function of OPRL. f also enters via (5.23).

(3) zf(z), the m̃-function of (5.14).
(4) The relative Szegő function, (4.1), which, via (4.3) and (1.16), is an analog of a1m(z).
(5) The m+-function, (5.19), which plays the role that m does in Kotani theory.

Note added in proof

After this paper was processed, while Inishing up the preparation of [29], I realized there is yet
another OPUC analog of the m-function. A key property of the m-function for the Jacobi case is that
m has poles at eigenvalues of J and zeros at eigenvalues of the Jacobi matrix obtained by removing
one a and one b. An analogous function for OPUC is

M (z) = z(1 + !0)(1 + F(z)) + ( P!0 + 1)(1 − F(z)):

This has poles at poles of F and zeros at point masses for d�1, the measure associated to {!j+1}∞
j=0.

There are two exceptions to this statement. It can happen at z = (1 + P!0)=(1 +!0) that both measures
have a pure point, in which case M has neither a zero nor a pole (this kind of cancellation does not
happen for Jacobi matrices because of interlacing of zeros). M vanishes at z = 0. This M -function
continued to a hyperelliptic Riemann surface is critical to the analysis of Inite gap Verblunsky
coe7cients; see [29].
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