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a b s t r a c t

In this paper, several existence theorems of positive solutions are established for a
nonlinear m-point boundary value problem for the following third-order differential
equations

(φ(u′′))′ + a(t)f (t, u(t)) = 0, t ∈ (0, 1),

φ(u′′(0)) =
m−2∑
i=1

aiφ(u′′(ξi)), u′(0) = 0, u(1) =
m−2∑
i=1

biu(ξi),

where φ : R −→ R is an increasing homeomorphism and homomorphism and φ(0) = 0.
The nonlinear term f may change sign. As an application, an example to demonstrate our
results is given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the existence of positive solutions of the following third-order differential equations:

(φ(u′′))′ + a(t)f (t, u(t)) = 0, t ∈ (0, 1), (1.1)

φ(u′′(0)) =
m−2∑
i=1

aiφ(u′′(ξi)), u′(0) = 0, u(1) =
m−2∑
i=1

biu(ξi), (1.2)

where φ : R −→ R is an increasing homeomorphism and homomorphism and φ(0) = 0.
A projection φ : R −→ R is called an increasing homeomorphism and homomorphism, if the following conditions are

satisfied:

(i) if x ≤ y, then φ(x) ≤ φ(y), ∀x, y ∈ R;
(ii) φ is a continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y), ∀x, y ∈ R.

We will assume that the following conditions are satisfied throughout this paper:

(H1) 0 < ξ1 < · · · < ξm−2 < 1, ai, bi ∈ [0,+∞) satisfy 0 <
∑m−2
i=1 ai < 1, and

∑m−2
i=1 bi < 1,

∑m−2
i=1 bi ≥

∑m−2
i=1 biξi;
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(H2) a(t) ∈ C([0, 1], [0,+∞)) and there exists t0 ∈ (0, 1), such that a(t0) > 0;
(H3) f ∈ C([0, 1] × [0,+∞), (−∞,+∞)), f (t, 0) ≥ 0.

Recently, much attention has been paid to the existence of positive solutions for second-order nonlinear boundary value
problems, see [13–15,17] and references therein. On the one hand, higher-order nonlinear boundary value problems have
been studied extensively, for details, see [2,9,16,20] and references therein. On the other hand, the boundary value problems
with the p-Laplacian operator have also been discussed extensively in the literature, for example, see [1,3,6,11,12,18,19].
However, to the best of our knowledge, there are not many results concerning the third-order differential equations of
increasing homeomorphism and homomorphism.
In [2], Anderson considered the following third-order nonlinear problem:

x′′′(t) = f (t, x(t)), t1 ≤ t ≤ t3, (1.3)

x(t1) = x′(t2) = 0, γ x(t3)+ δx′′(t3) = 0. (1.4)

He used the Krasnoselskii and Leggett andWilliams fixed-point theorems to prove the existence of solutions to the nonlinear
problem (1.3) and (1.4).
In [7], Baofang Liu and Jihui Zhang studied the existence of positive solutions of differential equation of the form

(φ(x′))′ + q(t)f (x(t)) = 0, t ∈ (0, 1), (1.5)

x(0)− βx′(0) = 0, x(1)+ δx′(1) = 0, (1.6)

where φ : R −→ R is an increasing homeomorphism and positive homomorphism and φ(0) = 0. They prove the existence
of one or two positive solutions by using a fixed-point index theorem in cones.
In [9], Shuhong Li considered the existence of single andmultiple positive solutions to the nonlinear singular third-order

two-point boundary value problem:

u′′′(t)+ λa(t)f (u(t)) = 0, 0 < t < 1, (1.7)

u(0) = u′(0) = u′′(1) = 0. (1.8)

Under various assumptions on a and f , they established intervals of the parameter λ which yield the existence of at least
two, and infinitely many positive solutions of the boundary value problem by using the Krasnoselskii fixed-point theorem
of cone expansion–compression type.
In [10], Zeqing Liu discussed the existence of at least one or two nondecreasing positive solutions for the following

singular nonlinear third-order differential equation:

x′′′(t)+ λα(t)f (t, x(t)) = 0, a < t < b, (1.9)

x(a) = x′′(a) = x′(b) = 0. (1.10)

Green’s function and the fixed-point theorem of cone expansion and compression type are utilized in his paper.
In [16], Sun considered the following nonlinear singular third-order three-point boundary value problem:

u′′′(t)− λa(t)F(t, u(t)) = 0, 0 < t < 1, (1.11)

u(0) = u′(η) = u′′(1) = 0. (1.12)

He obtained various results on the existence of single and multiple positive solutions to the boundary value problem (1.11)
and (1.12) by using a fixed-point theorem of cone expansion–compression type due to Krasnoselskii.
In [20], Zhou and Ma studied the existence and iteration of positive solutions for the following third-order generalized

right-focal boundary value problem with the p-Laplacian operator:

(φp(u′′))′(t) = q(t)f (t, u(t)), 0 ≤ t ≤ 1, (1.13)

u(0) =
m∑
i=1

αiu(ξi), u′(η) = 0, u′′(1) =
n∑
i=1

βiu′′(θi). (1.14)

They established a corresponding iterative scheme for (1.13) and (1.14) by using the monotone iterative technique.
Agarwal [1] considered the following singular boundary value problem

(φp(y′))′ + q(t)f (t, y(t)) = 0, t ∈ (0, 1), (1.15)

y(0) = y(1) = 0, (1.16)

by means of the upper and lower solution method, where the nonlinearity f is allowed to change sign.
In [11], the authors studied the singular boundary value problem

−(φp(y′))′ = q(t)f (t, y(t)), t ∈ (0, 1), (1.17)

y(0) = y(1) = 0, ψ(y(1))+ y′(1) = 0, (1.18)

where the nonlinearity f is allowed to change sign and ψ may be nonlinear.



290 Y. Sang, H. Su / Journal of Computational and Applied Mathematics 225 (2009) 288–300

In [4], by proving a new fixed-point theorem in cones, Ge and Ren obtained the existence of positive solutions to the
nonlinear boundary value problem

(φp(y′))′ + q(t)f (t, y(t)) = 0, t ∈ (0, 1), (1.19)

y(0)− B0(y′(0)) = 0, y(1)+ B1(y′(1)) = 0, (1.20)

with sign-changing nonlinearity.
In [6], Ji, Feng and Ge have considered the existence of multiple positive solutions for the following BVP:

(φp(u′))′ + a(t)f (t, u(t)) = 0, t ∈ (0, 1), (1.21)

u(0) =
m∑
i=1

aiu(ξi), u(1) =
m∑
i=1

biu(ξi), (1.22)

where 0 < ξ1 < · · · < ξm < 1, ai, bi ∈ [0,+∞) satisfy 0 <
∑m−2
i=1 ai,

∑m−2
i=1 bi < 1. The nonlinearity f is allowed to change

sign. Using a fixed-point theorem for operators on a cone, they provided sufficient conditions for the existence of (1.21) and
(1.22)
In this paper, on the one hand, our work concentrates on the case when the nonlinear termmay change sign. Wewill use

the property of the solutions of the BVP (1.1) and (1.2) to overcome the difficulty. On the other hand, we will establish the
key conditions in Theorems 3.1 and 3.2 by using a new inequality. At the end of the paper, we will give an example which
illustrates that our work is true. The method is motivated by [6].
The rest of the paper is arranged as follows. We state some lemmas and prove several preliminary results in Section 2,

Section 3 is devoted to the existence of positive solution of (1.1) and (1.2), the main tool being the fixed-point theorem in
cone.

2. Preliminaries and some lemmas

To prove the main results in this paper, we will employ several lemmas. These lemmas are based on the linear BVP

(φ(u′′))′ + h(t) = 0, t ∈ (0, 1), (2.1)

φ(u′′(0)) =
m−2∑
i=1

aiφ(u′′(ξi)), u′(0) = 0, u(1) =
m−2∑
i=1

biu(ξi). (2.2)

Lemma 2.1. If
∑m−2
i=1 ai 6= 1 and

∑m−2
i=1 bi 6= 1, then for h ∈ C[0, 1] the BVP (2.1) and (2.2) has the unique solution

u(t) =
∫ t

0
(t − s)φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ C, (2.3)

where

A = −

m−2∑
i=1
ai
∫ ξi
0 h(τ )dτ

1−
m−2∑
i=1
ai

,

C =

m−2∑
i=1
bi
∫ ξi
0 (ξi − s)φ

−1
(
−
∫ s
0 h(τ )dτ + A

)
ds−

∫ 1
0 (1− s)φ

−1
(
−
∫ s
0 h(τ )dτ + A

)
ds

1−
m−2∑
i=1
bi

.

Proof. Necessity. By taking the integral of the problem (2.1) on [0, t], we have

φ(u′′(t)) = −
∫ t

0
h(τ )dτ + A, (2.4)

then

u′′(t) = φ−1
(
−

∫ t

0
h(τ )dτ + A

)
. (2.5)
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By taking the integral of the (2.5) on [0, t], we can get

u′(t) =
∫ t

0
φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ B. (2.6)

By taking the integral of the (2.6) on [0, t], we can get

u(t) =
∫ t

0
(t − s)φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ Bt + C . (2.7)

Similarly, letting t = 0 on (2.4), we have φ(u′′(0)) = A, letting t = ξi on (2.4), we have

φ(u′′(ξi)) = −
∫ ξi

0
h(τ )dτ + A.

Letting t = 0 on (2.6), we have

u′(0) = B.

Letting t = 1 on (2.7), we have

u(1) =
∫ 1

0
(1− s)φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ B+ C .

Similarly, letting t = ξi on (2.7), we have

u(ξi) =
∫ ξi

0
(ξi − s)φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ Bξi + C .

By the boundary condition (2.2), we can get

B = 0, (2.8)

A =
m−2∑
i=1

ai

(
−

∫ ξi

0
h(τ )dτ + A

)
. (2.9)

Solving Eq. (2.9), we get

A = −

m−2∑
i=1
ai
∫ ξi
0 h(τ )dτ

1−
m−2∑
i=1
ai

. (2.10)

By the boundary condition (2.2), we can obtain∫ 1

0
(1− s)φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ C =

m−2∑
i=1

bi

[∫ ξi

0
(ξi − s)φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds+ C

]
.

Substituting (2.10) in the above expression, one has

C =

m−2∑
i=1
bi
∫ ξi
0 (ξi − s)φ

−1
(
−
∫ s
0 h(τ )dτ + A

)
ds−

∫ 1
0 (1− s)φ

−1
(
−
∫ s
0 h(τ )dτ + A

)
ds

1−
m−2∑
i=1
bi

.

Sufficiency. Let u be as in (2.3). Taking the derivative of (2.3), we have

u′(t) =
∫ t

0
φ−1

(
−

∫ s

0
h(τ )dτ + A

)
ds,

moreover, we get

u′′(t) = φ−1
(
−

∫ t

0
h(τ )dτ + A

)
,
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and

φ(u′′) = −
(∫ t

0
h(τ )dτ − A

)
,

taking the derivative of this expression yields (φ(u′′))′ = −h(t). Routine calculation verifies that u satisfies the boundary
value conditions in (2.2), so that u given in (2.3) is a solution of (2.1) and (2.2).
It is easy to see that BVP (φ(u′′))′ = 0, φ(u′′(0)) =

∑m−2
i=1 aiφ(u

′′(ξi)), u′(0) = 0, u(1) =
∑m−2
i=1 biu(ξi) has only

the trivial solution if
∑m−2
i=1 ai 6= 1,

∑m−2
i=1 bi 6= 1. Thus u in (2.3) is the unique solution of (2.1) and (2.2). The proof is

complete. �

Lemma 2.2. Assume (H1) holds, For h ∈ C[0, 1] and h ≥ 0, then the unique solution u of (2.1) and (2.2) satisfies

u(t) ≥ 0, for t ∈ [0, 1].

Proof. Let

ϕ0(s) = φ−1
(
−

∫ s

0
h(τ )dτ + A

)
.

Since

−

∫ s

0
h(τ )dτ + A = −

∫ s

0
h(τ )dτ −

m−2∑
i=1
ai
∫ ξi
0 h(τ )dτ

1−
m−2∑
i=1
ai

≤ 0,

then ϕ0(s) ≤ 0.
According to Lemma 2.1, we get

u(0) = C

=

m−2∑
i=1
bi
∫ ξi
0 (ξi − s)ϕ0(s)ds−

∫ 1
0 (1− s)ϕ0(s)ds

1−
m−2∑
i=1
bi

≥

m−2∑
i=1
bi
∫ ξi
0 (1− s)ϕ0(s)ds−

∫ 1
0 (1− s)ϕ0(s)ds

1−
m−2∑
i=1
bi

=

m−2∑
i=1
bi
(∫ 1
0 (1− s)ϕ0(s)ds−

∫ 1
ξi
(1− s)ϕ0(s)ds

)
−
∫ 1
0 (1− s)ϕ0(s)ds

1−
m−2∑
i=1
bi

= −

m−2∑
i=1
bi
∫ 1
ξi
(1− s)ϕ0(s)ds

1−
m−2∑
i=1
bi

−

∫ 1

0
(1− s)ϕ0(s)ds

≥ 0

and

u(1) =
∫ 1

0
(1− s)ϕ0(s)ds+ C

=

∫ 1

0
(1− s)ϕ0(s)ds+

−
∫ 1
0 (1− s)ϕ0(s)ds+

m−2∑
i=1
bi
∫ ξi
0 (ξi − s)ϕ0(s)ds

1−
m−2∑
i=1
bi
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≥

∫ 1

0
(1− s)ϕ0(s)ds+

−
∫ 1
0 (1− s)ϕ0(s)ds+

m−2∑
i=1
bi
∫ ξi
0 (1− s)ϕ0(s)ds

1−
m−2∑
i=1
bi

=

−

m−2∑
i=1
bi
∫ 1
ξi
(1− s)ϕ0(s)ds

1−
m−2∑
i=1
bi

≥ 0.

If t ∈ (0, 1), we have

u(t) =
∫ t

0
(t − s)ϕ0(s)ds+

1

1−
m−2∑
i=1
bi

[
−

∫ 1

0
(1− s)ϕ0(s)ds+

m−2∑
i=1

bi

∫ ξi

0
(ξi − s)ϕ0(s)ds

]

≥

∫ 1

0
(1− s)ϕ0(s)ds+

1

1−
m−2∑
i=1
bi

[
−

∫ 1

0
(1− s)ϕ0(s)ds+

m−2∑
i=1

bi

∫ ξi

0
(1− s)ϕ0(s)ds

]

=
1

1−
m−2∑
i=1
bi

[(
1−

m−2∑
i=1

bi

)∫ 1

0
(1− s)ϕ0(s)ds−

∫ 1

0
(1− s)ϕ0(s)ds+

m−2∑
i=1

bi

∫ ξi

0
(1− s)ϕ0(s)ds

]

=
−1

1−
m−2∑
i=1
bi

m−2∑
i=1

bi

∫ 1

ξi

(1− s)ϕ0(s)ds ≥ 0.

So u(t) ≥ 0, t ∈ [0, 1]. �

By the method of [18], we can prove the following lemma, here, we omit it.

Lemma 2.3. Assume (H1) holds, if h ∈ C[0, 1] and h ≥ 0, then the unique solution u of (2.1) and (2.2) satisfies

inf
t∈[0,1]

u(t) ≥ γ ‖u‖,

where

γ =

m−2∑
i=1
bi(1− ξi)

1−
m−2∑
i=1
biξi

, ‖u‖ = max
t∈[0,1]

|u(t)|.

Denote

ρ1 > 0, ϕ(t) = min{t, 1− t}, t ∈ (0, 1).

Lemma 2.4 (See [5]). Let K be a cone in a Banach space X. Let D be an open bounded subset of X with DK = D ∩ K 6= φ and
DK 6= K. Assume that A : DK −→ K is a completely continuous map such that x 6= Ax for x ∈ ∂DK . Then the following results
hold:

(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂DK , then i(A,DK , K) = 1;
(2) If there exists x0 ∈ K \ {θ} such that x 6= Ax+ λx0, for all x ∈ ∂DK and all λ > 0, then i(A,DK , K) = 0;
(3) Let U be open in X such that U ⊂ DK . If i(A,DK , K) = 1 and i(A,UK , K) = 0, then A has a fixed point in DK \ UK . The same
result holds if i(A,DK , K) = 0 and i(A,UK , K) = 1.

Let the norm on C[0, 1] be the maximum norm. Then the C[0, 1] is a Banach space. Denote

K = {u|u ∈ C[0, 1], u(t) ≥ 0, inf
t∈[0,1]

u(t) ≥ γ ‖u‖},

where γ is the same as in Lemma 2.3. It is obvious that K is a cone in C[0, 1].
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We define

Kρ = {u(t) ∈ K : ‖u‖ < ρ}, K ∗ρ = {u(t) ∈ K : ρϕ < u(t) < ρ},

Ωρ = {u(t) ∈ K : min
0≤t≤1

u(t) < γρ}.

Lemma 2.5 (See [8]).Ωρ defined above has the following properties:

(a) Kγ ρ ⊂ Ωρ ⊂ Kρ;
(b) Ωρ is open relative to K;
(c) x ∈ ∂Ωρ if and only if min0≤t≤1 x(t) = γ ρ;
(d) If x ∈ ∂Ωρ , then γ ρ ≤ x(t) ≤ ρ for t ∈ [0, 1].

Now, for convenience, we introduce the following notations. Let

f ργρ = min
{
min
0≤t≤1

f (t, u)
φ(ρ)

: u ∈ [γ ρ, ρ]
}
,

f ρ0 = max
{
max
0≤t≤1

f (t, u)
φ(ρ)

: u ∈ [0, ρ]
}
,

f ρϕ(t)ρ = max
{
max
0≤t≤1

f (t, u)
φ(ρ)

: u ∈ [ϕ(t)ρ, ρ]
}
,

f α = lim
u→α
sup max

0≤t≤1

f (t, u)
φ(u)

, fα = lim
u→α
inf min

0≤t≤1

f (t, u)
φ(u)

, (α := ∞ or 0+),

m1 =


1

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)φ−1


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds

−1

, (2.11)

M =


m−2∑
i=1
bi −

m−2∑
i=1
biξi

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)φ−1


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds

−1

. (2.12)

3. Existence theorems of positive solutions

Theorem 3.1. Assume (H1)–(H3) hold, and assume that one of the following conditions holds:
(H4) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < γρ2 such that

(1) f (t, u) > 0, t ∈ [0, 1], u ∈ [ρ1ϕ(t),+∞),
(2) f ρ1ϕ(t)ρ1 ≤ φ(m1), f ρ2γ ρ2 ≥ φ(Mγ );

(H5) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

(3) f (t, u) > 0, t ∈ [0, 1], u ∈ [min{γ ρ1, ρ2ϕ(t)},+∞),
(4) f ρ1γ ρ1 ≥ φ(Mγ ), f ρ2ϕ(t)ρ2 ≤ φ(m1).

Then problem (1.1) and (1.2) has a positive solution.

Proof. Assume that (H4) holds.

f ∗(t, u) =
{
f (t, u), u ≥ ρ1ϕ(t),
f (t, ρ1ϕ(t)), 0 ≤ u < ρ1ϕ(t).

It is easy to check that f ∗(t, u) ∈ C([0, 1] × [0,+∞), (0,+∞)).
Now, we consider the modified problem (3.1) and (3.2)

(φ(u′′))′ + a(t)f ∗(t, u(t)) = 0, t ∈ (0, 1), (3.1)

φ(u′′(0)) =
m−2∑
i=1

aiφ(u′′(ξi)), u′(0) = 0, u(1) =
m−2∑
i=1

biu(ξi). (3.2)
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It is easy to see that the BVP (3.1) and (3.2) has a solution u = u(t) if and only if u is a fixed point of the operator equation

(Au)(t) =
∫ t

0
(t − s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã

)
ds+ C̃,

where

Ã = −

m−2∑
i=1
ai
∫ ξi
0 a(τ )f

∗(τ , u(τ ))dτ

1−
m−2∑
i=1
ai

,

C̃ =
1

1−
m−2∑
i=1
bi

[
m−2∑
i=1

bi

∫ ξi

0
(ξi − s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã

)
ds

−

∫ 1

0
(1− s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã

)
ds

]
.

By Lemma 2.3, A(K) ⊂ K . Then A : K → K is completely continuous.
In fact, first, we can show that Amaps a bounded set into a bounded set.
Assume c > 0 is a constant and u ∈ Kc = {x ∈ K : ‖u‖ ≤ c}. Note that the continuity of f ∗ guarantees that there is a

c1 > 0 such that f ∗(t, u(t)) ≤ φ(c1) for t ∈ [0, 1]. So

‖Au‖ = max
t∈[0,1]

Au(t) ≤ C̃

≤

−
∫ 1
0 (1− s)φ

−1
(
−
∫ s
0 a(τ )f

∗(τ , u(τ ))dτ + Ã
)
ds

1−
m−2∑
i=1
bi

≤

−c1
∫ 1
0 (1− s)φ

−1

− ∫ s0 a(τ )dτ −
m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds
1−

m−2∑
i=1
bi

.

That is, AKc is uniformly bounded.
In addition, notice that: for any t1, t2 ∈ [0, 1], we have

|Au(t1)− Au(t2)| =
∣∣∣∣∫ t1

0
(t1 − t2)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã

)
ds

+

∫ t2

t1
(−t2 + s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã

)
ds
∣∣∣∣

≤ −c1 |t1 − t2|


∫ 1

0
φ−1

−
∫ s

0
a(τ )dτ −

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds

+ max
s∈[0,1]

φ−1


∫ s

0
−a(τ )dτ −

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai


 .

So, by applying the Arzela–Ascoli theorem, we can obtain that A(K) is relatively compact.
Finally, we prove that A : Kc → K is continuous. Suppose that {un}∞n=1 ⊂ Kc and un(t) converges to u

∗(t) uniformly
on [0, 1]. Hence, {Aun(t)}∞n=1 is uniformly bounded and equicontinuous on [0, 1]. The Arzela–Ascoli Theorem tells us that
there exists a uniformly convergent subsequence in {Aun(t)}∞n=1. Let {Aun(m)(t)}

∞

m=1 be a subsequence which converges to
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v(t) uniformly on [0, 1]. In addition,

0 ≤ Aun(t) ≤

−c1
∫ 1
0 (1− s)φ

−1

− ∫ s0 a(τ )dτ −
m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds
1−

m−2∑
i=1
bi

.

Observe the expression of {Aun(m)(t)}, and then lettingm→∞,we obtain

v(t) =
∫ t

0
(t − s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u∗(τ ))dτ + Ã∗

)
ds+ C̃∗,

where

Ã∗ = −

m−2∑
i=1
ai
∫ ξi
0 a(τ )f

∗(τ , u∗(τ ))dτ

1−
m−2∑
i=1
ai

,

C̃∗ =
1

1−
m−2∑
i=1
bi

[
m−2∑
i=1

bi

∫ ξi

0
(ξi − s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u∗(τ ))dτ + Ã∗

)
ds

−

∫ 1

0
(1− s)φ−1

(
−

∫ s

0
a(τ )f ∗(τ , u∗(τ ))dτ + Ã∗

)
ds

]

here we have used Lebesgue’s dominated convergence theorem. From the definition of A, we know that v(t) = Au∗(t) on
[0, 1]. This shows that each subsequence of {Aun(t)}∞n=1 uniformly converges to Au

∗(t). Therefore, the sequence {Aun(t)}∞n=1
uniformly converges to Au∗(t). This means that A is continuous at u∗ ∈ Kc . So, A is continuous on Kc since u∗ is arbitrary.
Thus, A is completely continuous.
From the condition (H4)(2), we have f ∗

ρ1
ϕ(t)ρ1

≤ φ(m1), f ∗ρ2γ ρ2 ≥ φ(Mγ ).
Firstly, we show that

i(A, K ∗ρ1 , K) = 1.

In fact, by (2.11), f ∗ρ1ϕ(t)ρ1 ≤ φ(m1) and u 6= Au, for u ∈ ∂K
∗
ρ1
,we have for ∀u ∈ ∂K ∗ρ1 ,

−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã = −

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ −

m−2∑
i=1
ai
∫ ξi
0 a(τ )f

∗(τ , u(τ ))dτ

1−
m−2∑
i=1
ai

≥ −φ(ρ1)φ(m1)


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ,
so that

ϕ(s) = φ−1
(
−

∫ s

0
a(τ )f ∗(τ , u(τ ))dτ + Ã

)

≥ −ρ1m1φ−1


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 .
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Therefore, we have

‖Au‖ ≤ C̃ =
1

1−
m−2∑
i=1
bi

(
−

∫ 1

0
(1− s)ϕ(s)ds+

m−2∑
i=1

bi

∫ ξi

0
(ξi − s)ϕ(s)ds

)

≤
−1

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)ϕ(s)ds

≤ ρ1m1
1

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)φ−1


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds
= ρ1 = ‖u‖.

This implies that ‖Au‖ ≤ ‖u‖ for u ∈ ∂K ∗ρ1 . By Lemma 2.4(1), we have i(A, K
∗
ρ1
, K) = 1.

Secondly, we show that i(A,Ωρ2 , K) = 0.
Let e(t) ≡ 1, for t ∈ [0, 1]; then e ∈ ∂K1. We claim that u 6= Au+ λe for u ∈ ∂Ωρ2 , and λ > 0. In fact, if not, there exist

u0 ∈ ∂Ωρ2 and λ0 > 0 such that u0 = Au0 + λ0e.
By (2.12), f ∗ρ2γ ρ2 ≥ φ(Mγ ) and u 6= Au for u ∈ ∂Ωρ2 , we have for t ∈ [0, 1],

−

∫ s

0
a(τ )f ∗(τ , u0(τ ))dτ + Ã |u=u0 = −

∫ s

0
a(τ )f ∗(τ , u0(τ ))dτ −

m−2∑
i=1
ai
∫ ξi
0 a(τ )f

∗(τ , u0(τ ))dτ

1−
m−2∑
i=1
ai

≤ −φ(ρ2)φ(Mγ )


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ,
so that

ϕ̃(s) = φ−1
(
−

∫ s

0
a(τ )f ∗(τ , u0(τ ))dτ + Ã |u=u0

)

≤ −ρ2Mγφ−1


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 .
For ξi (i = 1, . . . ,m− 2), then∫ ξi

0
(ξi − s)ϕ̃(s)ds ≥ ξi

∫ 1

0
(1− s)ϕ̃(s)ds.

In fact, since

−

∫ s

0
a(τ )f ∗(τ , u0(τ ))dτ + Ã |u=u0 = −

∫ s

0
a(τ )f ∗(τ , u0(τ ))dτ −

m−2∑
i=1
ai
∫ ξi
0 a(τ )f

∗(τ , u0(τ ))dτ

1−
m−2∑
i=1
ai

≤ 0,

then ϕ̃(s) ≤ 0. For ∀ t ∈ (0, 1], we have(∫ t
0 (t − s)ϕ̃(s)ds

t

)′
=
t
∫ t
0 ϕ̃(s)ds−

∫ t
0 (t − s)ϕ̃(s)ds
t2

≤ 0.
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For ∀ t ∈ (0, 1],∫ t
0 (t − s)ϕ̃(s)ds

t
≥

∫ 1
0 (1− s)ϕ̃(s)ds

1
. (3.3)

By (3.3), for ξi (i = 1, . . . ,m− 2), we have∫ ξi

0
(ξi − s)ϕ̃(s)ds ≥

ξi

1

∫ 1

0
(1− s)ϕ̃(s)ds. (3.4)

Applying (3.4), it follows that

u0(t) = Au0(t)+ λ0e(t)

≥

∫ 1

0
(1− s)ϕ̃(s)ds+

1

1−
m−2∑
i=1
bi

(
−

∫ 1

0
(1− s)ϕ̃(s)ds+

m−2∑
i=1

bi

∫ ξi

0
(ξi − s)ϕ̃(s)ds

)
+ λ0

=

−

m−2∑
i=1
bi

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)ϕ̃(s)ds+

m−2∑
i=1
bi
∫ ξi
0 (ξi − s)ϕ̃(s)ds

1−
m−2∑
i=1
bi

+ λ0

≥

−

m−2∑
i=1
bi

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)ϕ̃(s)ds+

m−2∑
i=1
biξi

T (1−
m−2∑
i=1
bi)

∫ 1

0
(1− s)ϕ̃(s)ds+ λ0

=

−

m−2∑
i=1
bi +

m−2∑
i=1
biξi

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)ϕ̃(s)ds+ λ0

≥ γ ρ2M

m−2∑
i=1
bi −

m−2∑
i=1
biξi

1−
m−2∑
i=1
bi

∫ 1

0
(1− s)φ−1


∫ s

0
a(τ )dτ +

m−2∑
i=1
ai
∫ ξi
0 a(τ )dτ

1−
m−2∑
i=1
ai

 ds+ λ0
= γ ρ2 + λ0.

This implies that γ ρ2 ≥ γ ρ2 + λ0, a contradiction. Hence, by Lemma 2.4(2), it follows that

i(A,Ωρ2 , K) = 0.

By Lemma 2.5(a) and ρ1 < γρ2, we have Kρ1 ⊂ Kγ ρ2 ⊂ Ωρ2 . It follows from Lemma 2.4(3) that A has a fixed point u1
in Ωρ2 \ K ∗ρ1 , we note that f

∗(t, u) = f (t, u) if u ≥ ρ1ϕ(t). Thus, we can get that problem (1.1) and (1.2) has a positive
solution. The proof is similar when (H5) holds, and we omit it here. The proof is complete. �

Theorem 3.2. Assume (H1)–(H3) hold, and suppose that one of the following conditions holds:

(H6) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < γρ2 and ρ2 < ρ3 such that

(1) f (t, u) > 0, t ∈ [0, 1], u ∈ [ρ1ϕ(t),+∞),
(2) f ρ1ϕ(t)ρ1 ≤ φ(m1), f ρ2γ ρ2 ≥ φ(Mγ ), u 6= Au, ∀ u ∈ ∂Ωρ2 , f ρ3ϕ(t)ρ3 ≤ φ(m1);

(H7) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < ρ2 < γρ3 such that

(3) f (t, u) > 0, t ∈ [0, 1], u ∈ [min{γ ρ1, ρ2ϕ(t)},+∞),
(4) f ρ1γ ρ1 ≥ φ(Mγ ), f ρ2ϕ(t)ρ2 ≤ φ(m1), u 6= Au, ∀ u ∈ ∂Ωρ2 , f ρ3γ ρ3 ≥ φ(Mγ ).

Then problem (1.1) and (1.2) has two positive solutions.

Corollary 3.3. Assume (H1)–(H3) holds, if there exist ρ ′, ρ ∈ (0,+∞), with ρ ′ < γρ such that one of the following conditions
holds:
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(H8)

(1) f (t, u) > 0, t ∈ [0, 1], u ∈ [ρ ′ϕ(t),+∞),

(2) f ρ
′

ϕ(t)ρ′ ≤ φ(m1), f ργρ ≥ φ(Mγ ), u 6= Au, ∀u ∈ ∂Ωρ, 0 ≤ f∞ < φ(m);

(H9) There exist ρ ′, ρ ∈ (0,+∞) with ρ ′ < ρ such that

(3) f (t, u) > 0, t ∈ [0, 1], u ∈ [min{γ ρ ′, ρϕ(t)},+∞),

(4) f ρ
′

γ ρ′
≥ φ(Mγ ), f ρϕ(t)ρ ≤ φ(m1), u 6= Au, ∀u ∈ ∂Ωρ, φ(M) < f∞ ≤ ∞.

Then problem (1.1) and (1.2) has two positive solutions.

4. Example

In the section, we present a simple example to explain our results.
Let f (t, 0) ≡ 0. Consider the following BVP

(φ(u′′))′ + f (t, u(t)) = 0, t ∈ (0, 1), (4.1)

φ(u′′(0)) =
1
4
φ

(
u′′
(
1
3

))
, u′(0) = 0, u(1) =

1
2
u
(
1
3

)
, (4.2)

where

φ(u) =
{
−u2, u ≤ 0,
u2, u > 0,

f (t, u) =


1
5
(1+ t)

(
u(t)−

ϕ(t)
2

)31
, (t, u) ∈ [0, 1] × (0, 2],

1
5
(1+ t)

(
2−

ϕ(t)
2

)31
, (t, u) ∈ [0, 1] × (2,+∞).

It is easy to check that f : [0, 1] × [0,+∞) −→ (−∞,+∞) is continuous. In this case, a(t) ≡ 1, a1 = 1
4 , b1 =

1
2 , ξ1 =

1
3 ,

it follows from a direct calculation that

m1 =
[
1

1− b1

∫ 1

0
(1− s)φ−1

(
s+

a1ξ1
1− a1

)
ds
]−1

=

 1
1− 1

2

∫ 1

0
(1− s)

(
s+

1
4 ·

1
3

1− 1
4

) 1
2

ds

−1
≈ 1.5565,

γ =
b1(1− ξ1)
1− b1ξ1

=

1
2 (1−

1
3 )

1− 1
2 ·

1
3

=
2
5
.

M =
[
b1 − b1ξ1
1− b1

∫ 1

0
(1− s)φ−1

(
s+

a1ξ1
1− a1

)
ds
]−1

=

 1
2 −

1
2 ·

1
3

1− 1
2

∫ 1

0
(1− s)

(
s+

1
4 ·

1
3

1− 1
4

) 1
2

ds

−1
≈ 4.6694.

Choose ρ1 = 1, ρ2 = 5, it is easy to check that 1 = ρ1 < γρ2 =
2
5 × 5 = 2, f (t, u) > 0, t ∈ [0, 1], u ∈ [ϕ(t),+∞),

f ρ1ρ1ϕ(t) = max

{
max
0≤t≤1

1
5 (1+ t)(u(t)−

ϕ(t)
2 )

31

12

}

=

1
5 (1+ 1)1

31

12
=
2
5

≤ φ(m1) = m21 = (1.5565)
2,
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f ρ2γ ρ2 = min

{
min
0≤t≤1

1
5 (1+ t)(2−

ϕ(t)
2 )

31

52

}

=

1
5 (1+ 0)(2−

1
2 )
31

52
=
331

23153
≈ 16.7420

≥ φ(Mγ ) = (Mγ )2 =
(
4.6694 ·

2
5

)2
≈ 3.4885.

It follows that f satisfies the conditions (H4) of Theorem 3.1, then problem (1.1) and (1.2) has at least a positive solution.
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