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a b s t r a c t

Amodified conjugate gradientmethod is presented for solving unconstrained optimization
problems, which possesses the following properties: (i) The sufficient descent property
is satisfied without any line search; (ii) The search direction will be in a trust
region automatically; (iii) The Zoutendijk condition holds for the Wolfe–Powell line
search technique; (iv) This method inherits an important property of the well-known
Polak–Ribière–Polyak (PRP) method: the tendency to turn towards the steepest descent
direction if a small step is generated away from the solution, preventing a sequence of tiny
steps fromhappening. The global convergence and the linearly convergent rate of the given
method are established. Numerical results show that this method is interesting.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The line search method often takes the following iterative formula

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (1.1)

for the unconstrained optimization problem

min
x∈Rn

f (x), (1.2)

where f : Rn → R is continuously differentiable, xk is the current iterate point, dk is a search direction, αk > 0 is a
steplength along dk.
It is well known that there are many methods for solving optimization problems (see [1–9] etc), where the conjugate

gradient method is a powerful line search method because of its simplicity and its very low memory requirement. This
method can avoid, like steepest descent method, the computation and storage of somematrices associated with the Hessian
of objective functions. The search direction dk of the conjugate gradient method has the form

dk =
{
−gk + βkdk−1, if k ≥ 1
−gk, if k = 0, (1.3)
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where βk ∈ R is a scalar which determines the different conjugate gradient methods, and gk is the gradient of f (x) at the
point xk. These methods in [10–15] are equivalent (see [16,17] etc) in the linear case, namely, when f is a strictly convex
quadratic function and αk is calculated by the following exact minimization rule: the step size αk is chosen such that

f (xk + αkdk) = min
α≥0
f (xk + αdk). (1.4)

At present, one of the most efficient formula for βk is the following PRP method

βPRPk =
gTk+1(gk+1 − gk)
‖gk‖2

, (1.5)

where gk and gk+1 are the gradients ∇f (xk) and ∇f (xk+1) of f (x) at the point xk and xk+1, respectively, and ‖.‖ denotes
the Euclidian norm of vectors. Throughout this paper, we also denote f (xk) by fk. Polak and Ribière [15] proved that the
PRP conjugate gradient method with the exact line search is globally convergent when the objective function is convex.
However, Powell [18] gave a counter example to show that there exist nonconvex functions on which the PRP method does
not converge globally even the exact line search is used. He suggested that βk should not be less than zero if we want to get
the global convergence of the PRP method. Considering this suggestion, Gilbert and Nocedal [19] proved that the modified
PRP method β+k = max{0, β

PRP
k } is globally convergent under the sufficiently descent condition.

From the literature, one hopes to find the steplength αk using the following weak Wolfe–Powell (WWP) line search

f (xk + αkdk) ≤ fk + δαkgTk dk (1.6)

and

g(xk + αkdk)Tdk ≥ σgTk dk, (1.7)

where δ ∈ (0, 1/2), σ ∈ (δ, 1). However, the global convergence of the PRP conjugate gradient method is still open with
the above WWP conditions. Some formulas which possess the global convergence property (such as βDYk [10]) with the
WWP did not perform better than the performances of the PRP method in numerical computation. Based βDYk and used the
WWP conditions, Dai and Yuan [20] proposed an efficient conjugate gradient method. Over the past few years, much effort
has been put to find out new formulas for conjugate methods such that they have not only global convergence for general
functions but also good numerical performances (see [16,19]). Thus, any new conjugate gradient method should at least
satisfy one of the following conditions [2]:
(i) The method with the WWP line search rule (or other line search rules) has some strongly convergent properties,

at least, the method with the formula and the WWP line search rule (or other line search rules) may generate a descent
direction at each iteration, and converges globally.
(ii) The average performances on the numerical computation of the formulawithWWP line search rule (or others) should

not be much inferior to the ones of the PRP.
In this paper, we design a new CG formula to satisfy the conditions above.
The following sufficiently descent condition

gTk dk ≤ −c‖gk‖
2, ∀ k ≥ 0 and some constant c > 0 (1.8)

is often used to analyze the global convergence of the nonlinear conjugate gradient method with the inexact line search
techniques. For instance, Toouati-Ahmed and Storey [21], Al-Baali [22], Gilbert and Nocedal [19], Hu and Storey [23], and
Gilbert and Nocedal [19] hinted that the sufficient descent condition may be crucial for conjugate gradient methods. In
order to ensure the sufficiently descent condition and establish the convergence of the PRP method, Grippo and Lucidi [24]
presented a new line search rule. There are somemodified conjugate gradientmethodswhich satisfied the sufficient descent
conditions (see [25–29] etc). But for some methods which have been studied in the optimization area, such as the steepest
descent method and the Newtonmethod, the descent properties or the sufficient descent properties are independent of line
searches. Is there any nonlinear conjugate gradient formula which possesses the sufficient descent property (1.8) without
any line search? In this paper, we propose a method to answer this question positively. Furthermore, the search direction
of the presented method will be in a trust region automatically and the scalar βk ≥ 0 is true.
In Section 2, the proposed algorithm is stated. The properties and the convergent results of the newmethod are given in

Section 3. Numerical results and one conclusion are presented in Section 4 and in Section 5, respectively.

2. Algorithm

Motivated by the observation of Section 1, we describe a new nonlinear conjugate gradient algorithm as follows and call
it Algorithm 1.

Algorithm 1. Step 0: Choose an initial point x0 ∈ Rn, ε ∈ (0, 1), 0 < δ < 1
2 , δ < σ < 1, c0 ∈ (1, 2), µ1 ∈ (

2c0
c0−1

,

+∞), µ2 ∈ (1,+∞). Set d0 = −g0 = −∇f (x0), k := 0.
Step 1: If ‖gk‖ ≤ ε, then stop; Otherwise go to the next step.
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Step 2: Compute step size αk by line search rule (1.6) and (1.7), let xk+1 = xk + αkdk.
Step 3: If ‖gk+1‖ ≤ ε, then stop; Otherwise calculate the scalar βPRPk by (1.5).

Step 4: If |βPRPk | ≤
‖gk+1‖

µ2max{‖gk‖,‖dk‖}
, let βk = βPRPk and go to Step 6, otherwise go to Step 5.

Step 5: Define a new scalar by

βnewk =

gTk+1
(
gk+1 −

‖gk+1‖
‖gk‖

gk
)

µ1max{‖gk‖‖gk+1‖, |sTkyk|}
, (2.1)

where sk = xk+1 − xk, yk = gk+1 − gk. Let βk = βnewk .

Step 6: Let dk+1 = −gk+1 + βkdk, go to Step 7.
Step 7: Set k := k+ 1, and go to Step 2.

Remark. (i) We define the following two index sets by

IPRP =
{
k||βPRPk | ≤

‖gk+1‖
µ2max{‖gk‖, ‖dk‖}

}
, Inew =

{
k||βPRPk | >

‖gk+1‖
µ2max{‖gk‖, ‖dk‖}

}
.

(ii) If xk+1 ≈ xk for k, k + 1 ∈ Inew, we have ‖gk+1‖ ≈ ‖gk‖ implying that βnewk → 0 from (2.1), which means that
βk → 0 if a small step is generated for all k ≥ 0. Thus the given method inherits the better property of the PRP method: the
directions will turn out to be the steepest descent directions if the tiny steps from happening.

(iii) From Step 4 in Algorithm 1, βk = βnewk =
gTk+1(gk+1−

‖gk+1‖
‖gk‖

gk)

µ1max{‖gk‖‖gk+1‖,|sTk yk|}
when k 6∈ IPRP holds, by the exact minimization rule

(1.4), it is not difficult to deduce that the conjugacy condition dTk+1∇
2f (xk)dk = 0 holds. Otherwise, βk = βPRPk at the kth

iteration. Overall, this method cannot reduce to the linear conjugate gradient method, then we can only say that it is some
kind of memory gradient method.

3. Properties and convergence analysis

This section will report some better properties and convergence of the new algorithm. In the following, we assume that
gk 6= 0 for all k, for otherwise a stationary point has been found.
It has been showed that the PRP method with the strong Wolfe–Powell (SWP) line search rules does not ensure the

condition (1.8) at each iteration. The following lemma shows that the search direction dk will satisfy condition (1.8) and be
in a trust region without carrying out any line search technique.

Lemma 3.1. Let the sequence {αk, dk, xk+1, gk+1} be generated by Algorithm 1, then there exist constants c > 0 and c1 > 0 such
that (1.8) and

‖dk‖ ≤ c1‖gk‖ (3.1)

for all k ≥ 0.

Proof. If k = 0, this result is obtained obviously. If k ≥ 1, we discuss the problem divided into the following two cases.
Case 1. If k ∈ IPRP , then we have

|βk| = |β
PRP
k | ≤

‖gk+1‖
µ2max{‖gk‖, ‖dk‖}

≤
‖gk+1‖
µ2‖dk‖

, µ2 ∈ (1,+∞).

This together with Step 6 of Algorithm 1, we get

dTk+1gk+1 = −‖gk+1‖
2
+ βkdTkgk+1 ≤ −‖gk+1‖

2
+ |βk|‖dk‖‖gk+1‖ ≤ −

(
1−

1
µ2

)
‖gk+1‖2

and

‖dk+1‖ ≤ ‖gk+1‖ + |βk|‖dk‖ ≤ ‖gk+1‖ +
‖gk+1‖
µ2‖dk‖

‖dk‖ =
(
1+

1
µ2

)
‖gk+1‖.

Case 2. If k ∈ Inew, by Step 5 of Algorithm 1, we get

|βk| = |β
new
k | ≤

‖gk+1‖(‖gk+1‖ +
‖gk+1‖
‖gk‖
‖gk‖)

µ1max{‖gk‖‖gk+1‖, |sTkyk|}
≤
‖gk+1‖
µ1‖gk‖

, µ1 ∈

(
2c0
c0 − 1

,+∞

)
, c0 ∈ (1, 2).
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In this case, we can show that ‖dk‖ ≤ c0‖gk‖ holds for all k ∈ Inew. Now we let ‖dk‖ ≤ c0‖gk‖, and prove that ‖dk+1‖
≤ c0‖gk+1‖ is true too. Consider Step 6 of Algorithm 1, we obtain

‖dk+1‖ ≤ ‖gk+1‖ + |βk|‖dk‖ ≤
(
1+

c0
µ1

)
‖gk+1‖

≤

(
1+

c0(c0 − 1)
2c0

)
‖gk+1‖ =

(c0 + 1)
2
‖gk‖

≤
(c0 + c0)
2
‖gk‖ = c0‖gk+1‖.

Combining this with Step 6 of Algorithm 1, we have

dTk+1gk+1 = −‖gk+1‖
2
+ βkdTkgk+1

≤ −‖gk+1‖2 +
‖gk+1‖
µ1‖gk‖

‖dk‖‖gk+1‖

≤ −‖gk+1‖2 +
‖gk+1‖
µ1‖gk‖

c0‖gk‖‖gk+1‖

= −

(
1−

c0
µ1

)
‖gk+1‖2.

Let c = min{1− 1
µ2
, 1− c0

µ1
} and c1 = max{c0, 1+ 1

µ2
}, then (1.8) and (3.1) hold for all k ≥ 0. The proof is complete. �

(3.1) shows that dk is in a trust region. Then the new method has both the advantage of simple structure of conjugate
gradient method and the advantage of strong convergence of trust region methods in some sense.
In fact, we can obtain that βk ≥ 0 for all k ∈ Inew

βk = β
new
k =

gTk+1(gk+1 −
‖gk+1‖
‖gk‖

gk)

µ1max{‖gk‖‖gk+1‖, |sTkyk|}
≥

‖gk+1‖2 −
‖gk+1‖2

‖gk‖
‖gk‖

µ1max{‖gk‖‖gk+1‖, |sTkyk|}
= 0.

The following assumptions are often needed to prove the global convergence of the conjugate gradient methods.

Assumption 3.1. (i) The function f (x) has a lower bound onRn.
(ii) In an open convex setΩ0 that contains the level setΩ = {x ∈ Rn | f (x) ≤ f (x0)}, where x0 is given, f is differentiable

and its gradient is Lipschitz continuous, namely, there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω0. (3.2)

Theorem 3.1. Let {αk, dk, xk+1, gk+1} be generated by Algorithm 1 with the Wolfe–Powell line search rules (1.6) and (1.7), and
f satisfies Assumption 3.1. Then the following Zoutendijk [30] condition

∞∑
k=0

(gTk dk)
2

‖dk‖2
< +∞ (3.3)

holds. Moreover we have

lim
k→∞
‖gk‖ = 0. (3.4)

Proof. By Assumption 3.1(ii) and (1.7), we have

− (1− σ)gTk dk ≤ (gk+1 − gk)
Tdk ≤ ‖gk+1 − gk‖‖dk‖ ≤ αkL‖dk‖2. (3.5)

By Assumption 3.1(i) and dTkgk < 0, we can obtain that {fk} is a decreasing sequence and has a lower bound, thus {fk} is a
convergent sequence. Using (1.6) and (3.5), we have

∞∑
k=0

(gTk dk)
2

‖dk‖2
< +∞.

Moreover, by Lemma 3.1, we get (3.4). The proof of this theorem is complete. �

Lemma 3.2. Assume that f is twice continuously differentiable and uniformly convex onRn, then Assumption 3.1 holds, f (x) has
a unique minimal point x∗, and there exist constants 0 < m ≤ M such that
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m‖y‖2 ≤ yT∇2f (x)y ≤ M‖y‖2, ∀ x, y ∈ Rn, (3.6)
m
2
‖x− x∗‖2 ≤ f (x)− f (x∗) ≤

M
2
‖x− x∗‖2, ∀ x ∈ Rn (3.7)

and

m‖x− x∗‖ ≤ ‖g(x)‖ ≤ M‖x− x∗‖, ∀ x ∈ Rn. (3.8)

Proof. Omitted. For the proof, see (e.g., [31,32], etc.). �

Theorem 3.2. Let f be twice continuously differentiable and uniformly convex on Rn. Then the sequence {xk} generated by
Algorithm 1 converges to x∗ at least linearly.

Proof. By Lemma 3.1, there exists a constant ρ0 = c
c1
∈ (0, 1) satisfying

−
gTk dk
‖dk‖‖gk‖

≥ ρ0. (3.9)

Using Lemma 3.1, (3.9), (1.6), (1.7), (3.7) and (3.8), there exists a constant ρ1 = δ(1−σ)
L such that

fk − fk+1 ≥ ρ1

(
−gTk dk
‖dk‖

)2
= ρ1

(
−gTk dk
‖dk‖‖gk‖

)2
‖gk‖2

≥ ρ1ρ
2
0‖gk‖

2
≥ ρ1ρ

2
0m
2
‖xk − x∗‖2

≥
2ρ1ρ20m

2

M
(fk − f (x∗)). (3.10)

It follows from (3.2) thatm ≤ L. Then we have

η =
2ρ1ρ20m

2

M
=
2δ(1− σ)ρ20m

2

LM
≤
(1− σ)ρ20m

M
≤ (1− σ)ρ20 < 1.

Which combining with (3.10), we get

fk − f (x∗) ≤ (1− η)(fk−1 − f (x∗)) ≤ (1− η)2(fk−2 − f (x∗)) ≤ · · · ≤ (
√
1− η)2k(f0 − f (x∗)),

therefore, by (3.7), set η1 =
√
1− η and η2 =

√
2(f0−f (x∗))

m , it follows that

‖xk − x∗‖2 ≤
2
m
(fk − f (x∗)) ≤

2(f0 − f (x∗))
m

(
√
1− η)2k = η2k1 η

2
2,

thus we obtain

‖xk − x∗‖ ≤ η2ηk1,

this means that {xk} converges to x∗ at least linearly. �

4. Numerical results

This section reports some numerical experiments with Algorithm 1, the FR conjugate gradient method and the PRP
conjugate gradient method. We test these algorithms on some problems [33] taken from MATLAB with given initial points
and Benchmark Problems, respectively. The parameters common to these methods were set identically, c0 = 1.9, µ1 =
40c0
1−c0

, ε = 10−5, µ2 = 1
1−ε , δ = 0.1, σ = 0.9.

The following Himmeblau stop rule is used:
If |f (xk)| > e1, let stop1 =

|f (xk)−f (xk+1)|
|f (xk)|

; Otherwise, let stop1 = |f (xk)− f (xk+1)|.
If ‖g(x)‖ < ε or stop1 < e2 was satisfied, we will stop the program, where e1 = e2 = 10−5. We also stop the program if

the iteration number is more than one thousand.
The columns of Table 1 have the following meaning:
Problem: the name of the test problem [33];
Dim: the dimension of the problem; NG: the number of the gradient evaluations;
NF: the number of the function evaluations; NI: the total number of iterations;
Dolan andMoré [34] gave a new tool to analyze the efficiency of Algorithms. They introduced the notion of a performance

profile as a means to evaluate and compare the performance of the set of solvers S on a test set P . Assuming that there exist
ns solvers and np problems, for each problem p and solver s, they defined
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Table 1
The line search is used by Wolfe–Powell rule. Test results for Algorithm 1/FR/PRR.

Problems Dim Algorithm 1 FR PRP
NI/NF/NG NI/NF/NG NI/NF/NG

ROSE 2 23/157/68 59/188/115 38/164/88
FROTH 2 22/55/34 14/36/24 3/4/3
BADSCP 2 4/21/5 3/6/4 4/21/5
BADSCB 2 13/32/21 3/19/6 3/19/6
BEALE 2 17/36/21 19/43/26 5/10/7
JENSAM 2 3/6/4 3/19/4 3/6/4
HELIX 3 63/154/72 509/1221/675 61/156/73
BARD 3 32/62/33 70/145/76 45/93/48
GAUSS 3 2/3/2 2/3/2 2/3/2
MEYER 3 4/35/5 3/11/3 8/61/10
GULF 3 2/2/2 2/2/2 2/2/2
BOX 3 2/17/3 2/17/3 2/17/3
SING 4 73/155/85 66/157/93 41/105/66
WOOD 4 23/60/38 17/70/28 20/63/39
KOWOSB 4 82/149/87 97/207/108 40/76/41
BD 4 19/53/36 27/77/52 17/47/32
OSB1 5 2/17/3 2/17/3 2/17/3
OSB2 11 3/19/4 3/19/4 3/19/4
WATSON 2 11/25/16 11/24/15 11/25/16
ROSEX 10 28/198/80 120/387/236 28/138/68
SINGX 16 45/104/61 97/233/138 68/156/91

80 104/219/120 87/218/133 83/204/123

PEN1 2 10/21/12 8/19/11 10/21/12
100 25/79/44 37/92/57 32/91/54

PEN2 50 7/30/13 23/66/43 7/30/13
200 2/2/2 2/2/2 2/2/2

VARDIM 50 3/18/5 3/18/5 3/18/5
200 3/18/5 3/18/5 3/18/5

TRIG 50 30/63/32 67/174/106 30/104/41
200 14/31/16 39/111/71 15/33/17

BV 50 2/3/2 2/3/2 2/3/2
200 2/3/2 2/3/2 2/3/2

IE 50 5/9/5 5/9/5 5/9/5
200 6/10/6 6/10/6 8/15/9

TRID 10 14/31/19 22/50/30 16/39/22
800 21/46/27 162/361/201 21/46/27

BAND 100 13/30/19 14/32/20 12/42/19
500 16/60/42 13/31/20 12/29/19
800 12/29/19 13/31/20 13/33/21

LIN 100 2/3/3 2/3/3 2/3/3
800 2/3/3 2/3/3 2/3/3

LIN1 100 4/6/4 4/6/4 4/6/4
500 3/5/4 3/5/4 3/6/5
1000 3/5/4 3/5/4 3/9/4

LIN0 100 4/20/6 3/4/3 4/20/6
500 3/5/4 3/5/4 3/19/15
800 3/5/4 3/5/4 3/6/5

tp,s = computing time (the number of function evaluations or others) required to solve problem p by solver s.
Requiring a baseline for comparisons, they compared the performance onproblem pby solver swith the best performance

by any solver on this problem; that is, using the performance ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
.

Suppose that a parameter rM ≥ rp,s for all p, s is chosen, and rp,s = rM if and only if solver s does not solve problem p.
The performance of solver s on any given problemmight be of interest, but wewould like to obtain an overall assessment

of the performance of the solver, then they defined

ρs(t) =
1
np
size{p ∈ P : rp,s ≤ t},
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Fig. 1. Performance profiles (NF) of conjugate gradient methods with WWP.

Fig. 2. Performance profiles (NG) of conjugate gradient methods with WWP.

thus ρs(t) was the probability for solver s ∈ S that a performance ratio rp,s was within a factor t ∈ R of the best possible
ration. Then function ρs was the (cumulative) distribution function for the performance ratio. The performance profile
ρs : R 7→ [0, 1] for a solver was a nondecreasing, piecewise constant function, continuous from the right at each breakpoint.
The value of ρs(1)was the probability that the solver would win over the rest of the solvers.
According to the above rules, we know that one solver whose performance profile plot is on top right will win over the

rest of the solvers.
Figs. 1 and 2 show that the performance of these methods is relative to NF and NG of Table 1, respectively.
Fig. 1 shows that the new method is better than PRP method for t < 1.5, and these two methods can solve about 96% of

the test problems successfully. Fig. 2 shows that the PRP method is superior to the modified algorithm and the FR method,
and the MPRP method is better than the FR method. From these two figures, it is clear that the FR method has the most fails
(has the lowest probability of being the optimal solver).

Benchmark Problems: 1. Sphere function.

fSph(x) =
n∑
i=1

x2i , xi ∈ [−5.12, 5.12]

x∗ = (0, 0, . . . , 0), fSph(x∗) = 0.
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Table 2
Test results for FR method.

Sphere x0 NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄)
(−5,−5, . . . ,−5) (−3,−3, . . . ,−3) (−1,−1, . . . ,−1) (2, 2, . . . , 2) (4, 4, . . . , 4)

Dim 10 2/6/7.888609e−030 3/7/7.888609e−030 3/7/1.109336e−030 3/7/4.930381e−031 2/6/1.972152e−030
100 2/6/6.389773e−027 2/6/1.546167e−026 2/6/7.888609e−029 2/6/1.597443e−027 2/6/1.135960e−026
300 2/6/6.399240e−025 2/6/6.058452e−026 2/6/3.328007e−027 2/6/5.916457e−027 2/6/1.599810e−025

Sphere x0 (−5, 0,−5, 0, . . .) (−3, 0,−3, 0, . . .) (−1, 0,−1, 0, . . .) (2, 0, 2, 0, . . . ) (4, 0, 4, 0, . . . )

Dim 10 2/6/6.310887e−029 3/7/0.000000e+000 3/7/0.000000e+000 3/7/9.860761e−031 3/7/8.874685e−030
100 2/6/3.944305e−027 2/6/9.860761e−028 3/7/6.162976e−031 2/6/2.465190e−028 2/6/1.577722e−028
300 2/6/1.431783e−026 2/6/1.848893e−026 2/6/5.990412e−028 2/6/5.798128e−027 2/6/3.833864e−026

Schwefel’s x0 (−0.001, . . . ,−0.001) (−0.0002, . . . ,−0.0002) (0.0006, . . . , 0.0006) (0.0007, . . . , 0.0007) (0.0008, . . . , 0.0008)

Dim 10 3/8/3.539977e−007 3/8/1.415991e−008 3/8/1.274392e−007 3/8/1.734589e−007 3/8/2.265585e−007
50 5/14/2.297452e−006 4/11/3.471788e−007 5/14/8.270826e−007 5/14/1.125751e−006 5/14/1.470369e−006
100 7/20/2.554559e−006 5/14/7.557030e−007 6/17/2.317420e−006 6/17/3.154267e−006 7/20/1.634918e−006

Schwefel’s x0 (−0.001, 0, . . .) (−0.0002, 0, . . .) (0.0006, 0, . . .) (0.0007, 0, . . .) (0.0008, 0, . . .)

Dim 10 3/8/6.244149e−007 2/5/5.186065e−008 3/8/2.247894e−007 3/8/3.059633e−007 3/8/3.996256e−007
50 5/14/3.464888e−006 3/8/6.064742e−007 4/11/1.848353e−006 4/11/2.515814e−006 4/11/3.285961e−006
100 7/20/6.523845e−006 4/11/9.360044e−007 5/14/3.845945e−006 6/17/3.745873e−006 6/17/4.892569e−006

Rastrigin x0 (−5,−5, . . . ,−5) (−4,−4, . . . ,−4) (1, 1, . . . , 1) (2, 2, . . . , 2) (3, 3, . . . , 3)

Dim 10 4/13/2.487372e+002 4/13/1.591924e+002 7/26/2.545001e−007 4/13/3.979831e+001 4/13/8.954601e+001
100 3/9/2.487372e+003 3/9/1.591924e+003 3/9/9.949591e+001 3/9/3.979831e+002 3/9/8.954601e+002
300 3/9/7.462117e+003 3/9/4.775773e+003 3/8/2.984877e+002 3/8/1.193950e+003 3/9/2.686380e+003

Rastrigin x0 (−5, 0,−5, 0, . . .) (−4, 0,−4, 0, . . .) (1, 0, 1, 0, . . .) (2, 0, 2, 0, . . .) (3, 0, 3, 0, . . .)

Dim 10 3/9/1.243686e+002 3/9/7.959622e+001 3/9/4.974795e+000 3/9/1.989916e+001 3/9/4.477301e+001
100 4/12/1.243686e+003 4/12/7.959622e+002 4/12/4.974795e+001 4/12/1.989916e+002 4/12/4.477301e+002
300 3/9/3.731058e+003 3/9/2.387887e+003 3/9/1.492439e+002 3/9/5.969747e+002 3/9/1.343190e+003

Schwefel x0 (−500,−500, . . . ,−500) (−400,−400, . . . ,−400) (100, 100, . . . , 100) (400, 400, . . . , 400) (500, 500, . . . , 500)

Dim 10 3/8/-9.940703e+003 2/6/-4.174987e+003 2/19/3.101787e+003 3/38/-1.569312e+003 2/19/5.780458e+002
100 3/8/-9.771601e+004 2/6/-4.174488e+004 2/19/3.101787e+004 2/19/NaN 2/19/5.780458e+003
300 3/8/-2.919275e+005 2/6/-1.252317e+005 2/19/9.305360e+004 3/37/5.534365e+005 2/19/1.734137e+004

Schwefel x0 (−500, 0,−500, 0, . . .) (−400, 0,−400, 0, . . .) (100, 0, 100, 0, . . .) (400, 0, 400, 0, . . .) (500, 0, 500, 0, . . .)

Dim 10 1/2/5.995721e+003 1/2/5.380480e+002 1/2/3.645808e+003 1/2/7.841610e+003 1/2/2.383937e+003
100 1/2/5.995721e+004 1/2/5.380480e+003 1/2/3.645808e+004 1/2/7.841610e+004 1/2/2.383937e+004
300 1/2/1.798716e+005 1/2/1.614144e+004 1/2/1.093742e+005 1/2/2.352483e+005 1/2/7.151812e+004

Griewank x0 (−50,−50, . . . ,−50) (−10,−10, . . . ,−10) (1, 1, . . . , 1) (20, 20, . . . , 20) (30, 30, . . . , 30)

Dim 10 2/19/7.250909e+000 2/19/1.264953e+000 7/78/1.117345e+000 588/1956/9.801891e−006 3/9/2.543092e−006
100 9/56/4.439395e−003 13/38/6.939268e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
300 36/108/7.106439e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000

Griewank x0 (−50, 0,−50, 0, . . .) (−10, 0,−10, 0, . . .) (1, 0, 1, 0, . . .) (20, 0, 20, 0, . . .) (30, 0, 30, 0, . . .)

Dim 10 2/19/4.553192e+000 4/39/1.115204e+000 3/24/2.429039e−001 2/19/1.551065e+000 5/59/NaN
100 5/35/2.672586e−004 59/177/7.300285e−006 3/8/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
300 41/123/8.360227e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000

2. Schwefel’s function.

fSchDS(x) =
n∑
i=1

(
i∑
j=1

xj

)2
, xi ∈ [−65.536, 65.536]

x∗ = (0, 0, . . . , 0), fSchDS(x∗) = 0.
3. Rastrigin function.

fRas(x) = 10n+
n∑
i=1

(x2i − 10 cos(2πxi)), xi ∈ [−5.12, 5.12]

x∗ = (0, 0, . . . , 0), fRas(x∗) = 0.
4. Schwefel function.

fSch(x) = 418.9829n+
n∑
i=1

xi sin
√
|xi|, xi ∈ [−512.03, 511.97]

x∗ = (−420.9678,−420.9678, . . . ,−420.9678), fSch(x∗) = 0.
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Table 3
Test results for PRP method.

Sphere x0 NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄)
(−5,−5, . . . ,−5) (−3,−3, . . . ,−3) (−1,−1, . . . ,−1) (2, 2, . . . , 2) (4, 4, . . . , 4)

Dim 10 2/6/7.888609e−030 3/7/0.000000e+000 3/7/1.232595e−031 3/7/4.437343e−030 2/6/1.972152e−030
100 2/6/6.389773e−027 2/6/1.546167e−026 2/6/7.888609e−029 2/6/1.597443e−027 2/6/1.135960e−026
300 2/6/6.399240e−025 2/6/6.058452e−026 2/6/3.328007e−027 2/6/5.916457e−027 2/6/1.599810e−025

Sphere x0 (−5, 0,−5, 0, . . .) (−3, 0,−3, 0, . . .) (−1, 0,−1, 0, . . .) (2, 0, 2, 0, . . .) (4, 0, 4, 0, . . .)

Dim 10 2/6/6.310887e−029 3/7/9.860761e−031 3/7/6.162976e−032 3/7/0.000000e+000 3/7/9.860761e−031
100 2/6/3.944305e−027 2/6/9.860761e−028 3/7/2.218671e−029 2/6/2.465190e−028 2/6/1.577722e−028
300 2/6/1.431783e−026 2/6/1.848893e−026 2/6/5.990412e−028 2/6/5.798128e−027 2/6/3.833864e−026

Schwefel’s x0 (−0.001, . . . ,−0.001) (−0.0002, . . . ,−0.0002) (0.0006, . . . , 0.0006) (0.0007, . . . , 0.0007) (0.0008, . . . , 0.0008)

Dim 10 3/8/3.539977e−007 3/8/1.415991e−008 3/8/1.274392e−007 3/8/1.734589e−007 3/8/2.265585e−007
50 5/14/2.297452e−006 4/11/3.471788e−007 5/14/8.270826e−007 5/14/1.125751e−006 5/14/1.470369e−006
100 7/20/2.554559e−006 5/14/7.557030e−007 6/17/2.317420e−006 6/17/3.154267e−006 7/20/1.634918e−006

Schwefel’s x0 (−0.001, 0, . . .) (−0.0002, 0, . . .) (0.0006, 0, . . .) (0.0007, 0, . . .) (0.0008, 0, . . .)

Dim 10 3/8/6.244149e−007 2/5/5.186065e−008 3/8/2.247894e−007 3/8/3.059633e−007 3/8/3.996256e−007
50 5/14/3.464888e−006 3/8/6.064742e−007 4/11/1.848353e−006 4/11/2.515814e−006 4/11/3.285961e−006
100 7/20/6.523845e−006 4/11/9.360044e−007 5/14/3.845945e−006 6/17/3.745873e−006 6/17/4.892569e−006

Rastrigin x0 (−5,−5, . . . ,−5) (−4,−4, . . . ,−4) (1, 1, . . . , 1) (2, 2, . . . , 2) (3, 3, . . . , 3)

Dim 10 3/23/2.487372e+002 3/23/1.591924e+002 4/14/9.949591e+000 3/12/3.979831e+001 4/15/8.954601e+001
100 3/10/2.487372e+003 3/10/1.591924e+003 3/10/9.949591e+001 3/10/3.979831e+002 3/10/8.954601e+002
300 3/10/7.462117e+003 3/10/4.775773e+003 3/10/2.984877e+002 3/10/1.193949e+003 3/10/2.686380e+003

Rastrigin x0 (−5, 0,−5, 0, . . .) (−4, 0,−4, 0, . . .) (1, 0, 1, 0, . . .) (2, 0, 2, 0, . . .) (3, 0, 3, 0, . . .)

Dim 10 3/11/1.243686e+002 3/11/7.959622e+001 3/11/4.974795e+000 3/11/1.989916e+001 3/11/4.477301e+001
100 3/23/1.243686e+003 3/10/7.959622e+002 3/10/4.974795e+001 3/10/1.989916e+002 3/10/4.477301e+002
300 3/10/3.731058e+003 3/10/2.387887e+003 3/10/1.492439e+002 3/10/5.969747e+002 3/10/1.343190e+003

Schwefel x0 (−500,−500, . . . ,−500)(−400,−400, . . . ,−400)(100, 100, . . . , 100) (400, 400, . . . , 400) (500, 500, . . . , 500)

Dim 10 3/11/4.110923e+003 6/14/4.110923e+003 4/16/4.110923e+003 5/15/4.110923e+003 3/13/4.110923e+003
100 4/10/4.110923e+004 3/9/4.110929e+004 4/17/4.110923e+004 4/12/4.110923e+004 3/13/4.110923e+004
300 4/9/1.233278e+005 3/9/1.233279e+005 3/14/1.233284e+005 4/12/1.233277e+005 3/13/1.233277e+005

Schwefel x0 (−500, 0,−500, 0, . . .) (−400, 0,−400, 0, . . .) (100, 0, 100, 0, . . .) (400, 0, 400, 0, . . .) (500, 0, 500, 0, . . .)

Dim 10 1/2/4.150492e+003 1/2/4.153457e+003 1/2/4.198244e+003 1/2/4.226201e+003 1/2/4.229166e+003
100 1/2/4.150492e+004 1/2/4.153457e+004 1/2/4.198244e+004 1/2/4.226201e+004 1/2/4.229166e+004
300 1/2/1.245147e+005 1/2/1.246037e+005 1/2/1.259473e+005 1/2/1.267860e+005 1/2/1.268750e+005

Griewank x0 (−50,−50, . . . ,−50) (−10,−10, . . . ,−10) (1, 1, . . . , 1) (20, 20, . . . , 20) (30, 30, . . . , 30)

Dim 10 2/19/7.250909e+000 2/19/1.264953e+000 20/75/1.731886e−006 10/46/6.840017e−007 3/9/5.618497e−006
100 4/32/2.276173e−002 11/32/6.119425e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
300 29/82/6.726118e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000

Griewank x0 (−50, 0,−50, 0, . . .) (−10, 0,−10, 0, . . .) (1, 0, 1, 0, . . .) (20, 0, 20, 0, . . .) (30, 0, 30, 0, . . .)

Dim 10 2/19/4.553192e+000 5/40/1.095684e+000 3/24/2.429039e−001 2/19/1.551065e+000 6/44/1.010824e+000
100 4/14/1.509048e+000 24/66/4.158154e−006 3/8/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
300 25/81/2.857231e−005 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000

5. Griewank function.

fGri(x) = 1+
n∑
i=1

x2i
4000

−

n∏
i=1

cos
xi
i
, xi ∈ [−600, 600]

x∗ = (0, 0, . . . , 0), fGri(x∗) = 0.
The above Benchmark problems can be found at: http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-
html/node6.html.
The columns of Tables 2–4 have the following meaning:
x0 : the initial point;
Dim: the dimension of the problem;
NI: the total number of iterations;
NFG: the total number of NF and NG, where NFG = NF + NG.
f (x̄) : denotes the function value at the point x̄when the program is stopped.
Figs. 3 and 4 show that the performance of these methods is relative to NI and NFG of Tables 2–4, respectively.
Fig. 3 shows that these three methods can solve about 99% of the test problems successfully. Fig. 4 shows the new

algorithm and the PRP method outperforms FR method about 1% of the test problems.
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html/node6.html
html/node6.html
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Fig. 3. Performance profiles (NI) of these methods with WWP.

Fig. 4. Performance profiles(NFG) of these methods with WWP.

In summary, the presented numerical results reveal that Algorithm 1, compared with the FR and PRP line searchmethod,
has potential advantages for these problems.

5. Conclusions

In this paper, we give a modified conjugate gradient method with theWolfe–Powell rule for unconstrained optimization
problems. The direction dk has some better properties, especially the sufficient condition (1.8) and condition (3.1) can be
holdwithout any line search technique, andmany papers (see [19,35,36] etc) often obtain the two conditions by assumption
directly. The global convergence is established, moreover the linear convergence rate with the conjugate gradient method is
established for convex functions. The comparison of the numerical results shows that the proposed algorithm is competitive
to the other two normal algorithms.
For further research, we should study the convergence of the new algorithm under the other line search rules. Moreover,

the choice of the scalars (c0, µ1, and µ2) and more numerical experiments for large practical problems should be done in
the future.
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Table 4
The line search is used by Wolfe–Powell rule. Test results for Algorithm 1.

NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄) NI/NFG/f (x̄)
Sphere x0 (−5,−5, . . . ,−5) (−3,−3, . . . ,−3) (−1,−1, . . . ,−1) (2, 2, . . . , 2) (4, 4, . . . , 4)

Dim 10 2/6/7.888609e-030 3/7/0.000000e+000 3/7/1.232595e−031 3/7/4.437343e−030 2/6/1.972152e−030
100 2/6/6.389773e−027 2/6/1.546167e−026 2/6/7.888609e−029 2/6/1.597443e−027 2/6/1.135960e−026
300 2/6/6.399240e−025 2/6/6.058452e−026 2/6/3.328007e−027 2/6/5.916457e−027 2/6/1.599810e−025

Sphere x0 (−5, 0,−5, 0, . . .) (−3, 0,−3, 0, . . .) (−1, 0,−1, 0, . . .) (2, 0, 2, 0, . . .) (4, 0, 4, 0, . . .)

Dim 10 2/6/6.310887e−029 3/7/9.860761e−031 3/7/6.162976e−032 3/7/0.000000e+000 3/7/9.860761e−031
100 2/6/3.944305e−027 2/6/9.860761e−028 3/7/2.218671e−029 2/6/2.465190e−028 2/6/1.577722e−028
300 2/6/1.431783e−026 2/6/1.848893e−026 2/6/5.990412e−028 2/6/5.798128e−027 2/6/3.833864e−026

Schwefel’s x0 (−0.001, . . . ,−0.001) (−0.0002, . . . ,−0.0002) (0.0006, . . . , 0.0006) (0.0007, . . . , 0.0007) (0.0008, . . . , 0.0008)

Dim 10 3/8/3.539977e−007 3/8/1.415991e−008 3/8/1.274392e−007 3/8/1.734589e−007 3/8/2.265585e−007
50 5/14/2.297452e−006 4/11/3.471788e−007 5/14/8.270826e−007 5/14/1.125751e−006 5/14/1.470369e−006
100 7/20/2.554559e−006 5/14/7.557030e−007 6/17/2.317420e−006 6/17/3.154267e−006 7/20/1.634918e−006

Schwefel’s x0 (−0.001, 0, . . .) (−0.0002, 0, . . .) (0.0006, 0, . . .) (0.0007, 0, . . .) (0.0008, 0, . . .)

Dim 10 3/8/6.244149e−007 2/5/5.186065e−008 3/8/2.247894e−007 3/8/3.059633e−007 3/8/3.996256e−007
50 5/14/3.464888e−006 3/8/6.064742e−007 4/11/1.848353e−006 4/11/2.515814e−006 4/11/3.285961e−006
100 7/20/6.523845e−006 4/11/9.360044e−007 5/14/3.845945e−006 6/17/3.745873e−006 6/17/4.892569e−006

Rastrigin x0 (−5,−5, . . . ,−5) (−4,−4, . . . ,−4) (1, 1, . . . , 1) (2, 2, . . . , 2) (3, 3, . . . , 3)

Dim 10 4/13/2.487372e+002 4/13/1.591924e+002 5/16/9.949591e+000 4/13/3.979831e+001 4/13/8.954601e+001
100 3/9/2.487372e+003 3/9/1.591924e+003 3/9/9.949591e+001 3/9/3.979831e+002 3/9/8.954601e+002
300 3/9/7.462117e+003 3/9/4.775773e+003 3/8/2.984877e+002 3/8/1.193950e+003 3/9/2.686380e+003

Rastrigin x0 (−5, 0,−5, 0, . . .) (−4, 0,−4, 0, . . .) (1, 0, 1, 0, . . .) (2, 0, 2, 0, . . .) (3, 0, 3, 0, . . .)

Dim 10 3/9/1.243686e+002 3/9/7.959622e+001 3/9/4.974795e+000 3/9/1.989916e+001 3/9/4.477301e+001
100 4/12/1.243686e+003 4/12/7.959622e+002 4/12/4.974795e+001 4/12/1.989916e+002 4/12/4.477301e+002
300 3/9/3.731058e+003 3/9/2.387887e+003 3/9/1.492439e+002 3/9/5.969747e+002 3/9/1.343190e+003

Schwefel x0 (−500,−500, . . . ,−500) (−400,−400, . . . ,−400)(100, 100, . . . , 100) (400, 400, . . . , 400) (500, 500, . . . , 500)

Dim 10 3/9/-1.006819e+004 2/6/-4.174987e+003 2/19/3.101787e+003 4/38/4.708237e+003 2/19/5.780458e+002
100 3/9/-1.006641e+005 2/6/-4.174488e+004 2/19/3.101787e+004 2/19/NaN 2/19/5.780458e+003
300 3/9/-3.019841e+005 2/6/-1.252317e+005 2/19/9.305360e+004 4/39/5.048414e+005 2/19/1.734137e+004

Schwefel x0 (−500, 0,−500, 0, . . .) (−400, 0,−400, 0, . . .) (100, 0, 100, 0, . . .) (400, 0, 400, 0, . . .) (500, 0, 500, 0, . . .)

Dim 10 1/2/5.995721e+003 1/2/5.380480e+002 1/2/3.645808e+003 1/2/7.841610e+003 1/2/2.383937e+003
100 1/2/5.995721e+004 1/2/5.380480e+003 1/2/3.645808e+004 1/2/7.841610e+004 1/2/2.383937e+004
300 1/2/1.798716e+005 1/2/1.614144e+004 1/2/1.093742e+005 1/2/2.352483e+005 1/2/7.151812e+004

Griewank x0 (−50,−50, . . . ,−50) (−10,−10, . . . ,−10) (1, 1, . . . , 1) (20, 20, . . . , 20) (30, 30, . . . , 30)

Dim 10 2/19/7.250909e+000 2/19/1.264953e+000 20/60/8.438297e−007 13/54/1.115419e−006 3/9/5.618497e−006
100 4/32/2.276173e−002 15/45/7.810149e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
300 60/164/9.630521e−006 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000

Griewank x0 (−50, 0,−50, 0, . . .) (−10, 0,−10, 0, . . .) (1, 0, 1, 0, . . .) (20, 0, 20, 0, . . .) (30, 0, 30, 0, . . .)

Dim 10 2/19/4.553192e+000 4/25/9.540580e−001 5/44/1.103014e+000 2/19/1.551065e+000 10/29/1.549244e−006
100 4/15/1.432188e−014 29/77/7.390224e−006 3/8/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
300 51/133/5.541341e−007 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000 2/6/0.000000e+000
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