
Journal of Computational and Applied Mathematics 223 (2009) 62–74
www.elsevier.com/locate/cam

Unconstrained derivative-free optimization by
successive approximationI

Árpád Bűrmen∗, Tadej Tuma

University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000 Ljubljana, Slovenia

Received 21 April 2006; received in revised form 20 December 2007

Abstract

We present an algorithmic framework for unconstrained derivative-free optimization based on dividing the search space
in regions (partitions). Every partition is assigned a representative point. The representative points form a grid. A piecewise-
constant approximation to the function subject to optimization is constructed using a partitioning and its corresponding grid. The
convergence of the framework to a stationary point of a continuously differentiable function is guaranteed under mild assumptions.
The proposed framework is appropriate for upgrading heuristics that lack mathematical analysis into algorithms that guarantee
convergence to a local minimizer. A convergent variant of the Nelder–Mead algorithm that conforms to the given framework is
constructed. The algorithm is compared to two previously published convergent variants of the NM algorithm. The comparison is
conducted on the Moré–Garbow–Hillstrom set of test problems and on four variably-dimensional functions with dimension up to
100. The results of the comparison show that the proposed algorithm outperforms both previously published algorithms.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 65K05; 90C56

Keywords: Unconstrained minimization; Direct search; Successive approximation; Grid; Simplex

1. Introduction

Solving unconstrained optimization problems of the form

min
x∈Rn

f (x) (1)

where f : Rn
→ R has received a lot of attention lately, in particular methods that search for local minima of

f . Several different methods for solving such problems without using derivative information (direct search) were
proposed in the past. These so-called direct search methods were despised by the optimization community at first
[22] because most of them lacked mathematical analysis. In the past 20 years the advancements in computational

I The research was co-funded by the Ministry of Education, Science, and Sport (Ministrstvo za Šolstvo, Znanost in Šport) of the Republic of
Slovenia through the programme P2-0246 Algorithms and optimization methods in telecommunications.
∗ Corresponding author.

E-mail address: arpadb@fides.fe.uni-lj.si (Á. Bűrmen).

0377-0427/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.12.017

http://www.elsevier.com/locate/cam
mailto:arpadb@fides.fe.uni-lj.si
http://dx.doi.org/10.1016/j.cam.2007.12.017

Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74 63

capabilities and simulation techniques lead to many optimization problems where no derivatives of f are available.
Consequently direct search methods became interesting for optimization practitioners.

The situation began to change with the advent of the multi-directional search by Torczon [20]. Its convergence
theory was based on the fact that all visited points lie on successively finer grids. The convergence theory that
followed [21] established the class of pattern search methods. Several well-known algorithms belong to that class,
among others also the Hooke–Jeeves algorithm [11]. The developments continued by allowing larger flexibility in
choosing the grid [8] and introducing a sufficient descent condition [7] which removes the requirement that the points
must lie on a grid.

On the other side developments occurred on generalizing the convergence theory in the direction of nonsmooth
functions (functions that are not continuously differentiable). The activities in this field started with the introduction
of the generalized pattern search (GPS) [1] and the nonsmooth approach of Coope and Price [9]. GPS evolved into
mesh-adaptive direct search (MADS) [2] where an asymptotically dense set of search directions is used. A very
good overview which encompasses mostly the analysis for continuously differentiable functions is given in [12]. A
somewhat older review of direct search methods can be found in [15]. Some of the above-mentioned convergence
analyses are developed for constrained optimization algorithms [1,9,2,12].

This paper presents a framework for ensuring convergence to a local minimizer of continuously differentiable
functions. The framework is based on the idea of grid restrainment from [4] where it was used with a very special
form of a grid. The generalization presented here allows non-uniform grids provided that some simple requirements
are satisfied. These requirements are equivalent to those imposed on the admissible sets in [9] (i.e. the intersection of a
bounded set and the grid must always be finite). The division of Rn into regions (partitions) which define the behavior
of the grid-restrainment operator can also be chosen in a very flexible manner.

Our framework is a byproduct of the search for simple convergent variants of the Nelder–Mead (NM)
algorithm [18] which gave rise to the notion of grid restrainment. The effect of grid restrainment to successively
finer grids can also be viewed from a different perspective. Instead of grid-restrained points we are working with
increasingly finer piecewise-constant approximations to f . This interpretation leads to the successive approximation
NM (SANM) algorithm. SANM requires less linear algebra operations than its predecessor, the grid-restrained NM
(GRNM) algorithm [4], and is also faster.

The paper is divided as follows. First the background for analyzing our framework is developed. The framework
is presented and its convergence is established under mild assumptions. Next a variant of the Nelder–Mead algorithm
conforming to the presented framework is described. The algorithm is tested on the Moreé–Garbow–Hillstrom [17]
test suite and on some multi-dimensional test problems with dimension ranging up 100. The results are compared to
those obtained with the convergent simplex variants proposed in [19,5] and [4]. The variant [4] is shown to conform
to the proposed framework. Finally the conclusions are given.

Notation. Vectors are denoted by lowercase letters and are assumed to be column vectors so that xTy denotes the
scalar product of x and y. Matrices are denoted by uppercase letters e.g. A. Ai j denotes j th element in the i th row of
matrix A. The corresponding lowercase letter with a superscript is reserved for matrix columns (e.g. ai). Set members
are also denoted with a superscript. Members of a sequence {xk}

∞

k=1 are denoted by a subscript (e.g. xk). Calligraphic
uppercase letters are reserved for maps and sets. R and Z denote the set of real and integer numbers, respectively.
Function o(x) is such that limx↓0 o(x)/x = 0.Wr denotes an open ball with an arbitrary center and radius r . An open
ball with radius r centered at x is denoted by Wr (x). The remaining notation is introduced in the text as needed.

2. Background

In the case of n-dimensional unconstrained optimization the search is conducted in Rn .

Definition 1. Partitioning P(Rn) divides Rn into a set of partitions P i such that
⋃

i P i
= Rn and P i

∩ P j
6= ∅ iff

i = j .

Now suppose that every partition P i is assigned a representative point pi
∈ P i . Let diam(P i) = maxx,y∈P i ‖x−y‖

denote the diameter of a partition.

Definition 2. A grid G(Rn,P) is a one-to-one map between the set of representative points and the partitioning
P(Rn).

64 Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74

Lemma 3. Suppose that for a given partitioning there exist 0 < ω < Ω such that for every partition P i we can find
a ball Wω ⊆ P i and a ball WΩ such that P i

⊆ WΩ . Then for every compact set C the number of partitions P i for
which P i

∩ C 6= ∅ is finite.

Proof. Suppose that this is not true. Then there must exist an infinite set of partitions S = {P1, P2, . . .} such that
every member of this set has a non-empty intersection with C. Since there exists Ω > 0 such that every partition has
a ball WΩ ⊇ P i associated with it we can choose a compact set C1 ⊇ C for which P i

⊆ C1 for all P i
∈ S.

Choose a finite subset of S and denote it S1. C cannot be a subset of
⋃

P i∈S1
P i as then S would be finite. So there

must exist some Pk1 6∈ S1 and Pk1 ∈ S for which Pk1 ∩ C 6= ∅. Replace S with S \ {Pki } and choose a new S1.
By repeating this reasoning we obtain an infinite sequence of partitions {Pki }

∞

i=1 that have a non-empty intersection
with C and lie in a compact set C1. Every partition from this sequence has a corresponding inscribed ball Wω ⊆ P i .
The centerpoints of these balls constitute an infinite sequence within compact set C1 and the distance between any
two points xi , x j from this sequence is at least ω. Thus the sequence can have no limit points, which contradicts the
compactness of C1. �

Definition 4. A grid-restrainment operator RG,P is a map Rn
→ G(Rn,P) such that RG,P (x) = pi iff pi

∈ P i and
x ∈ P i .

Grid restrainment of an x ∈ Rn results in a pointRG,P (x) that more or less differs from x (grid-restrainment error).
If the partition diameter has an upper bound this error also has an upper bound δ(G,P) = maxx∈Rn ‖RG,P (x)−x‖ ≤
maxi diam(P i).

Definition 5. f̃ (x) is a (G,P) approximation to f (x) if f̃ (x) = f (RG,P (x)).

Note that the value of f̃ is constant across every partition.

Lemma 6. Let f̃ (x) be a (G,P) approximation to f (x) and let the requirements of Lemma 3 hold for P . Suppose that
an algorithm starts out with x0 and the level set L = {x : f (x) ≤ f (x0)} is compact. If the i th step of the algorithm
produces xi for which f̃ (xi) < f̃ (xi−1) then the algorithm terminates in a finite number of steps.

Proof. Obviously f̃ (xi) < f̃ (x0). Since the requirements of Lemma 3 hold and L is compact, there exists a compact
set L̃ ⊇ {x : f̃ (x) ≤ f̃ (x0)}. Lemma 3 states that L̃ can be covered with a finite number of partitions. f̃ is constant
over every one of these partitions by definition so the algorithm can choose between finitely many values of f̃ and
subsequently there are only finitely many f̃ (xi) with f̃ (xi) < f̃ (x0). �

The following 3 definitions establish the notions of locally Lipschitz function, Clarke generalized derivative, and
strict differentiability [6,3].

Definition 7. A function f is locally Lipschitz around x if there exist K > 0 and δ > 0 such that | f (x1)− f (x2)| ≤

K‖x1 − x2‖ for any x1, x2 ∈Wδ(x).

Definition 8. Suppose that f is locally Lipschitz around x. Then

f ◦(x;d) = lim
y→x

sup
t↓0

f (y+ td)− f (y)
t

(2)

is the Clarke generalized derivative [6].

Definition 9. A function f is strictly differentiable at x if there exists w ∈ Rn and δ > 0 such that

limy,z→x,y6=z
f (y)− f (z)−wT(y−z)

‖y−z‖ = 0 where y, z ∈Wδ(x). w is the strict derivative of f at x.

If a function is strictly differentiable at x then it is also locally Lipschitz around x and f ◦(x;d) = wTd. Continuous
differentiability at x implies that f ◦(x;d) = (∇ f (x))Td and results in f being strictly differentiable at x.

Definition 10. A set D = {d1,d2, . . . ,dr
} positively spans A if for every x ∈ A there exists a set of nonnegative

scalars αi such that x =
∑r

i=1 α
i di .

Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74 65

In other words vectors x ∈ A are in the positive span of D. The quality of a positive spanning set [14] can be
expressed as

ε(D) = min
v∈Rn ,‖v‖6=0

max
d∈D

dTv
‖d‖‖v‖

< 1 (3)

ε(D) > 0 implies that D positively spans Rn (for proof see [4]).
Now suppose that the set D̃ is obtained from D by restraining the members of D to grid G using partitioning P .

Let dmin denote the shortest member of D. Then (provided that no member of D̃ has zero length)

ε(D̃) ≥
ε(D)− δ(G,P)/‖dmin

‖

1+ δ(G,P)/‖dmin
‖
. (4)

See [4] for proof. If the members of D are obtained by subtracting two vectors (e.g. di
= ai

− bi) the grid
restrainment of vectors ai and bi results in the following estimate for D̃.

ε(D̃) ≥
ε(D)− 2δ(G,P)/‖dmin

‖

1+ 2δ(G,P)/‖dmin
‖
. (5)

The proof again goes along the lines of [4], except that the grid-restrainment error must be applied twice.

Definition 11. Finite set D∞ ⊆ Rn is a limit point of a sequence of sets {Dk}
∞

k=1 if there exists a subsequence
{Dik }

∞

k=1 such that for every d ∈ D∞

lim
k→∞

min
d′∈Dik

‖d− d′‖ = 0. (6)

The following definition will simplify the proceedings for establishing the convergence theory of an algorithm.

Definition 12. A constellation X is an ordered set of m + 1 points {x0, x1, . . . , xm
} where m > 0. Vector x0 is

the origin and set Bξ (X) = { x
1
−x0

ξ
, x2
−x0

ξ
, . . . , xm

−x0

ξ
} is the ξ -basis of constellation X . Note that a ξ -basis is not

necessarily a linear basis for Rn .

By restraining every member of Xk to grid Gk using partitioning Pk we get a constellation denoted by X̃k . Let εk ,
ε̃k , and δk denote ε(Bξk (Xk)), ε(Bξk (X̃k)), and δ(Gk,Pk), respectively.

Lemma 13. For a given sequence of constellations {Xk}
∞

k=1 choose a sequence of positive scalars {ξk}
∞

k=1, a sequence
of partitionings {Pk}

∞

k=1, and a sequence of grids {Gk}
∞

k=1. Suppose that there exist α > 0 and Λ > 0 such that for
every b ∈ Bξk (Xk) and all Xk

‖b‖ ≤ Λ, (7)

εk‖b‖ − 2δk/ξk ≥ α (8)

then there exists a limit point B̃∞ of sequence {Bξk (X̃k)}
∞

k=1 and every B̃∞ positively spans Rn .

Proof. The nature of grid restrainment implies bounds on b̃ ∈ Bξk (X̃k) where b is the corresponding member of
Bξk (Xk)

‖b‖ − 2δk/ξk ≤ ‖b̃‖ ≤ ‖b‖ + 2δk/ξk . (9)

Since εk‖b‖ < ‖b‖ we can use (7) and (8) to obtain 2δk/ξk < Λ− α and

α ≤ ‖b̃‖ < 2Λ− α. (10)

From (5), (7) and (8) we can write

ε̃k ≥
εk − 2δk/(ξk‖bmin

‖)

1+ 2δk/(ξk‖bmin
‖)
=
‖bmin

‖εk − 2δk/ξk

‖bmin
‖ + 2δk/ξk

>
α

2Λ− α
. (11)

66 Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74

Now since ξk and δk are both positive, we get

0 < δk/ξk ≤ εk‖b‖ − α ≤ εkΛ− α < Λ− α. (12)

Eq. (10) guarantees the existence of limit point B̃∞ and assures us that no limit point contains zero vectors. The
latter is a consequence of (8) and does not require an additional lower bound λ on ‖b‖ as in [4]. From (11) and (12) it
follows that ε̃k > α/(2Λ− α) > 0. This means that ε(B̃∞) > 0 and B̃∞ positively spans Rn . �

The following lemma is the basis for proving the convergence of our algorithmic framework.

Lemma 14. Assume a sequence of points {xk}
∞

k=1, a sequence of vectors {bk}
∞

k=1, and a sequence of positive scalars
{ξk}
∞

k=1 converging to x∞, b∞, and 0, respectively. Let f be locally Lipschitz around x∞. If f (xk + ξkbk) ≥

f (xk) − o(ξk‖bk‖) holds for every member of the sequence then the Clarke generalized derivative f ◦(x∞;b∞)
is nonnegative.

Proof. From the assumption on the function value at xk we can write

f (yk + ξkb∞)− f (yk)+ f (yk)− f (xk)

ξk
≥ −

o(ξk‖bk‖)

ξk
(13)

where yk = xk + ξkuk and uk = bk − b∞. By taking the lim supk→∞ the right-hand side term vanishes.

lim sup
k→∞

f (yk + ξkb∞)− f (yk)

ξk
+ lim sup

k→∞

f (xk + ξkuk)− f (xk)

ξk
≥ 0. (14)

Since uk approaches 0 and f is Lipschitz continuous near x∞, the second term vanishes. The first term is a lower
bound for f ◦(x∞;b∞) which in turn must also be nonnegative. �

Lemma 15. Suppose that f is strictly differentiable at x and f ◦(x;b) ≥ 0 for all b ∈ B = {b1,b2, . . . ,br
}. Then

f ◦(x; v) ≥ 0 for all v that are in the positive span of B. If f is continuously differentiable at x and B positively spans
Rn , x is a stationary point of f .

Proof. Since v lies in the positive span of B, it can be expressed as v =
∑r

i=1 α
i bi where αi

≥ 0. Strict
differentiability at x implies that f ◦(x;b) = wTb. By applying it to f ◦(x; v) we get

f ◦(x; v) = wTv =
r∑

i=1

αi wTbi
=

r∑
i=1

αi f ◦(x;bi) ≥ 0. (15)

For the second part (x being a stationary point of f): B positively spanning Rn implies that f ◦(x; v) = wT v ≥ 0
for all v ∈ Rn , so w can only be 0. For continuously differentiable functions w = ∇ f (x) and x is a stationary point of
f . �

The following algorithmic framework for unconstrained optimization will be the subject of discussion in the
remainder of the paper.

Algorithm 1. Partitioning-based algorithmic framework

(1) Set k := 1. Choose an initial point x1 and a partitioning P1 with a set of representative points forming grid G1. Let
f̃k be a (Gk,Pk) approximation to f : Rn

→ R.
(2) Evaluate f̃k for a finite set of points and let x′ be the one with the lowest f̃k value.
(3) If f̃k(x′) < f̃k(xk) set xk := x′ and go back to step 2.
(4) Generate a constellation Xk comprising origin x0

k = xk and m additional points.

(5) If there exists x′ ∈ Xk for which f̃k(x′) < f̃k(xk)− o(‖x′ − xk‖), set xk := x′ and go back to step 2.
(6) Set xk+1 := xk , choose a new partitioning Pk+1 with a new set of representative points Gk+1, and increment k. Go

back to step 2.

We make the following assumptions for our framework.

Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74 67

A1. For every partitioning Pk there exist ω and Ω (0 < ω < Ω) such that for every partition P i relations Wω ⊆ P i

and P i
⊆WΩ hold.

A2. There exists a sequence of scalars {ξk}
∞

k=1 and Λ > 0 such that constellations Xk for which Algorithm 1 ends up
at step 6 satisfy

‖b‖ ≤ Λ ∀b ∈ Bξk (Xk). (16)

A3. There exists α > 0 such that partitionings Pk and grids Gk for which Algorithm 1 ends up at step 6 satisfy

εk‖b‖ − 2δk/ξk ≥ α ∀b ∈ Bξk (Xk). (17)

A4. f is continuously differentiable with compact level sets.

Now we are prepared for our main result.

Theorem 16. Suppose that ξk goes to 0 as k approaches infinity. Then assuming A1–A4 all limit points of sequence
{xk}

∞

k=1 (where xk is collected at step 6 of Algorithm 1) are stationary points of f .

Proof. Assumption A1 fulfills the requirements of Lemma 3. Since Algorithm 1 replaces xk only if it decreases
the value of f̃ (xk) and the level sets of f are compact, we can invoke Lemma 6 which ensures us that steps 2–5 are
repeated finitely many times before step 6 is reached. This means that step 6 is visited infinitely many times. Therefore
we can form infinite sequences of partitionings Pk , grids Gk , constellations Xk , and constellation origins x0

k collected
at the beginning of step 6.

The sequence of grid-restrained constellation origins {x̃0
k}
∞

k=1 (where x̃0
k = RGk ,Pk (x

0
k)) satisfies f (x̃0

k) ≤ f (x̃0
k−1).

Care must be taken to make sure that f̃ (x0
k) does not change when a new partitioning with a new set of representative

points is chosen in step 6. This can be achieved if the old and the new grid share a common representative point p for
which RG,P (x0

k) = p. Since the level sets of f are compact the sequence {x̃0
k}
∞

k=1 has at least one limit point x̃0
∞.

Due to assumptions A2 and A3 the requirements of Lemma 13 are satisfied for sequences {Xk}
∞

k=1, {ξk}
∞

k=1,
{Pk}

∞

k=1, and {Gk}
∞

k=1. Therefore a limit point B̃∞ of sequence {Bξk (X̃k)}
∞

k=1 exists and all such limit points positively
span Rn .

Now choose a pair of limit points x̃0
∞ and B̃∞ and a subset of indices K such that the corresponding subsequence

of {x̃0
k}
∞

k=1 and {Bξk (X̃k)}
∞

k=1 converges to x̃0
∞ and B̃∞, respectively. Replace all sequences with subsequences of

themselves where k ∈ K. This makes the proof valid for every limit point x̃0
∞.

For any b̃∞ ∈ B̃∞ we can form a sequence of vectors {b̃k}
∞

k=1 where b̃k ∈ Bξk (X̃k) such that it converges to
b̃∞ ∈ B̃∞. A2 asserts that δk ≤ ξk(εkΛ− α)/2. Together with (12) it means that the grid-restrainment error goes to 0
as ξk goes to 0.

The sequence of grid-restrained constellation origins {x̃0
k}
∞

k=1 satisfies f (x̃0
k + ξk b̃k) ≥ f (x̃0

k) + o(ξk‖bk‖). By
looking at the proof of Lemma 14 we can see that it is still valid, even if we replace o(ξk‖b̃k‖) with o(ξk‖bk‖). Since
the continuous differentiability of f implies local Lipschitz continuity we satisfy all requirements of Lemma 14 and
conclude f ◦(x∞; b̃∞) ≥ 0.

Recall that B̃∞ positively spans Rn . The continuous differentiability of f and Lemma 15 result in ∇ f (x̃0
∞) = 0.

δk → 0 implies that ‖x̃k − xk‖ → 0 and together with continuous differentiability of f result in ‖∇ f (xk)‖ → 0.
�

3. The successive approximation simplex algorithm

3.1. The algorithm

The NM algorithm tries to find a local minimum of f by moving a polytope with n + 1 vertices (simplex) through
the search space. The movement is achieved with simple geometric operations on the set of simplex vertices guided
solely by their relative ordering according to the value of f . Its popularity is probably a consequence of its simplicity
and the fact that for many practical optimization problems it performs astoundingly well. An overview of various
modifications to the original NM algorithm can be found in [4].

Denote the simplex vertices with x0, x1, . . . , xn and relabel them such that f (x0) ≤ f (x1) ≤ · · · ≤ f (xn) holds.
To simplify the notation f i is used for f (xi). The centroid of the n vertices with the lowest value of f is defined as

68 Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74

xcb
=

1
n

∑n−1
i=0 xi . A candidate point for replacing xn lies on the line defined by xcb and xn and can be expressed as

x(γ) = xcb
+ γ (xcb

− xn).
Several candidate points for replacing xn are examined. The candidates are xr, xe, xoc, and xic with the

corresponding values of γ denoted by γr, γe, γoc, and γic. In the literature they are usually referred to as the reflection,
expansion, outer contraction, and inner contraction point. If none of the above-mentioned candidates is good enough
to replace xn the simplex is shrunk toward x0 using the formula x0

+ γs(xi
− x0) for i = 1, 2, . . . , n.

Values of γ satisfy the following requirements

0 < γr < γe, γe > 1, 0 < γoc < 1, −1 < γic < 0, 0 < γs < 1. (18)

In the original paper by Nelder and Mead [18] the following values were proposed: γr = 1, γe = 2, and
γoc = −γic = γs = 0.5. Algorithm 2 is the summary of the original Nelder–Mead algorithm as stated by [13].
This algorithm differs slightly from the original version in [18] where several ambiguities are present.

The initial simplex can be chosen randomly or by using some predefined rules. Next f is evaluated at the simplex
vertices upon which iterations of Algorithm 2 are repeated until some stopping condition is satisfied.

Algorithm 2. One iteration of the NM algorithm:

(1) Order the simplex.
(2) Evaluate f r

= f (xr). If f r < f 0 evaluate f e
= f (xe).

If f e < f r replace xn with xe, otherwise replace it with xr.
(3) If f 0

≤ f r < f n−1, replace xn with xr.
(4) If f n−1

≤ f r < f n , evaluate f oc
= f (xoc).

If f oc
≤ f n replace xn with xoc.

(5) If f n
≤ f r, evaluate f ic

= f (xic).
If f ic

≤ f n , replace xn with xic.
(6) If xn was not replaced, shrink the simplex toward x0.

In the remainder of the paper we assume box-shaped partitions of the form P = {x = [x1, x2, . . . , xn
] :

yi
−∆i/2 ≤ x i < yi

+∆i/2}where y = [y1, y2, . . . , yn
] denotes the representative point and 1 = [∆1,∆2, . . . ,∆n

]

is the grid density. The following grid will be assumed to be G = {y : y = z +
∑n

i=1 N i ei∆i , N i
∈ Z} where ei

denotes the i th unit vector and z is the grid origin. For such a combination of partitioning and grid δ = ‖1‖/2.
In SANM algorithm (see Algorithm 3) we replace function f which is used in the original NM algorithm with

a sequence of approximations { f̃i }
∞

i=1 over gradually finer partitionings. The original values of the simplex scaling
coefficients were used except for γe = 1.2 and γs = 0.25. The value of γe is from [4] where it was found that this
value improves the algorithm’s performance compared to the original γe = 2. The acceptance criterion for contraction
steps is more strict than in the original NM algorithm (f̃ oc < f̃ n and f̃ ic < f̃ n).

The algorithm starts by constructing a simplex around the initial point x0. The vertices of the initial simplex consist
of the initial point x0 and n additional points obtained by perturbing the individual coordinates of x0 by 5% or 0.00025
if the respective coordinate value is zero. Let x i, j denote the j th component of vector xi . The initial grid origin is at
x0 and the initial grid scaling can be expressed as ∆ j

=
1

10 maxi=1,2,...,n |x i, j
− x0, j

|.
Most of the time step 1 is being executed. The original NM algorithm is considered to fail if none of the four trial

points (xr, xe, xoc, and xic) is accepted.
One of the reasons why the original NM algorithm fails is the simplex limiting to an n′ < n-dimensional object.

When this happens the search becomes more and more confined to a linear subspace of Rn . The algorithm’s progress
slows down and ultimately results in inner or outer contraction step not being accepted. Let f̃ best denote the f̃ value
at the best simplex point when this happens.

After a failed contraction step the simplex is checked for degeneracy (Algorithm 3, step 1). Let vi
= xi

− x0,
i = 1, 2, . . . , n denote the simplex side vectors and c some positive constant. Keeping the interior angles bounded
away from 0 implies the following:

| det V | = | det[v1, v2, . . . , vn
]| ≥ cn

n∏
i=1

‖vi
‖. (19)

Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74 69

If (19) is violated the simplex is reshaped (step 3 of Algorithm 3). The reshape keeps the best point intact and
changes the remaining n points. Simplex side vectors are ordered so that ‖v1

‖ ≥ ‖v2
‖ ≥ · · · ≥ ‖vn

‖ and matrix
V = [v1, v2, . . . , vn

] is constructed. The matrix is factored using QR decomposition (V = QR). The resulting
orthogonal basis D = {d1,d2, . . . ,dn

} is obtained from

di
= sign(Ri i)max

(
λn1/2

‖∆‖,min(|Ri i |,Λn1/2
‖∆‖)

)
qi ,

where sign(x) is −1 for x < 0 and 1 otherwise. Our implementation uses c = 10−6, λ = 2, and Λ = 252.
The absolute value of the determinant in (19) can be calculated incrementally like in [19,5]. This is due to the

fact that no grid restrainment is performed when a new point is accepted into the simplex (as opposed to [4]). The
new value is obtained by multiplying the old value with γr, γe, γoc, γic, or (γe − γr)/γr when xr, xe, xoc, xic, or xpe

is accepted, respectively. xpe denotes the pseudo-expand point [19,5] defined as xpe
= x0

+ (γe/γr − 1)(x0
− xcw)

where xcw
= 1/n

∑n
i=1 xi . When the trial steps are shrinked, the determinant is multiplied by γ n

s . The only time the
determinant needs to be calculated from scratch is at the start of the algorithm and at every reshape. But since the
reshaped simplex is orthogonal the absolute value of the determinant can be obtained as the product of simplex side
lengths. The simplified evaluation of the determinant reduces the number of linear algebra operations compared to the
GRNM algorithm where a QR decomposition is performed every time the determinant is evaluated.

The optional reshape is followed by the so-called pseudo-expand step [19,5] (step 4 of Algorithm 3). The best point
x0 is treated as a result of a successful reflection step which should be followed by an expansion step resulting in the
pseudo-expand point xpe. The pseudo-expand point replaces the best point of the simplex if f̃ pe < f̃ 0. If any of the
points in the resulting simplex is better than f̃ best the algorithm continues with the NM algorithm.

If no reshape happened at step 3 a reshape takes place at step 7. What follows is a loop that repeatedly tries 2n trial
steps around the best point in order to find a point that is better than x0. n points are tried in one pass of the loop. Since
the reshaped simplex is orthogonal the 2n steps form a positive spanning set (a maximal positive basis [10]) for Rn .

If the 2n points fail to produce descent, the trial steps are shrinked by γs (this step is similar to the shrink step in the
original NM algorithm). When the trial steps become short compared to the grid-restrainment error the grid and the
partitioning are refined. This implies a new (finer) approximation to f . Care must be taken to make sure that f̃ (x0)

does not change as a result of the refinement. This is achieved by choosing the new grid origin (z) at RGold,Pold(x0)

and moving x0 to z. Here Gold and Pold denote the grid and the partitioning before refinement.
Let dmin, dmin,i , and zi denote the shortest trial step vector, its components, and the components of the grid origin,

respectively. The components of the new grid scaling vector are obtained as ∆i
=

1
128λn max(|dmin,i

|,
‖dmin

‖

n1/2). Due
to the finite precision of floating point representation there is an inherent grid present. When a component of the grid
scaling vector reaches the precision of the floating point representation (∆i < max(τr|zi

|, τa)) grid restrainment is
no longer applied to the i th component of vectors and the inherent floating point grid takes over. Constants τr and τa
are the relative and the absolute precision. The SANM algorithms uses τr = 2−52 and τa = 10−100, respectively (for
64-bit IEEE floating point τr ≥ 2−52 and τa ≥ 10−323).

When a trial step produces descent with respect to x0 the loop is abandoned, a new simplex is formed, and the
algorithm returns to step 1.

The stopping condition is based on the size of the simplex and the range of the function values that correspond
to the simplex points. Let vi, j and x0, j denote the j th component of vi and x0. The algorithm is stopped when
maxi=1,2,...,n | f̃ i

− f̃ 0
| < max(βf, βr| f̃ 0

|) and maxi=1,2,...,n |v
i, j
| < max(βx, βr|x0, j

|) for j = 1, 2, . . . , n. In the
implementation the following values were used: βr = 10−16, βx = 10−9, and βf = 10−16.

Algorithm 3. Successive approximation simplex algorithm:

(1) Repeat iterations of the original NM algorithm without shrink steps and with modified acceptance criteria for
contraction points. Instead of f (x) use its (G,P) approximation f̃ (x). When an iteration not replacing xn (NM
failure) is encountered, go to step 2.

(2) xbest
= arg minx∈{x0,x1,...,xn} f̃ (x) and f̃ best

= f̃ (xbest).

(3) If the simplex shape violates (19), reshape it by forming an orthogonal basis D = {d1,d2, . . . ,dn
} subject to

λn1/2
‖1‖ ≤ ‖di

‖ ≤ Λn1/2
‖1‖ for all i = 1, 2, . . . , n. Construct a simplex comprising x0 and xi

= x0
+ di

where i = 1, 2, . . . , n, and evaluate f̃ at the new simplex vertices.

70 Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74

(4) Order the simplex and evaluate f̃ at the pseudo-expand point to obtain f̃ pe
= f̃ (xpe). If

min(f̃ pe, f̃ 0, f̃ 1, . . . , f̃ n) ≥ f̃ best go to step 7
(5) If f̃ pe < f̃ 0 replace x0 with xpe.
(6) Go to step 1.
(7) If a reshape happened at step 3 set l = 1, otherwise set l = 0 and reshape the simplex now.
(8) Repeat the following steps.

(a) If l > 0, reverse vectors di .
(b) If l ≥ 2 and l mod 2 = 0
• Shrink vectors di by a factor of 0 < γs < 1.
• If ‖dmin

‖ < λn1/2
‖1‖ choose the new grid origin z at RG,P (x0), set x0 to z, and refine the partitioning P

and the grid G (implies a new f̃).
(c) Evaluate f̃ at x0

+ di for i = 1, 2, . . . , n.
(d) Set l = l + 1.

Until stopping condition is satisfied or mind∈D f̃ (x0
+ d) < f̃ (x0).

(9) Construct a new simplex comprising x0 and x0
+ di where i = 1, 2, . . . , n.

(10) If stopping condition is satisfied finish, else go to step 1.

Theorem 17. Suppose that the stopping condition is removed from Algorithm 3 and infinite numerical precision is
available. Then for a continuously differentiable f with compact level sets the algorithm converges to a set of points
x for which ‖∇ f (x)‖ = 0.

Proof. All we need to do is prove that Algorithm 3 adheres to the framework specified by Algorithm 1, assumptions
A1–A3 are satisfied, and ξk goes to 0. Assumption A4 is satisfied by theorem’s requirements.

Steps 1–6 correspond to steps 2–3 of the framework. The rest corresponds to steps 4–6. The set {x0, x0
+ d1, x0

−

d1, x0
+ d2, x0

− d2, . . .} is constructed in two consecutive iterations of loop at step 8 of Algorithm 3 before the grid
and the partitioning are refined. This set is the constellation that leads to step 6 of the framework.

The nature of the partitioning (uniform box-shaped partitions) makes sure that assumption A1 is satisfied. Since
D is a linear orthogonal basis for Rn the set {d1,−d1,d2,−d2, . . .} positively spans Rn with ε = 1/n1/2. Since
λn1/2

‖∆‖ ≤ ‖d‖ ≤ Λn1/2
‖∆‖. We satisfy assumption A2 by choosing ξ = n1/2

‖∆‖. A2 also holds when the basis
is shrunk in the loop at step 8.

Since D is an orthogonal linear basis εk = n−1/2. The grid-restrainment error is δ = ‖∆‖/2. We can deduce
εk‖b‖ − 2δ/ξ = (‖b‖ − 1)/n1/2

≥ (λ− 1)/n1/2
= α and see that assumption A3 is satisfied for all λ > 1.

Recall that the components of the new grid scaling vector are chosen as ∆i
=

1
128λn max(|dmin,i

|,
‖dmin

‖

n1/2). From

|dmin,i
| ≤ ‖dmin

‖ we can estimate that ∆new,i
≤ ‖dmin

‖/(128λn). The grid is refined when ‖dmin
‖ < λn1/2

‖∆‖. This
means that ∆new,i < ‖∆‖/(128n1/2) and ‖∆new

‖ < ‖∆‖/128 which in the end result in ‖∆‖ → 0. �

A short note may be appropriate here. Remember from (12) that α < Λ must hold. Since α = (λ − 1)/n1/2 and
λ < Λ this is true, indeed.

3.2. The GRNM simplex algorithm in the proposed framework

The GRNM algorithm [4] also conforms to the presented framework. The part that guarantees GRNM’s
convergence is the equivalent of loop at step 8 of Algorithm 3. The only difference is that in GRNM grid restrainment
does not affect x0 (since x0 always lies on the grid). The proposed convergence analysis is still valid. If, however, we
consider that grid restrainment is applied only to one endpoint of a vector (using Eq. (4) instead of Eq. (5)) assumption
A3 can be relaxed to εk‖b‖ − δk/ξk ≥ α.

3.3. Results of numerical testing

The sufficient descent-based simplex algorithm (SDNM) [19,5], the GRNM algorithm [4], and Algorithm 3
(SANM) were implemented in MATLAB R14. The Moré–Garbow–Hillstrom set of test functions [17] was used
for algorithm evaluation. Besides these functions the standard quadratic and McKinnon [16] functions were also used.
The starting simplex was chosen in the same manner as in [19,5], except for the McKinnon (alt.) function where

Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74 71

Table 1
Comparison of SDNM, GRNM, and SANM on the Moré–Garbow–Hillstrom set of test problems

Function n SDNM GRNM SANM
NF Minimum NF Minimum NF Minimum

Rosenbrock 2 285 1.39058e−17 517 1.79285e−17 538 8.556045e−20
Freudenstein and Roth 2 217 48.9843 274 48.9843 333 48.9843
Powell badly scaled 2 969 4.23980e−25 1 245 1.87891e−25 1 464 4.44784e−25
Brown badly scaled 2 498 7.99797e−17 595 4.45581e−17 579 2.32382e−12
Beale 2 191 2.07825e−18 183 1.13556e−18 151 0.00000
Jennrich and Sampson 2 157 124.362 149 124.362 228 124.362
McKinnon 2 426 −0.250000 380 −0.250000 231 −0.250000
McKinnon (alt) 2 351 −0.250000 210 −0.250000 103 −0.250000
Helical valley 3 342 9.83210e−16 591 1.64083e−16 497 5.67580e−19
Bard 3 1 134 17.4287 427 8.21488e−3 407 8.21488e−3
Gaussian 3 194 1.12793e−8 252 1.12793e−8 244 1.12793e−8
Meyer 3 2 801 87.9459 7 269 87.9459 4 066 87.9459
Gulf research 3 529 5.44511e−19 955 2.92451e−21 937 2.90829e−23
Box 3 478 8.70459e−21 923 1.91130e−20 498 1.60807e−20
Powell singular 4 1045 6.73509e−26 1 280 3.43198e−25 2 104 2.35132e−32
Wood 4 656 2.57400e−16 1 177 2.50092e−17 1 102 7.14988e−19
Kowalik and Osborne 4 653 3.07506e−4 566 3.07506e−4 638 3.07506e−4
Brown and Dennis 4 603 85 822.2 620 85 822.2 683 85 822.2
Quadratic 4 440 2.15350e−17 427 2.82657e−17 301 0.00000
Penalty (1) 4 1 848 2.24998e−5 1 596 2.24998e−5 2 837 2.24998e−5
Penalty (2) 4 4 689 9.37629e−6 2 274 9.37629e−6 3 137 9.37629e−6
Osborne (1) 5 1 488 5.46489e−5 1 766 5.46489e−5 1 798 5.46490e−5
Brown almost linear 5 648 1.08728e−18 769 4.03372e−18 1 062 1.43221e−20
Biggs EXP6 6 4 390 1.16131e−20 2 877 1.12896e−20 3 399 1.26952e−23
Extended Rosenbrock 6 3 110 1.35844e−14 2 345 9.06455e−18 1 977 1.94036e−19
Brown almost linear 7 1 539 1.51163e−17 1 473 4.83079e−18 1 446 9.24764e−20
Quadratic 8 1 002 8.07477e−17 1 124 1.96893e−16 1 189 5.24081e−19
Extended Rosenbrock 8 5 314 3.27909e−17 2 996 1.50285e−17 4 637 7.96193e−20
Variably dimensional 8 2 563 1.24784e−15 2 634 7.66228e−16 2 988 5.28934e−18
Extended Powell 8 7 200 6.43822e−24 7 014 1.63762e−25 6 586 3.06964e−29
Watson 9 5 256 1.39976e−6 5 394 1.39976e−6 6 266 1.39976e−6
Extended Rosenbrock 10 7 629 2.22125e−16 6 208 1.77981e−17 8 611 1.95807e−19
Penalty (1) 10 9 200 7.08765e−5 11 514 7.08765e−5 8 479 7.08765e−5
Penalty (2) 10 32 768 2.93661e−4 31 206 2.93661e−4 28 753 2.93661e−4
Trigonometric 10 2 466 2.79506e−5 1 521 1.49481e−16 2 116 2.79506e−5
Osborne (2) 11 6 416 0.0401377 3 263 0.0401377 3 723 0.0401377
Extended Powell 12 20 076 1.11105e−20 12 846 5.51619e−28 12 146 2.08459e−20
Quadratic 16 2 352 1.41547e−16 3 639 4.70425e−16 3 349 1.38958e−18
Quadratic 24 4 766 1.21730e−15 6 067 4.06413e−16 7 065 8.37327e−19

McKinnon’s initial simplex, which causes the original NM algorithm to fail, was used. The results of the testing are in
Table 1. N F denotes the number of function evaluations. The best (lowest) function value obtained by the algorithms
is also listed.

The results were compared to the results of the sufficient descent-based algorithm [19,5] (SDNM) and the grid-
restrained algorithm [4] (GRNM). For all test functions SANM found a stationary point of the test function. For the
Bard 3D function SDNM and SANM found different stationary points. Similar happened for GRNM and SANM on
the trigonometric function. The functions were excluded from the comparisons.

When SANM and SDNM are compared there were 15 functions for which algorithms obtained the same final
function value. SDNM was better on 5 functions and SANM on 18 functions. If we compare the number of function
evaluations, SDNM was better on 22 problems and SANM on 16.

If we consider both the number of function evaluations and the final function value we can say, that Algorithm A
outperforms Algorithm B on some test problem if it obtains the same or better final function value with less
function evaluations, or if it obtains a better final function value with the same number of evaluations. According

72 Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74

Fig. 1. Number of function evaluations for different problem dimensions.

to this criterion SDNM outperformed SANM on 11 test functions and SANM outperformed SDNM on 14 test
functions.

On the other hand if we compare GRNM and SANM, we get the same final function value on 15 problems, GRNM
is better on 4 problems and SANM on 19 problems. The result regarding the number of function evaluations is 19–19.
GRNM outperforms SANM on 9 problems and SANM outperforms GRNM on 17 problems.

Judging from the two comparisons we conclude that SANM performs better than GRNM and SDNM on the test
suite.

To compare the performance for problems of increasing dimensionality we tested all three algorithms on four
variably-dimensional problems: the standard quadratic function (up to n = 100), the extended Rosenbrock’s function,
extended Powell’s singular function, and variably-dimensional function (up to n = 50). All these functions have a
global minimum where f = 0. The optimization was stopped when f reached values below 10−14 or when the
number of function evaluations exceeded 106. The results (number of function evaluations) are plotted in Fig. 1.

For quadratic problems of lower dimension SDNM was slightly faster than the remaining two algorithms. For
n < 50 the worst performance was exhibited by the GRNM algorithm. For problems of higher dimension (n > 50)
GRNM performs similarly as SDNM and SANM is slightly faster than SDNM. On the extended Rosenbrock function
GRNM and SANM outperform SDNM for problems with n ≤ 20. For higher dimensions GRNM is slower and SANM
performs roughly the same and SDNM. On the extended Powell function GRNM and SANM significantly outperform
SDNM. SANM is slightly faster than GRNM. The situation is similar for the variably-dimensional function.

In general SANM performs better than GRNM on the four variably-dimensional test problems. We assume that
this is due to the grid restrainment directly affecting the simplex shape in GRNM. Restraining the simplex vertices
to a grid can significantly change the longest side of the simplex (which in general follows the function’s gradient),
especially when ‖∆‖ is of the same order of magnitude as the simplex side length.

Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74 73

Based on the comparison of the Moré–Garbow–Hillstrom test suite results and the performance for higher-
dimensional functions (Fig. 1) we conclude that the proposed SANM performs better than SDNM and GRNM.

4. Conclusion

We presented an algorithmic framework for unconstrained derivative-free optimization based on successive
approximation. The framework relies on the grid restrainment and search space partitioning to ensure that a
subsequence of iterates exists that converges to a local minimizer of a continuously differentiable function. The search
space is divided into partitions that must satisfy some mild assumptions. Every partition has a representative point.
The representative points form a grid which can be non-uniform in shape. If the partitions are bound in size from
above and below the grid has a finite intersection with any compact set.

We defined a grid-restrainment operator that maps every point of a partition to the respective representative point.
The norm of the difference between the original and the mapped point (grid-restrainment error) has an upper bound
not greater than the partition diameter. The partitioning and the grid are used to construct a piecewise-constant
approximation to function f .

The finiteness of the number of partitions that have a non-empty intersection with a given compact set guarantees
that the search always reaches a point where no further progress can be made if the grid and the partitioning are not
refined. We prove that a subsequence of points at which the refinement must happen, converges to some stationary
point of f .

We defined a convergent variant of the Nelder–Mead (NM) algorithm within the proposed framework (SANM). In
place of function f the algorithm utilizes its piecewise-constant approximation corresponding to the current grid and
partitioning. This makes it possible to omit the grid restrainment of simplex vertices and simplifies the algorithm
compared to the grid-restrained NM algorithm (GRNM) [4] since the determinant of the simplex sides can be
calculated in a very straightforward manner. It also reduces the number of linear algebra operations compared to
GRNM. We showed that GRNM conforms to the presented framework.

The proposed algorithm was tested on the Moré–Garbow–Hillstrom (MGH) set of test problems and on some
multi-dimensional test problems. The results were compared to the results of the GRNM algorithm and the sufficient
descent NM algorithm (SDNM) [19,5]. The proposed algorithm outperformed GRNM and SDNM.

We attribute the performance advantage of SANM over GRNM to the fact that SANM does not apply grid
restrainment to simplex vertices. Grid restrainment can significantly change the direction of the longest simplex side
which in general points in a descent direction. The effect of grid restrainment is most pronounced when the simplex
side length is comparable to the grid-restrainment error.

The proposed framework is a powerful tool for defining new provably convergent optimization algorithms. Within
its scope it is possible to easily upgrade the existing well-established heuristics that lack a convergence theory (like
the Nelder–Mead algorithm) into new algorithms that can guarantee convergence to a local minimizer.

References

[1] C. Audet, J.E. Dennis Jr., Analysis of generalized pattern searches, SIAM J. Optim. 11 (2003) 859–869.
[2] C. Audet, J.E. Dennis Jr., Mesh adaptive direct search algorithms for constrained optimization, SIAM J. Optim. 17 (2006) 188–217.
[3] J.M. Borwein, A.S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, 2000.
[4] Á. Bűrmen, J. Puhan, T. Tuma, Grid restrained Nelder–Mead algorithm, Comput. Optim. Appl. 34 (2006) 359–375.
[5] D. Byatt, A convergent variant of the Nelder-Mead algorithm, Master’s Thesis, Mathematics and Statistics Department, University of

Canterbury, Christchurch, NZ, 2000.
[6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[7] I.D. Coope, C.J. Price, Frame based methods for unconstrained optimization, J. Optim. Theory Appl. 107 (2000) 261–274.
[8] I.D. Coope, C.J. Price, On the convergence of grid-based methods for unconstrained optimization, SIAM J. Optim. 11 (2001) 859–869.
[9] C.J. Price, I.D. Coope, Frames and grids in unconstrained and linearly constrained optimization: A nonsmooth approach, SIAM J. Optim. 14

(2003) 415–438.
[10] C. Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954) 733–746.
[11] R. Hooke, T.A. Jeeves, Direct search solution of numerical and statistical problems, J. ACM 8 (1961) 212–229.
[12] T.G. Kolda, R.M. Lewis, V. Torczon, Optimization by direct search: New perspectives on some classical and modern methods, SIAM Rev. 45

(2003) 385–482.
[13] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM

J. Optim. 9 (1998) 112–147.

74 Á. Bűrmen, T. Tuma / Journal of Computational and Applied Mathematics 223 (2009) 62–74

[14] R.M. Lewis, V.J. Torczon, Rank ordering and positive bases in pattern search algorithms, Tech. Report 96-71, ICASE NASA Langley Research
Center, Hampton, VA, USA, 1996.

[15] R.M. Lewis, V.J. Torczon, M.W. Trosset, Direct search methods: Then and now, J. Comput. Appl. Math. 124 (2000) 191–207.
[16] K.I.M. McKinnon, Convergence of the Nelder-Mead simplex method to a non-stationary point, SIAM J. Optim. 9 (1998) 148–158.
[17] J.J. Moré, B.S. Garbow, K.E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software 7 (1981) 17–41.
[18] J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–313.
[19] C.J. Price, I.D. Coope, D. Byatt, A convergent variant of the Nelder-Mead algorithm, J. Optim. Theory Appl. 113 (2002) 5–19.
[20] V.J. Torczon, Multi-directional search: A direct search algorithm for parallel machines, Ph.D. Thesis, Department of Mathematical Sciences,

Rice University, Houston, TX, USA, 1989.
[21] V.J. Torczon, On the convergence of pattern search methods, SIAM J. Optim. 7 (1997) 1–25.
[22] M.H. Wright, Direct search methods: Once scorned, now respectable, in: Griffiths D.F. (Ed.), Numerical Analysis, 1995, Addison Wesley

Longman, Edinburgh Gate, Harlow, 1996, pp. 191–208.

	Unconstrained derivative-free optimization by successive approximation
	Introduction
	Background
	The successive approximation simplex algorithm
	The algorithm
	The GRNM simplex algorithm in the proposed framework
	Results of numerical testing

	Conclusion
	References

