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a b s t r a c t

In this paper, we present a general construction framework of parameterizations of masks
for tight wavelet frames with two symmetric/antisymmetric generators which are of
arbitrary lengths and centers. Based on this idea, we establish the explicit formulas of
masks of tight wavelet frames. Additionally, we explore the transform applicability of
tight wavelet frames in image compression and denoising. We bring forward an optimal
model ofmasks of tight wavelet frames aiming at image compressionwithmore efficiency,
which can be obtained through SQP (Sequential Quadratic Programming) and aGA (Genetic
Algorithm). Meanwhile, we present a new model called Cross-Local Contextual Hidden
Markov Model (CLCHMM), which can effectively characterize the intrascale and cross-
orientation correlations of the coefficients in the wavelet frame domain, and do research
into the corresponding algorithm. Using the presented CLCHMM, we propose a new image
denoising algorithm which has better performance as proved by the experiments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The tight wavelet frames and orthonormal wavelets, which are developed in parallel, are the two main theories in
wavelet analysis. The tightwavelet frames are different from the orthonormalwavelets because of redundancy. By sacrificing
orthonormality and allowing redundancy, the tight wavelet frames become much easier to construct than the orthonormal
wavelets. The tight wavelet frames have the same computational complexity as orthonormal wavelets and can be applied
to image processing. Especially, due to the redundancy, the tight wavelet frames have many desirable properties and are of
interest in high-resolution image reconstruction [1], image inpainting [2] and image analysis and synthesis [3].

Here, we give a brief outline of recent researches on construction theories of tight wavelet frames. In [4], the authors
studied compactly supported tight frames Ψ = {ψ1, ψ2, . . . , ψr} for L2(R) that corresponded to some refinable functions
with compact support. They gave a precise existence criterion of Ψ in terms of an inequality condition on the Laurent
polynomial symbols of refinable functions, and they showed that this condition was not always satisfied (implying the
nonexistence of tight frames via thematrix extension approach). Also the authors gave a constructive proof that whenΨ did
exist, two functionswith compact supportwere sufficient to constituteΨ , while three guaranteed symmetry/antisymmetry,
when the given refinable function was symmetric. In [5], the authors studied tight wavelet frames associated with the given
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refinable functions which were obtained with the unitary extension principles. All possible solutions of the corresponding
matrix equations were found. It was proved that the problem of the extension might always be solved with two framelets.
In particular, if the symbols of refinable functions were polynomials (rational functions), the corresponding framelets
with polynomial (rational) symbols could be found. In [6], the author presented a systematic algorithm for constructing
symmetric/antisymmetric tight wavelet frames and orthonormal wavelet bases generated by a given refinable function
with an integer dilation factor d ≥ 2. Special attention was paid to the issues of the minimality of a number of framelet
generators and the size of the generator support. In [7], the authors used the UEP approach and provided the method of
constructing symmetric wavelet tight frames with two generators. In [8], the authors discussed wavelet frames constructed
viamultiresolution analysis (MRA), with emphasis on tight wavelet frames. In particular, they established general principles
and specific algorithms for constructing framelets and tight framelets, and they showed how the methods could be used
for the systematic construction of splines, pseudo-spline tight frames, and symmetric bi-frames with short supports and
high approximation orders. The connection of these frames with multiresolution analysis guaranteed the existence of fast
implementation algorithms, whichwere discussed briefly as well. In [9], the authors utilized the oblique extension principle
(OEP), and presented a necessary and sufficient condition for the construction of symmetric multiresolution analysis tight
wavelet frames with two compactly supported generators derived from a given symmetric refinable function. Once such a
necessary and sufficient condition was satisfied, an algorithm would be used to construct a symmetric framelet filter bank
with two high-pass filters which was of interest in applications such as signal denoising and image processing. In [10,11],
the authors studied the compactly supported tight affine frames with integer dilations and maximum vanishing moments.
Recently, other novel approaches to constructing compactly supported wavelet frames and dual frames withmore than two
frameletswere found in papers [12–24]. But those researches focused on theoretical analysis, provided very little transforms
of tight frames in practical applications.

It should be mentioned that constructing a wavelet frame satisfying too many properties could be very difficult. For
example, it is complicated to design UPE-based symmetric compactly supported tight wavelet frames with the minimal
number of frame generators and an arbitrary number of vanishing moments. The parameterization of FIR systems is of
fundamental importance to design of filters with the desired properties, which is one of the most attractive issues in
wavelet frame theory. The purpose of this paper is to realize the parameterizations of masks for tight wavelet frames. We
present a novel construction technique for tightwavelet frameswith two symmetric/antisymmetric generators,which are of
arbitrary length and centers. We particularly emphasize that the presentedmask expressions have as many free parameters
as possible.Motivated by these applications,we explore thepower redundancy ofwavelet frames. Thewavelet frames theory
is applied to image compression at a low bit-rate and image denoising. An optimal model of FIR filters (masks) aiming at
image compression is brought forward, and the optimal FIR filters can be got correspondingly through SQP and GA. As is
indicated by the experimental results, the efficiency is notable. We present an model, called CLCHMMwhich can effectively
characterize the intrascale and cross-orientation correlations of the coefficients in the wavelet frame domain and do some
research into the corresponding algorithm. Applying the presented CLCHMM,we propose a new image denoising algorithm.
We carry out a series of experiments to evaluate the suitability ofwavelet frames that are based on the constructedmasks for
the compression of still images and image denoising. The positive effect of redundancy in image compression and denoising
has been discovered in our research.

This paper is organized as follows. Section 2 concerns some basic concepts aboutwavelet frames. In Section 3, we present
a general construction framework of parameterizations of masks for tight wavelet frames with two generators, which are of
arbitrary lengths and centers, as well as several construction examples. In Section 4, we do some research into applications
of tight wavelet frames including image compression and denoising. And Section 5 is the conclusion.

2. Review on concepts concerning wavelet frames

Before we state our main results, we start by reviewing some major concepts concerning wavelet frames.
In the rest of this paper, we use N,N0 and Z to denote the sets of all natural numbers, nonnegative integers and integers,

respectively.
The definition of a frame is provided as below.

Definition 2.1. LetH be a Hilbert space with inner product ⟨., .⟩, and norm ‖.‖ = (⟨., .⟩)
1
2 . A system X ⊂ H is called a frame

of H if there are two positive constants A, B such that

A‖f ‖2
≤

−
x∈H

|⟨f , x⟩|2 ≤ B‖f ‖2, ∀f ∈ H. (2.1)

The constants A and B are called bounds of the frame. If A = B, then X is called a tight frame.

We are interested in the study of wavelet frames that are derived from a multiresolution analysis (MRA). Let φ ∈ L2{R}
be given and D be the operator of dyadic dilation: (Df )(y) = 2

1
2 f (2y) and Tt be the translation: (Tt f )(x) = f (x − t). Set

Vj = DjV0, j ∈ Z .
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Definition 2.2. φ ∈ L2(R) is said to generate an MRA {Vk, k ∈ Z}, if φ satisfies the following conditions,

(1) Vk ⊂ Vk+1, k ∈ Z;

(2)


Vk = L2(R),


Vk = {0};

(3) D(Vk) = Vk+1, k ∈ Z;

(4) T1(V0) = V0;

(5) Tkφ, k ∈ Z is an orthonormal basis of V0.

If condition (5) is replaced by Tkφ, k ∈ Z being a frame of V0, then we call MRA as FMRA.

In [25], some properties of FMRA are studied. The generator φ of an MRA is known as a scaling function or a refinable
function. Let Ψ = {ψ1, ψ2, . . . , ψr} be a subset of L2(R), then the dyadic wavelet system generated by the mother wavelets
Ψ is the family

X(Ψ ) = {ψj,k = 2
j
2ψ(2j

· −k) : ψ ∈ Ψ , j, k ∈ Z}. (2.2)

Definition 2.3 ([8]). A wavelet system X(Ψ ) is said to be MRA-based if there exists an MRA {Vj, j ⊂ Z}, such that the
condition Ψ ⊂ V1 holds. If, in addition, the system X(Ψ ) is a frame, we refer to its elements as framelets.

Definition 2.4 ([8]). Suppose that Vj, j ∈ Z is anMRA induced by a refinable function φ, letΨ = {ψ1, ψ2, . . . , ψr} be a finite
subset of V1,φ = (τ0φ)  .2 , ψi = (τiψi)


.
2


, i = 1, 2, . . . , r , we introduce the notation τ0, τ1, . . . , τr for the combined

MRA masks (or filters. We will use but will not distinguish them in the rest of this paper).

In [26], the sufficient condition of construction of wavelet frames is provided.

Lemma 2.1 (The Unitary Extension Principle (UEP)). Let τ0, τ1, . . . , τr be the combined MRA masks that satisfy Definition 2.4.φ(0) = 1, |φ(ω)| ≤ c(1 + |ω|
−

1
2 −ε), ε > 0

M(z) =


τ0(z) τ0(−z)
τ1(z) τ1(−z)
...

...
τr(z) τr(−z)

 for |z| = 1. (2.3)

If

M∗(z)M(z) = E, (2.4)

where we use M∗(z) to represent the complex conjugate of transpose of M(z), then Ψ = {ψ1, ψ2, . . . , ψr} is a wavelet frame
that is derived from a multiresolution analysis (MRA), and MRA is generated by φ.

It was proved in [5], that the decay assumption ofφ at infinity can be removed. Thus ifφ(0) = 1, we have masks τi,
i = 0, 1, . . . , r , such that τ0 generates a function φ in L2(R) withφ(0) = 1, and M(z) satisfies (2.4), then we have a tight
wavelet frame.

3. Construction of parameterizations of masks for tight wavelet frames with two symmetric/antisymmetric
generators

In this section, we present a general construction framework of parameterizations of masks for tight wavelet frames
with two symmetric/antisymmetric generators. Compared with other accomplishments in the field [12,4,14,15,8,16–20,9,
21–23,5–7,24], the new construction has the following characteristics. By constructing several categories of paraunitary
matrices with specific characteristics, we realize the construction of symmetric/antisymmetric parameterizations of masks
with arbitrary lengths. The mask expressions are obtained by multiplying several paraunitary matrices. The calculation is
less complex, and the outcome is easy to achieve, and the masks constructed have high degrees of freedom. [27] gives
the expressions of mask parameterizations for tight frames with forms: h(z) =

∑2n−1
k=0 hkz−k, g(z) =

∑2n−1
k=0 gkz−k, f (z) =∑2m−1

k=0 fkz−k, and h(z) =
∑2n

k=0 hkz−k, g(z) =
∑2n

k=0 gkz
−k, f (z) =

∑2m
k=0 fkz

−k. Compared with [27], this paper is more
inclusive, where more cases under different circumstances are considered.

3.1. Construction of parameterizations of masks in given (anti)symmetric centers

In our previous research [28], we investigated the perfect reconstruction technique of tight wavelet frames and its
requirement on the position of symmetry of masks (if the length of a mask is odd, the symmetric center is 0, otherwise



X. Yang et al. / Journal of Computational and Applied Mathematics 235 (2011) 2112–2136 2115

it is 1
2 while the length is even). Based on this work, we provide an approach to the construction of parameterizations of

masks for tight wavelet frames with symmetry. The difference with [27] is that the lengths of masks are not under restraint
in this paper. We consider the expressions of masks for tight wavelet frames with the following forms:

h(z) =

2n1+1−
k=−(2n1+1)

hkz−k, g(z) =

2n2+1−
k=−(2n2+1)

gkz−k, f (z) =

2n3−1−
k=−(2n3−1)

fkz−k, and

h(z) =

2n1−
k=−2n1

hkz−k, g(z) =

2n2−
k=−2n2

gkz−k, f (z) =

2n3−
k=−2n3

fkz−k.

Theorems 3.2, 3.5 and 3.6 propose an efficient method that generates a wide range of explicit expressions of masks for
tight wavelet frames.

For any given mask h(z), write h(z) in their polyphase forms

h(z) =

−
k

hkzk =

−
k

h2kz2k +

−
2k+1

h2k+1z2k+1
=

√
2
2

he(z2)+

√
2
2

ho(z2)z.

Define two matricesMh,g,f , Ph,g,f by

Mh,g,f =

h(z) h(−z)
g(z) g(−z)
f (z) f (−z)


, Ph,g,f =

he(z) ho(z)
ge(z) go(z)
fe(z) fo(z)


. (3.1)

Observe that

Mh,g,f =

√
2
2

Ph,g,f (z2)

1 1
z −z


, (3.2)

or

Mh,g,f =

√
2
2

Ph,g,f (z2)


1 1
z−1

−z−1


. (3.3)

Thus, the necessary and sufficient condition forMh,g,f to be paraunitary is that Ph,g,f is paraunitary.
Let h, g, f be FIR filters. Define hr , gr , fr as follows

hr(z) = ge(z−1)fo(z−1)− fe(z−1)go(z−1), (3.4)

gr(z) = −he(z−1)fo(z−1)+ fe(z−1)ho(z−1), (3.5)

fr(z) = he(z−1)go(z−1)− ge(z−1)ho(z−1). (3.6)

By direct calculation, we have

Lemma 3.1. Assume that h, g, f are FIR filters. Let hr , gr , fr be defined by (3.4)–(3.6) and set the matrix A(z) by

A(z) =

he ho hr
ge go gr
fe fo fr


, (3.7)

then, Mh,g,f is paraunitary if and only if A(z) is paraunitary.

In the following Lemma 3.2, we construct 3 categories of paraunitary matrices with specific characteristics, which are of
great significance in our work. By direct calculation, the following lemma can be proved.

Lemma 3.2. Define the matrix

V 1(z) =


1
2
cosα(z−1

+ z)
1
2
sinα(z−1

+ z)
1
2
(z−1

− z)
− sinα cosα 0

1
2
cosα(z−1

− z)
1
2
sinα(z−1

− z)
1
2
(z−1

+ z)

 , (3.8)

V 2(z) =


1
2
cosα(z−1

+ z)
1
2
(z−1

− z)
1
2
sinα(z−1

+ z)

1
2
cosα(z−1

− z)
1
2
(z−1

+ z)
1
2
sinα(z−1

− z)
− sinα 0 cosα

 , (3.9)
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V 3(z) =


1
2
(z−1

+ z)
1
2
sinα(z−1

− z)
1
2
cosα(z−1

− z)

1
2
(z−1

− z)
1
2
sinα(z−1

+ z)
1
2
cosα(z−1

+ z)
0 cosα − sinα

 , (3.10)

where α ∈ [−π, π) and V 1, V 2, V 3 are paraunitary, when |z| = 1 and satisfy the following matrix equations, respectively.1 0 0
0 1 0
0 0 −1


V 1(z−1)

1 0 0
0 1 0
0 0 −1


= V 1(z), (3.11)

1 0 0
0 −1 0
0 0 1


V 2(z−1)

1 0 0
0 −1 0
0 0 1


= V 2(z), (3.12)


−1 0 0
0 1 0
0 0 1


V 3(z−1)


−1 0 0
0 1 0
0 0 1


= V 3(z). (3.13)

The following Theorem 3.1 provides masks of odd lengths that satisfy the matrix transformation proposition.

Theorem 3.1. Let

h(z) =

2k1+i−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ z−1ho(z2)), (3.14)

g(z) =

2k2+i−
j=−(2k2+i)

qjz j =

√
2
2
(ge(z2)+ z−1go(z2)), (3.15)

f (z) =

2k3+i−
j=−(2k3+i)

fjz j =

√
2
2
(fe(z2)+ z−1fo(z2)), i = 1, 2, k1, k2, k3 ∈ N. (3.16)

A(z) is defined as (3.7). If h, g are symmetric filters, and f is an antisymmetric filter, here comes the conclusion1 0 0
0 1 0
0 0 −1


A(z−1)

1 0 0
0 z 0
0 0 −z−1

 = A(z). (3.17)

Proof. If h, g are symmetric filters, and f is an antisymmetric filter, by (3.14)–(3.16), we have,

he(z−1) = he(z), zh0(z−1) = h0(z),
ge(z−1) = ge(z), zg0(z−1) = g0(z),
fe(z−1) = −he(z), zf0(z−1) = −f0(z).

Let hr , gr , fr be defined by (3.4)–(3.6), then

hr(z−1) = −zhr(z), gr(z−1) = −zgr(z), fr(z−1) = zfr(z).

As a result, (3.17) can be proved. The proof is completed. �

Taking advantage of Lemma 3.2 and Theorem 3.1, we present a manipulable and simple construction method of tight
wavelet frames.

Theorem 3.2. Let

h(z) =

2k1+1−
j=−(2k1+1)

hjz j =

√
2
2
(he(z2)+ z−1ho(z2)),

g(z) =

2k2+1−
j=−(2k2+1)

qjz j =

√
2
2
(ge(z2)+ z−1go(z2)),

f (z) =

2k3+1−
j=−(2k3+1)

fjz j =

√
2
2
(fe(z2)+ z−1fo(z2)), k1, k2, k3 ∈ N.
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If h, g are symmetric filters, f is an antisymmetric filter and (2.4) holds, they can be factorized in the form ofh(z)
g(z)
f (z)


=

√
2
2

V 1
n (z

2)V 1
n−1(z

2) · · · V 1
1 (z

2)P0(z2)

 1
z−1

0

 , n ∈ N, (3.18)

where

P0(z) =


− sin θ

1
2
(z + 1) cos θ

1
2
cos θ(1 − z−1)

cos θ
1
2
(z + 1) sin θ

1
2
sin θ(1 − z−1)

0
1
2
(1 − z) −

1
2
(z−1

+ 1)

 (3.19)

and V 1(z) is defined by (3.8)with α ∈ [−π, π), V 1
j , j ∈ N, are defined by V 1(z)with α = αj. Where αj are arbitrary parameters

and αj ∈ [−π, π), j = 1, 2, . . . , n.

Proof. Note that

h(z) = h−1z−1
+ h0 + h1z,

g(z) = g−1z−1
+ g0 + h1z,

f (z) = f−1z−1
+ f0 + f1z.

If g, h are symmetric filters, and f is an antisymmetric filter, from (3.1) the matrix Ph,g,f is given by

Ph,g,f (z) =

h0 h−1 + h1z
g0 g−1 + g1z
f0 f−1 + f1z


.

If g, h, f are filters, the following statement is satisfied.

Ph,g,f (z)∗Ph,g,f (z) = E.

Here come the equations

h2
0 + g2

0 + f 20 = 1,

h2
−1 + g2

−1 + f 2
−1 =

1
2
,

h2
−1 + g2

−1 − f 2
−1 = 0,

h0h−1 + g0g−1 + f0f−1 = 0,
h0h−1 + g0g−1 − f0f−1 = 0.

(3.20)

Solve the equations in (3.20), a group of solutions is given by

h0 = − sin θ, h1 =
cos θ
2
, g0 = cos θ, g1 =

sin θ
2
, f0 = 0, f1 =

1
2
, θ ∈ [−π, π).

By (3.7), we have

P0(z) =


− sin θ

1
2
(z + 1) cos θ

1
2
cos θ(1 − z−1)

cos θ
1
2
(z + 1) sin θ

1
2
sin θ(1 − z−1)

0
1
2
(1 − z) −

1
2
(z−1

+ 1)


and P0(z) satisfies (3.17). Obviously, B(z) = V 1

n (z)V
1
n−1(z) · · · V

1
1 (z)P0(z) is paraunitary. By Lemma 3.2 and Theorem 3.1, we

have 1 0 0
0 1 0
0 0 −1


B(z−1)

1 0 0
0 z 0
0 0 −z−1

 =

1 0 0
0 1 0
0 0 −1


V 1
n (z

−1)

1 0 0
0 1 0
0 0 −1



×

1 0 0
0 1 0
0 0 −1


V 1
n−1(z

−1)

1 0 0
0 1 0
0 0 −1

1 0 0
0 1 0
0 0 −1


V 1
n−2(z

−1)

1 0 0
0 1 0
0 0 −1


· · ·
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×

1 0 0
0 1 0
0 0 −1


V 1
1 (z

−1)

1 0 0
0 1 0
0 0 −1

1 0 0
0 1 0
0 0 −1


P0(z−1)

1 0 0
0 z 0
0 0 −z−1

 = B(z),

thus B(z) satisfies (3.17). By (3.3), it follows thath(z) h(−z)
g(z) g(−z)
f (z) f (−z)


=

√
2
2

V 1
n (z

2)V 1
n−1(z

2) · · · V 1
1 (z

2)P0(z2)

1 0
0 1
0 0


1 1

z−1
−z−1


,

which implies that (3.18) holds. The proof is completed. �

Note that if we select different P0 in Theorem 3.2, we will obtain different expressions of masks. Theorem 3.2 provides
a construction method of P0. Actually, we may construct many different P0. Theorem 3.2 give a novel parameterization
construction technique. Theorem 3.2 realizes expressions of masks of arbitrary odd lengths for tight wavelet frames, where
g, h are symmetric, and f is an antisymmetric and the (anti)symmetric center is 0. In the following Theorem 3.3, we consider
the case h, g, f are masks of odd lengths, while h is a symmetric about 0, and g, f are antisymmetric about 0. Under these
conditions, we prove that the masks satisfying (2.4) do not exist.

Theorem 3.3. Suppose that h, g, f are filters of odd lengths, while h is symmetric about 0, and g, f are antisymmetric about 0.
Under these conditions, filters satisfying (2.4) do not exist.

Proof. Suppose that

h(z) = h(z−1), g(z) = −g(z−1), f (z) = −f (z−1)

by (3.1) with M∗

h,g,fMh,g,f = I , it follows that

h(z)2 − g(z)2 − f (z)2 = 1, (3.21)

h(−z)2 − g(−z)2 − f (−z)2 = 1, (3.22)
h(z)h(−z)− g(z)g(−z)− f (z)f (−z) = 0. (3.23)

By (3.21) and (3.22), we have,

g(z) =


−1 + h(z)2 cosα, f (z) =


−1 + h(z)2 sinα, (3.24)

g(−z) =


−1 + h(−z)2 cosα, f (−z) =


−1 + h(−z)2 sinα. (3.25)

Substituting (3.24) and (3.25) into (3.23), we have

h(z)2 + h(−z)2 = 1. (3.26)

ReformulateMh,g,f as

Mh,g,f (z) =


α
A


.

Then

M∗

h,g,f (z)Mh,g,f (z) = α∗α + A∗A = I. (3.27)

By (3.26), we get det(I − α∗α) = 0. So det A = 0, f (z) = kg(z), k ∈ R. A contradiction is induced then. The proof is
completed. �

Next, we discuss the parameterizations of masks of even lengths. The main result are given by Theorem 3.4.

Theorem 3.4. Assume that

h(z) =

2k1+i+1−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ zho(z2)), (3.28)

f (z) =

2k2+i+1−
j=−(2k2+i)

fjz j =

√
2
2
(fe(z2)+ zfo(z2)), (3.29)

g(z) =

2k3+i+1−
j=−(2k3+i)

gjz j =

√
2
2
(ge(z2)+ zgo(z2)), i = 0, 1, k1, k2, k3 ∈ N, (3.30)
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E(z) =

he ho hr
ge go gr
fe fo fr


√
2
2

−

√
2
2

0
√
2
2

√
2
2

0

0 0 1

 . (3.31)

If g, h are symmetric filters, and f is an antisymmetric filter, we can deduce that1 0 0
0 1 0
0 0 −1


E(z−1)

1 0 0
0 −1 0
0 0 1


= E(z). (3.32)

If h is a symmetric filter, and f , g are antisymmetric filters we can deduce that
−1 0 0
0 1 0
0 0 1


E(z−1)


−1 0 0
0 1 0
0 0 1


= E(z). (3.33)

Proof. Suppose that g, h are symmetric filters and f is an antisymmetric filter, by (3.28)–(3.30), the conclusion can be drawn
that

he(z−1) = ho(z), ho(z−1) = he(z),

ge(z−1) = go(z), go(z−1) = ge(z),

fe(z−1) = −fo(z), fo(z−1) = −fe(z).

(3.34)

By (3.4)–(3.6), we have

hr(z−1) = hr(z), gr(z−1) = gr(z), fr(z−1) = −fr(z).

Since

E(z) =



√
2
2
(he + ho)

√
2
2
(ho − he) hr(z)

√
2
2
(ge + go)

√
2
2
(go − ge) gr(z)

√
2
2
(fe + fo)

√
2
2
(fo − fe) fr(z)

 ,

we have

E(z−1) =



√
2
2
(he + h0)

√
2
2
(he − ho) hr(z)

√
2
2
(ge + go)

√
2
2
(ge − go) gr(z)

−

√
2
2
(fe + fo)

√
2
2
(fo − fe) −fr(z)

 .

Thus, (3.32) is proved. So is the other statement.
On the foundation of the above theorem, we propose amanipulable and simplemethod of constructionwhen the lengths

of masks of tight wavelet frames are even.

Theorem 3.5. Let g, h be symmetric filters, f be an antisymmetric filter and (2.4) holds.

h(z) =

2k1+i+1−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ zho(z2)),

f (z) =

2k2+i+1−
j=−(2k2+i)

fjz j =

√
2
2
(fe(z2)+ zfo(z2)),

g(z) =

2k3+i+1−
j=−(2k3+i)

gjz j =

√
2
2
(ge(z2)+ zgo(z2)), i = 0, 1, k1, k2, k3 ∈ N.
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Define

W1 =

sinα 0 − cosα
cosα 0 sinα
0 −1 0


, (3.35)

and

W2 =


1
2
sinα(z−1

+ z)
1
2
sinα(z − z−1) − cosα

1
2
cosα(z−1

+ z)
1
2
cosα(z − z−1) sinα

1
2
(z−1

− z) −
1
2
(z + z−1) 0

 . (3.36)

Then, h, g, f are factorized as

h(z)
g(z)
f (z)


=

√
2
2

Wi(z2)V 2
1 (z

2)V 2
2 (z

2) · · · V 2
n (z

2)


√
2
2
(1 + z)

−

√
2
2
(1 − z)

0

 i = 1, 2, n ∈ N, (3.37)

where V 2(z) is defined by (3.9)withα ∈ [−π, π). V 2
j , j ∈ N are defined by V 2(z)withα = αj.Whereαj are arbitrary parameters

and αj ∈ [−π, π), j = 1, 2, . . . , n.

Proof. Assume that

h(z) = h−1z−1
+ h0 + h1z + h2z2 = z(h−1z−2

+ h1)+ (h0 + h2z2),

g(z) = g−1z−1
+ g0 + g1z + g2z2 = z(g−1z−2

+ g1)+ (g0 + g2z2),

f (z) = f−1z−1
+ f0 + f1z + f2z2 = z(f−1z−2

+ f1)+ (f0 + f2z2),

then,

Ph,g,f =

h−1z−1
+ h1 h0 + h2z

g−1z−1
+ g1 g0 + g2z

f−1z−1
+ f1 f0 + f2z

 .
If Ph,g,f is paraunitary, the following conditions are satisfied.

h2
−1 + g2

−1 + f 2
−1 + h2

1 + g2
1 + f 21 = 1,

h−1h0 + g−1g0 + f−1f0 = 0,
h2
0 + g2

0 + f 20 + h2
2 + g2

2 + f 22 = 1,
h0h2 + g0g2 + f0f2 = 0,
h1h2 + g1g2 + f1f2 = 0,
h−1h0 + g−1g0 + f−1f0 = 0,
h2

−1 + g2
−1 − f 2

−1 = 0,
h2
0 + g2

0 − f 20 = 0.

By solving the former equations, two groups of solutions are given by
h1 = g1 = f1 = 0,

h0 =
1

√
2
sinα, g0 =

1
√
2
cosα, f0 =

√
2
2
,

h1 = g1 = f1 = 0,

h−1 =
1

√
2
sinα, g−1 =

1
√
2
cosα, f−1 =

√
2
2
.
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It follows from (3.7) that when i = 1

P1
h,g,f (z) =



1
√
2
sinα

1
√
2
sinα − cosα

1
√
2
cosα

1
√
2
cosα sinα

1
√
2

−
1

√
2

0

 ,

and when i = 2

p2h,g,f (z) =



1
√
2
sinα(z−1)

1
√
2
sinα(z) − cosα

1
√
2
cosα(z−1)

1
√
2
cosα(z) sinα

√
2
2

z−1
−

√
2
2

z 0

 .

From (3.31), we can compute the matricesW1,W2 as follows.

W1 =

sinα 0 − cosα
cosα 0 sinα
0 −1 0


,

W2 =


1
2
sinα(z−1

+ z)
1
2
sinα(z − z−1) − cosα

1
2
cosα(z−1

+ z)
1
2
cosα(z − z−1) − sinα

1
2
(z−1

− z) −
1
2
(z + z−1) 0

 .

Obviously, (3.32) is satisfied by W1(z),W2(z). Set Bi = Wi(z)V 2
1 (z)V

2
2 (z)V

2
3 (z) · · · V

2
n (z), i = 1, 2. By Lemma 3.2, and

Theorem 3.4, we have1 0 0
0 1 0
0 0 −1


Wi(z−1)V 2

1 (z
−1)V 2

2 (z
−1)V 2

3 (z
−1) · · · V 2

n (z
−1)

1 0 0
0 −1 0
0 0 1



=

1 0 0
0 1 0
0 0 −1


Wi(z−1)

1 0 0
0 1 0
0 0 −1

1 0 0
0 1 0
0 0 −1


V2(z−1)

1 0 0
0 1 0
0 0 −1


. . .

×

1 0 0
0 1 0
0 0 −1


Vn(z−1)

1 0 0
0 1 0
0 0 −1


= Wi(z)V 2

1 (z)V
2
2 (z)V

2
3 (z) · · · V

2
n (z).

Consequently, Bi(z), i = 1, 2 satisfies (3.32). Therefore, by (3.2), Mh,g,f can be factorized as

h(z) h(−z)
g(z) g(−z)
f (z) f (−z)


=

√
2
2

Wi(z2)V 2
1 (z

2)V 2
2 (z

2) · · · V 2
n (z

2)


√
2
2

√
2
2

0

−

√
2
2

√
2
2

0

0 0 1


1 1
z −z
0 0


i = 1, 2, n ∈ N,

which implies that (3.37) holds. The proof is completed. �

Through similar proof processes of Theorem 3.5, the following theorem can be proved.

Theorem 3.6. Suppose that f is a symmetric filter, and g, h are antisymmetric filters, and (2.4) holds.

h(z) =

2k1+i+1−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ zho(z2)),

f (z) =

2k2+i+1−
j=−(2k2+i)

fjz j =

√
2
2
(fe(z2)+ zfo(z2)),
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g(z) =

2k3+i+1−
j=−(2k3+i)

gjz j =

√
2
2
(ge(z2)+ zgo(z2)), i = 0, 1, k1, k2, k3 ∈ N.

Define the following matrices

W1(z) =

1 0 0
0 − cosα sinα
0 − sinα − cosα


, W2(z) =


1
2
(z−1

+ z)
1
2
(z − z−1) 0

1
2
cosα(z−1

− z) −
1
2
cosα(z−1

+ z) sinα

−
1
2
sinα(z−1

− z)
1
2
sinα(z−1

+ z) − cosα

 .
Then, h, g, f can be factorized as

h(z)
g(z)
f (z)


=

√
2
2

Wi(z2)V 3
1 (z

2)V 3
2 (z

2) · · · V 3
n (z

2)


√
2
2
(1 + z)

−

√
2
2
(1 − z)
0

 i = 1, 2, n ∈ N, (3.38)

where V 3(z) is defined by (3.10) with α ∈ [−π, π), V 3
j , j ∈ N, are defined by V 3(z) with α = αj. Where αj are arbitrary

parameters and αj ∈ [−π, π).

Note that Theorems 3.5 and 3.6 provide only a construction method of W1,W2. If we select different W1,W2 in
Theorems 3.5 and 3.6, we will establish different explicit formulas of masks of tight wavelet frames with arbitrary even
lengths. We should particularly emphasize that the expressions of masks in Theorems 3.2, 3.5 and 3.6 have as many free
parameters as possible. The parameters provide the freedom to optimize the resulting masks with respect to other criteria.
For example, we can obtain the best parameters by solving some equations related to the sum rules for scaling function
and the vanishingmoments for framelets such that the tight frames have a good compression potential. Wewill explore the
transform applicability of the presented library of tightwavelet frames to still image compression and denoising in Section 3.

3.2. Construction of parameterizations of masks in arbitrary (anti)symmetric centers

In this subsection, we provide a general construction framework of parameterizations of masks for tight wavelet frames
with two (anti)symmetric generators with arbitrary lengths and (anti)symmetric centers, which have not been discussed
in [27]. We consider the expressions of masks with the following forms:

h(z) =

2(k1+k)+i−
j=−(2k1+i)

hjz j, g(z) =

2(k1+l)+i−
j=−(2k1+i)

qjz j, f (z) =

2(k1+m)+i−
j=−(2k1+i)

fjz j and

h(z) =

2(k1+k)+i−
j=−(2k1+i)

hjz j, g(z) =

2(k1+l)+i−
j=−(2k1+i)

qjz j, f (z) =

2(k1+m)+i−
j=−(2k1+i)

fjz j.

First, we construct categories of matrices with a parameterization as follows

U1(z) =


1
2
cosα(z−1

+ z)
1
2
sinαzk−l(z−1

+ z)
1
2
zk−m(z−1

− z)

− sinαz l−k cosα 0
1
2
zm−k cosα(z−1

− z)
1
2
zm−l sinα(z−1

− z)
1
2
(z−1

+ z)

 , (3.39)

U2(z) =


1
2
(z−1

+ z)
1
2
cosαzk−l(z−1

− z)
1
2
sinαzk−m(z−1

− z)

0 − sinα z l−m cosα
1
2
zm−k(z−1

− z)
1
2
cosαzm−l(z−1

+ z)
1
2
sinα(z−1

+ z)

 , (3.40)

U3(z) =


1
2
cosα(z−1

+ z)
1
2
(z−1

− z)
1
2
sinαz−l−k−m(z−1

+ z)

1
2
cosα(z−1

− z)
1
2
(z−1

+ z)
1
2
sinαz−l−k−m(z−1

− z)

(−z l+k+m) sinα 0 cosα

 , (3.41)
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U4(z) =


1
2
(z−1

+ z)
1
2
sinα(z−1

− z)
1
2
cosαz−l−k−m(z−1

− z)

1
2
(z−1

− z)
1
2
sinα(z−1

+ z)
1
2
cosαz−l−k−m(z−1

+ z)

0 z l+k+m cosα − sinα

 , (3.42)

where |z| = 1, l,m, k ∈ Z, α ∈ [−π, π). By direct calculation, U1(z),U2(z),U3(z),U4(z) has the following proposition.

Lemma 3.3. Assume that U1(z),U2(z),U3(z),U4(z) are defined by (4.1), (3.39)–(3.42), then U1(z),U2(z),U3(z),U4(z) are
paraunitary matrices when z = 1 and satisfy the following conditions accordingly.z2k 0 0

0 z2l 0
0 0 −z2m

U1(z−1)

z−2k 0 0
0 z−2l 0
0 0 −z−2m

 = U1(z), (3.43)

z2k 0 0
0 −z2l 0
0 0 −z2m

U2(z−1)

z−2k 0 0
0 −z−2l 0
0 0 −z−2m

 = U2(z), (3.44)

1 0 0
0 −1 0
0 0 z2l+2k+2m

U3(z−1)

1 0 0
0 −1 0
0 0 z−2l−2k−2m

 = U3(z), (3.45)

−1 0 0
0 1 0
0 0 z2l+2m+2k

U4(z−1)

−1 0 0
0 1 0
0 0 z−2l−2m−2k

 = U4(z) (3.46)

where |z| = 1, l,m, k ∈ Z, α ∈ [−π, π).

The following theorem provides masks of odd lengths and of arbitrary symmetric centers.

Theorem 3.7. Suppose that

h(z) =

2(k1+k)+i−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ z−1ho(z2)), (3.47)

g(z) =

2(k1+l)+i−
j=−(2k1+i)

qjz j =

√
2
2
(ge(z2)+ z−1go(z2)), (3.48)

f (z) =

2(k1+m)+i−
j=−(2k1+i)

fjz j =

√
2
2
(fe(z2)+ z−1fo(z2)), i = 0, 1, k1 ∈ N0, k, l,m ∈ Z . (3.49)

A(z) is defined as (3.7), if h, g are symmetric filters and f is an antisymmetric filter, thenzk 0 0
0 z l 1
0 −zm

 A(z−1)

1 0 0
0 z 0
0 0 −z−k−l−m−1

 = A(z). (3.50)

If h is a symmetric filter, and f , g are antisymmetric filters, thenzk 0 0
0 −z l 1
0 −zm

 A(z−1)

1 0 0
0 z 0
0 0 z−k−l−m−1

 = A(z), (k2 + l2 + m2
≠ 0). (3.51)

Proof. If h, g are symmetric filters and f is an antisymmetric filter, by (3.47)–(3.49), we have

zkhe(z−1) = he(z), zk+1ho(z−1) = h0(z),
z lge(z−1) = ge(z), z l+1go(z−1) = g0(z),
zmfe(z−1) = −fe(z), zm+1fo(z−1) = −f0(z),
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and by (3.4)–(3.6) together with the above equations, we have

hr(z) = −z−l−m−1hr(z−1), gr(z) = −z−m−k−1gr(z−1), fr(z) = z−k−l−1fr(z−1).

Hence,zk 0 0
0 z l 1
0 −zm

 A(z−1)

1 0 0
0 z 0
0 0 −z−k−l−m−1

 = A(z).

The proof is completed. Similarly, (3.51) can be proved. �

Theorem 3.8 provides masks of even lengths and of arbitrary symmetric centers.

Theorem 3.8. Let

h(z) =

2(k1+k)+i+1−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ zho(z2)), (3.52)

g(z) =

2(k1+l)+i+1−
j=−(2k1+i)

qjz j =

√
2
2
(ge(z2)+ zgo(z2)), (3.53)

f (z) =

2(k1+m)+i+1−
j=−(2k1+i)

fjz j =

√
2
2
(fe(z2)+ zfo(z2)), i = 0, 1, k1 ∈ N0, k, l,m ∈ Z . (3.54)

E(z) is defined as (3.31), if h, g are symmetric filters, and f is an antisymmetric filter, thenzk 0 0

0 z l 0
0 0 −zm

 E(z−1)

1 0 0
0 −1 0

0 0 z−k−l−m

 = E(z). (3.55)

If h is a symmetric filter, and f , g are antisymmetric filters, thus−zk 0 0
0 z l 1
0 0 zm

 E(z−1)

−1 0 0
0 1 0
0 0 z−k−l−m

 = E(z). (3.56)

Proof. If h, g are symmetric filters, and f is an antisymmetric filter, (3.52)–(3.54) together with (3.4)–(3.6), lead to

zkhe(z−1) = h0(z), zkho(z−1) = he(z),

z lge(z−1) = g0(z), z lgo(z−1) = ge(z),

zmfe(z−1) = −f0(z), zkfo(z−1) = −fe(z),

hr(z) = z−l−mhr(z−1), gr(z) = z−k−mgr(z−1),

fr(z) = −z−l−kfr(z−1),

(3.57)

then

E(z−1) =



√
2
2

z−k(he(z)+ h0(z))

√
2
2

z−k(he(z)− h0(z)) zm+khr

√
2
2

z−l(ge(z)+ g0(z))

√
2
2

z−l(ge(z)− g0(z)) zm+kgr

−

√
2
2

z−m(fe(z)+ f0(z)) −

√
2
2

z−m(fe(z)− f0(z)) −z l+kfr


which implies (3.55) hold. The other statement (3.56) can be proved similarly. �
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By Lemma 3.3 and Theorem 3.7, the following theorem can be proved similarly as the proof of Theorem 3.2.

Theorem 3.9. Suppose that

h(z) =

2(k1+K)+i−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ z−1ho(z2))

g(z) =

2(k1+L)+i−
j=−(2k1+i)

qjz j =

√
2
2
(ge(z2)+ z−1go(z2))

f (z) =

2(k1+M)+i−
j=−(2k1+i)

fjz j =

√
2
2
(fe(z2)+ z−1fo(z2)) i = 0, 1M = 2m, L = 2l, K = 2k, k1,M, L, K ∈ N0

(3.58)

when i = 1, K = 0 in (3.58), and by (3.7), W1(z) is defined as follows

W1(z) =



K−
j=0

h2jz j
K−

j=−1

h2j+1z j+1 h1
r (z)

L−
j=0

g2jz j
L−

j=−1

g2j+1z j+1 g1
r (z)

M−
j=0

f2jz j
M−

j=−1

f2j+1z j+1 f 1r (z)


(3.59)

with

h1
r (z

−1) =


L−

j=0

g2jz j


M−
j=−1

f2j+1z j+1


−


L−

j=−1

g2j+1z j+1


M−
j=0

f2jz j


g1
r (z

−1) =


K−

j=−1

h2j+1z j+1


M−
j=0

f2jz j


−


K−

j=0

h2jz j


M−
j=−1

f2j+1z j+1



f 1r (z
−1) =


K−

j=0

h2jz j


L−
j=−1

g2j+1z j+1


−


K−

j=−1

h2j+1z j+1


L−

j=0

g2jz j

.

When i = 0, K = 1 in (3.58), and by (3.7)W2(z) is defined as follows

W2(z) =



K+1−
j=−1

h2jz j
K−

j=−1

h2j+1z j+1 h2
r (z)

L+1−
j=−1

g2jz j
L−

j=−1

g2j+1z j+1 g2
r (z)

M+1−
j=−1

f2jz j
M−

j=−1

f2j+1z j+1 f 2r (z)


(3.60)

with

h2
r (z

−1) =


L+1−
j=−1

g2jz j


M−
j=−1

f2j+1z j+1


−


L−

j=−1

g2j+1z j+1


M+1−
j=−1

f2jz j


g2
r (z

−1) =


K−

j=−1

h2j+1z j+1


M+1−
j=−1

f2jz j


−


K+1−
j=−1

h2jz j


M−
j=−1

f2j+1z j+1



f 2r (z
−1) =


K+1−
j=−1

h2jz j


M−
j=−1

g2j+1z j+1


−


K−

j=−1

h2j+1z j+1


L+1−
j=−1

g2jz j

.
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Suppose that h, g are symmetric and f is antisymmetric. Assume that (2.4) holds. Moreover, if there exist K , L,M ∈ N0, such that
W1,W2 are paraunitary, which satisfies (3.50), then h, g, f can be factorized ash(z)

g(z)
f (z)


=

√
2
2

U1
n (z

2)U1
n−1(z

2) · · ·U1
1 (z

2)Wi(z2)

 1
z−1

0

 i = 1, 2, n ∈ N. (3.61)

Where U1 is defined by (3.39) and U1
j is defined by U1 with α = αj. αj is arbitrary parameter and αj ∈ [−π, π).

Furthermore, suppose that h is symmetric, and f , g are antisymmetric. Assume that (2.4) holds. If there exist K , L,M ∈ N0,
such that W1,W2 are paraunitary, which satisfy (3.51), then h, g, f can be factorized ash(z)

g(z)
f (z)


=

√
2
2

U2
n (z

2)U2
n−1(z

2) · · ·U2
1 (z

2)Wi(z2)

 1
z−1

0

 (M2
+ L2 + K 2

≠ 0), i = 1, 2, n ∈ N (3.62)

where U2 is defined by (3.40) and U2
j is defined by U2 with α = αj. αj is an arbitrary parameter and αj ∈ [−π, π).

In fact, Theorem 3.9 provides a general expression of masks of wavelet frames, which is contingent toW1 andW2. In the
following corollary, we focus on two specific conditions.

Corollary 3.9.1. Suppose that the matrices W1(z),W2(z) are defined by

W1(z) =


cosα −

sinα
2
(1 + z)

sinα
2
(z−1

− z−2)

sinα
cosα
2

(1 + z) −
cosα
2

(z−1
− z−2)

0
1
2
(z − z2)

1
2
(1 + z−1)

 , ∀α ∈ [−π, π),

and

W2(z) =


1 0 0

0
1
2
(1 + z3) −

1
2
(1 − z−3)

0
1
2
(1 − z3)

1
2
(1 + z−3)

 ,
then h(z)

g(z)
f (z)


=

√
2
2

U1
n (z

2)U1
n−1(z

2) · · ·U1
1 (z

2)Wi(z2)

 1
z−1

0

 , i = 1, 2, n ∈ N (3.63)

are FIR filters with odd lengths which satisfy (2.4). When i = 1,U1 is defined by (3.39) with k = 0, l = 0,m = 1, and U1
j is

defined by U1 with α = αj, αj ∈ [−π, π). αj is an arbitrary parameter and αj ∈ [−π, π), j = 1, 2, . . . , n. When i = 2,U1 is
defined by (3.39) with k = 0, l = 1,m = 1, and U1

j is defined by U1 with α = αj, αj ∈ [−π, π). αj is an arbitrary parameter
and αj ∈ [−π, π), j = 1, 2, . . . , n.

Proof. W1(z) is defined by (3.59) with K = 0, L = 0,M = 2

W1(z) =

 h0 h−1(1 + z) h1
r (z)

g0 g−1(1 + z) g1
r (z)

f0(1 − z2) f−1(1 − z3)+ f1(z − z2) f 1r (z)

 .
If W1(z)∗W1(z) = E, we can get the solution h0 = cosα, g0 = sinα, f0 = 0, g−1 =

cosα
2 , h−1 =

− sinα
2 , f−1 = 0, f1 =

1
2 .

By (3.61), (3.63) holds with i = 1.
If W2(z) is defined by (3.59) with L = 2,M = 2 as follows

W2(z) =

 h0 h−1(1 + z) h1
r (z)

g0(1 + z2) g−1(1 + z3)+ g1(z + z2) g1
r (z)

f0(1 − z2) f−1(1 − z3)+ f1(z − z2) f 1r (z)

 .
IfW2(z)∗W2(z) = E, we can get the solution h0 = 1, g0 = g1 = f0 = f1 = 0, g−1 = f−1 =

1
2 . By (3.61), (3.63) holds with

i = 2. The proof is completed. �
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By Lemma 3.3 and Theorem 3.9, the following theorem can be proved similarly to the proof of Theorems 3.5 and 3.6.

Theorem 3.10. Assume that

h(z) =

2(k1+K)+i+1−
j=−(2k1+i)

hjz j =

√
2
2
(he(z2)+ zho(z2))

g(z) =

2(k1+L)+i+1−
j=−(2k1+i)

qjz j =

√
2
2
(ge(z2)+ zgo(z2))

f (z) =

2(k1+M)+i+1−
j=−(2k1+i)

fjz j =

√
2
2
(fe(z2)+ zfo(z2)), i = 0, 1, M = 2m, L = 2l, K = 2k, k1, M, L, K ∈ N0

(3.64)

when k1 = 0, i = 1 in (3.64), and by (3.31), W1(z) is defined as follows

W1(z) =



K+1−
j=0

h2jz j
K−

j=−1

h2j+1z j h1
r (z)

L+1−
j=0

g2jz j
L−

j=−1

g2j+1z j g1
r (z)

M+1−
j=0

f2jz j
M−

j=−1

f2j+1z j f 1r (z)




√
2
2

√
2
2

0
√
2
2

−

√
2
2

0
0 0 1

 , (3.65)

with

h1
r (z

−1) =


L+1−
j=0

g2jz j


M−
j=−1

f2j+1z j


−


L−

j=−1

g2j+1z j


M+1−
j=0

f2jz j


g1
r (z

−1) =


K−

j=−1

h2j+1z j


M+1−
j=0

f2jz j


−


K+1−
j=0

h2jz j


M−
j=−1

f2j+1z j


f 1r (z
−1) =


K+1−
j=0

h2jz j


L−
j=−1

g2j+1z j


−


L+1−
j=0

g2jz j


K−
j=−1

h2j+1z j

.

When k1 = 1, i = 0 in (3.64), and by (3.31), W2(z) is defined as follows

W2(z) =



K+1−
j=−1

h2jz j
K+1−
j=−1

h2j+1z j h2
r (z)

L+1−
j=−1

g2jz j
L+1−
j=−1

g2j+1z j g2
r (z)

M+1−
j=−1

f2jz j
M+1−
j=−1

f2j+1z j f 2r (z)




√
2
2

√
2
2

0
√
2
2

−

√
2
2

0
0 0 1

 , (3.66)

with

h2
r (z

−1) =


L+1−
j=−1

g2jz j


M+1−
j=−1

f2j+1z j


−


M+1−
j=−1

f2jz j


L+1−
j=−1

g2j+1z j


g2
r (z

−1) =


K+1−
j=−1

h2j+1z j


M+1−
j=−1

f2jz j


−


K+1−
j=−1

h2jz j


M+1−
j=−1

f2j+1z j


f 2r (z
−1) =


L+1−
j=−1

h2jz j


M+1−
j=−1

g2j+1z j


−


L+1−
j=−1

h2j+1z j


L+1−
j=−1

g2jz j

.
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Suppose that h, g are symmetric, f is antisymmetric and (2.4) holds. If there exist K , L,M ∈ N0, such that W1,W2 are paraunitary,
which satisfies (3.55), then h, g, f can be factorized as

h(z)
g(z)
f (z)


=

√
2
2

Wi(z2)U3
1 (z

2)U3
2 (z

2) · · ·U3
n (z

2)


√
2
2
(1 + z)

−

√
2
2
(1 − z)
0

 i = 1, 2, n ∈ N (3.67)

where U3 is defined by (3.41) and U3
j is defined by U3 with α = αj. αj is arbitrary parameter and αj ∈ [−π, π), j = 1, 2, . . . , n.

Consequently, if h is symmetric and f , g are antisymmetric, and if there exist K , L,M ∈ N0, such that W1,W2 are paraunitary,
which satisfies (3.56), then h, g, f can be factorized as

h(z)
g(z)
f (z)


=

√
2
2

Wi(z2)U4
1 (z

2)U4
2 (z

2) · · ·U4
n (z

2)


√
2
2
(1 + z)

−

√
2
2
(1 − z)
0

 i = 1, 2, n ∈ N (3.68)

where U4 is defined by (3.42) and U4
j is defined by U4 with α = αj. αj is arbitrary parameter and αj ∈ [−π, π), j = 1, 2, . . . , n.

Corollary 3.10.1. Suppose that W1(z),W2(z) are defined as follows

W1(z) =


1
2
(z + z−1) cosα

1
2
(z−1

− z) cosα −z−2 sinα

1
2
(z2 + 1) sinα −

1
2
sinα(z2 − 1) z−1 cosα

1
2
(z2 − 1) −

1
2
(z2 + 1) 0

 , α ∈ [−π, π),

W2(z) =


1
2
(z + z−1)

1
2
(z−1

− z) 0

1
2
(z2 − 1) cosα −

1
2
(z2 + 1) cosα z−1 sinα

1
2
(z2 − 1) sinα −

1
2
(z2 + 1) sinα −z−1 cosα

 , α ∈ [−π, π),

then

h(z)
g(z)
f (z)


=

√
2
2

W1(z2)U3
1 (z

2)U3
2 (z

2) · · ·U3
n (z

2)


√
2
2
(1 + z)

−

√
2
2
(1 − z)
0

 n ∈ N (3.69)

are FIR filters of even lengths which satisfy (2.4), and h, g are symmetric, f is antisymmetric, where U3 is defined by (3.41) with
l = 1,m = 1 and U3

j is defined by U3 with α = αj. Furthermore,

h(z)
g(z)
f (z)


=

√
2
2

W2(z2)U4
1 (z

2)U4
2 (z

2) · · ·U4
n (z

2)


√
2
2
(1 + z)

−

√
2
2
(1 − z)
0

 i = 1, 2, n ∈ N (3.70)

are FIR filters which satisfy (2.4), of even lengths and h is symmetric, g, f are antisymmetric, where U4 is defined by (3.42) and
U4
j is defined by U4 with l = 1,m = 1, α = αj.

Proof. (3.1) together with (3.65), and define Ph,g,f (z) as follows

Ph,g,f (z) =

 h0 + h2z h2z−1
+ h0

g0 + g2z + g4z2 + g6z3 g6z−1
+ g4 + g2z + g0z2

f0 + f2z + f4z2 + f6z3 −f6z−1
− f4 − f2z − f0z2

 .
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By P∗

h,g,f (z)P
∗

h,g,f (z) = E, we can get the solutions

h0 = 0, h2 =

√
2
2

cosα, g0 = g2 = g6 = 0,

f0 = f2 = f6 = 0, g4 =

√
2
2

sinα, f4 =

√
2
2

then

Ph,g,f (z) =



√
2
2

z cosα

√
2
2

z−1 cosα
√
2
2

z2 sinα

√
2
2

sinα
√
2
2

z2 −

√
2
2

 .

Moreover, by (3.65), (3.67), it follows that (3.69) holds, similarly (3.70) can be proved. The proof is completed. �

Theorem 3.9, Corollary 3.9.1, Theorem 3.10 and Corollary 3.10.1 propose an efficient method that generates a wide range
of new symmetric tight wavelet frames. The presented expressions of masks have many free parameters, and a relatively
high degree of freedom as well. By adjusting the parameters, we can design the masks with special properties which is
valuable for image processing.

3.3. Examples

In this subsection, we construct frames based on parameterizations of masks h, g, f provided in Theorems 3.2 and 3.5.
Here, we construct masks with two parameters. We will carry out a series of experiments to evaluate the suitability of the
wavelet frames based on the Examples 3.1 and 3.2 for the compression of still images and image denoising in the next
section.

First, we change the variables in order to simplify the mathematic expressions.

sinα =
2t

1 + t2
, cosα =

1 − t2

1 + t2
.

Example 3.1. In Theorem 3.2, let n = 1, then,

h3 =

√
2
4
(2t1t0 + t21 t

2
0 + 1)

(1 + t20 )(1 + t21 )
, h2 =

√
2
4
(2t21 t0 − 2t0 − 2t1t20 + 2t1)

(1 + t20 )(1 + t21 )
,

h1 =

√
2
4
(−t20 − t21 + 2t0t1)
(1 + t20 )(1 + t21 )

, h0 = 0, h−1 = h1, h−2 = h2, h−3 = h3.

g1 = −

√
2
2
(t1 − t1t20 − t0 + t0t21 )
(1 + t21 )(1 + t20 )

, g0 = −

√
2
2
(−4t1t0 − 1 + t20 + t21 − t20 t

2
1 )

(1 + t21 )(1 + t20 )
g−1 = g1,

f3 = −

√
2
4
(2t1t0 + t21 t

2
0 + 1)

(1 + t20 )(1 + t21 )
, f2 = −

√
2
4
(2t21 t0 − 2t0 − 2t1t20 + 2t1)

(1 + t20 )(1 + t21 )
,

f1 = −

√
2
4
(−t20 − t21 + 2t0t1)
(1 + t20 )(1 + t21 )

, f0 = 0, f−i = −fi, i = 1, 2, 3.

Where t0, t1 are arbitrary real numbers.

Example 3.2. In Theorem 3.5, let n = 1, then,

h3 =
−t0t21

(1 + t20 )(1 + t21 )
, h2 =

t0
(1 + t20 )(1 + t21 )

, h1 =
−t1 + t1t20

(1 + t20 )(1 + t21 )
h0 = h1, h−1 = h2, h−2 = h3

g3 =
1
2

t20 t
2
1 − t21

(1 + t20 )(1 + t21 )
, g2 =

1
2

1 − t20
(1 + t20 )(1 + t21 )

, g1 = −2
t0t1

(1 + t20 )(1 + t21 )
,
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a b

Fig. 1. (a) Wavelet frame transform of a image. (b) Two-dimensional two-scale WFT. The tree structure is shown by the link of the solid lines. The WFT of
LL1 is shown by the link of the dashed line.

g0 = g1, g−1 = g2, g−2 = g3,

f3 = −
1
2

t21
1 + t21

, f2 =
1
2
(1 + t21 ), f−1 = −f2, f−2 = −f3, f1 = f0 = 0.

Where t0, t1 are arbitrary real numbers.

4. Research on applications of tight wavelet frames

The redundant representation offered by wavelet frames has already been put to good use in high-resolution image
reconstruction [1], image inpainting [2], image analysis and synthesis [3] and is currently explored for image compression
and denoising. In this section, we will explore the power of redundancy and strong robustness of wavelet frames for image
compression and image denoising. The positive effect has been discovered in our research.

4.1. Application of tight wavelet frames (I): image denoising based on cross-local contextual hidden Markov model of wavelet
frame domain

In this subsection, we investigate into the power of redundancy of tight wavelet frame transformations for image
denoising. We propose the Cross-Local Contextual Markov Model based on this transform, and study the corresponding
algorithms. In order to testify to the effectiveness of the model, we apply the model to image denoising, and subsequently
prove its effect in experiments.

Let the image be {fi,j, i, j = 1, 2, . . . ,N}, where N is some integer power of 2. The two-dimensional wavelet frame
transform (WFT) represents the image with both the spatial and frequency characteristics as shown in Fig. 1(a). Suppose
that the low-pass filter of WFT is L, and high-pass filters of WFT are H1,H2; it is usual to label the subbands of the wavelet
frame transform as in Fig. 1(b).

If a set of wavelet frame coefficients wk,i,j,b from the J-scale WFT of a image of N × N is given, there are Nj × Nj
Nj =

N
2j


coefficients in the jth scale and bth subband, where k, i = 1, 2, ·,Nj, j = 1, 2, ·, J and b ∈ {H1L,H2L, LH1,H1H1,

H2H1, LH2,H1H2,H2H2}.
Gaussian mixture models can closely approximate the distribution of wavelet frame coefficients wk,i,j,b for most real-

world images. We associate each wavelet frame coefficient wk,i,j,b with a hidden state variable Sk,i,j,b ∈ {0, 1}. The state 0
corresponds to a zero-mean, low-variance Gaussian, capturing the peakiness around zero. The other state 1 corresponds to a
zero-mean, high-variance Gaussian, capturing the heavy tails. Thus the probability density function ofwk,i,j,b is determined
by

f (wk,i,j,b) = pSk,i,j,b(0)f (wk,i,j,b|Sk,i,j,b = 0)+ pSk,i,j,b(1)f (wk,i,j,b|Sk,i,j,b = 1) (4.1)

where

f (wk,i,j,b|Sk,i,j,b = m) =
1

2πσ 2
(k,i,j,b),m

exp
w2

k,i,j,b

σ 2
(k,i,j,b),m

= g(wk,i,j,b; 0, σ 2
(k,i,j,b),m) (m = 0, 1)

pSk,i,j,b(m) is the state value probability mass function for Sk,i,j,b = m. pSk,i,j,b(0) = 1 − pSk,i,j,b(1) and σ
2
(k,i,j,b),0 < σ 2

(k,i,j,b),0.
Sk,i,j,b = 0 and Sk,i,j,b = 1 express two kinds of different states: f (wk,i,j,b|Sk,i,j,b = 0) expresses the condition density func-
tion of wk,i,j,b in the condition of state 0, and f (wk,i,j,b|Sk,i,j,b = 1) expresses the condition density function of wk,i,j,b in the
condition of state 1.
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a b

Fig. 2. (a) The LGMM wherewk,i,j,b is associated with
∏

k,i,j,b . (b) A set in the CLCHMM. The black node denotes the random variable W in the same scale
and orientation.

We know that the relative magnitude of a wavelet frame coefficient is closely related to the magnitude of its
neighborhood. Thus, we propose the Local Gaussian Mixture Model (LGMM). The LGMM assumes that each wavelet
frame coefficients wk,i,j,b follows a local Gaussian Mixture distribution, and a LGMM parameterized by

∏
k,i,j,b =

{pSk,i,j,b(m), σ
2
(k,i,j,b),m|m = 0, 1}.

∏
k,i,j,b can be estimated by the neighborhood ofwk,i,j,b,Ωk,i,j,b which is selected by a square

window of 2Cj+1 and centered atwk,i,j,b as shown in Fig. 6(a), i.e.,Ωk,i,j,b = {wx,y,j,b|x = k−Cj, ·, k+Cj; y = i−Cj, ·, i+Cj}.
The dependencies across subbands are useful for frame domain characterization. To capture the dependency, we propose

to group frame coefficients at the same location and scale into a set wk,i,j = {wk,i,j,b|b ∈ B}, as shown in Fig. 2(b), where
B = {H1L,H2L, LH1,H1H1,H2H1, LH2,H1H2,H2H2}. We define the random variable of wk,i,j,b by wk,i,j, whose value is
wk,i,j = 1, if w2

k,i,j,b > σ 2
k,i,j,b, or wk,i,j = 0 if w2

k,i,j,b ≤ σ 2
k,i,j,b, where σ 2

k,i,j,b is the average energy of frame coefficients of
the set wk,i,j. By conditioning (4.1) on wk,i,j and using the LGMM, we propose the Cross-Local Contextual Hidden Markov
model (CLHMM) based on frame domain forwk,i,j,b as

f (wk,i,j,b|wk,i,j = w) =

1−
m=0

pSk,i,j,b|wk,i,j(m|wk,i,j = w)g(wk,i,j,b; 0, σ 2
(k,i,j,b),m) (4.2)

where

pSk,i,j,b|wk,i,j(m|wk,i,j = w) =
pSk,i,j,b(m)pwk,i,j|Sk,i,j,b(w|m)

1∑
m=0

pSk,i,j,b(m)pVk,i,j,b|Sk,i,j,b(w|m)

.

A two-state, zero mean CLCHMM based on the wavelet frames domain is shown as follows

θk,i,j,b = {pSk,i,j,b(m), pwk,i,j|Sk,i,j,b(w|m), σ
2
(k,i,j,b),m|w,m = 0, 1} (4.3)

j = 1, . . . , J and k, i = 1, 2, . . . ,Nj

b ∈ {H1L,H2L, LH1,H1H1,H2H1, LH2,H1H2,H2H2}.

The parameters of CLCHMM based on the wavelet frame domain can be got by EM algorithm [29–31].
The problem of suppressing noise in digital images is based on the model

g = f + ε (4.4)

where f denotes the true noise-free pixel values, g the observed noisy pixels, and ε the noise. And ε are independent
and identically distributed (i.i.d.) as normal N(0, σ 2) and independent of f . We wish to estimate the noise-free image f .
Translated into the frame domain, the problem is as follows:

Given G = F + έ, estimate F (4.5)

where έ are also i.i.d.N(0, σ 2).
If F is a mixture of zero-mean Gaussian, then G is also a mixture of zero-mean Gaussian—the addition of zero-mean

independent Gaussian noise έ increases the variance of each mixture component by σ 2, but leaves the other parameters
unaffected. Hence, if the parameters on the noisy image G are {pSk,i,j,b(m), pwk,i,j,b|Sk,i,j,b(w|m), γ

2
(k,i,j,b),m|w,m = 0, 1}, then the

parameters on the original image F are {pSk,i,j,b(m), pwk,i,j,b|Sk,i,j,b(w|m), σ
2
(k,i,j,b),m|w,m = 0, 1}, where

σ 2
(k,i,j,b),m = γ 2

(k,i,j,b),m − σ 2
n . (4.6)
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Table 1
The PSNR of the noisy image of Lena and the denoised images with different denoising methods and different noise levels.

σ Noise image Wiener 2 Visu Shrink Sure Shrink Bayes Shrink Adaptive Bayes Shrink HMT Denoising Algorithm 4.1

10 28.12 32.67 30.34 33.34 33.32 33.18 33.84 33.50
15 24.60 31.26 28.52 31.40 31.41 32.39 31.76 31.73
20 22.11 30.00 27.24 30.09 30.17 31.07 30.39 30.47
25 20.15 28.86 26.34 29.12 29.22 30.70 29.24 29.43
30 18.60 27.82 26.26 28.34 28.48 28.81 28.35 28.58

Table 2
The PSNR of the noisy image of Barbara and the denoised images with different denoising methods and different noise levels.

σ Noise image Wiener 2 Visu Shrink SURE Shrink Bayes Shrink Adapt Bayes Shrink HMT Denoising Algorithm 4.1

10 28.14 28.02 27.29 31.90 30.86 31.37 31.36 32.08
15 24.62 27.12 25.01 29.52 28.51 29.96 29.23 30.04
20 22.12 26.24 23.65 27.86 27.13 28.36 27.80 28.57
25 20.15 25.43 22.83 26.67 26.01 27.23 25.99 27.54
30 18.60 24.70 22.26 25.67 25.16 25.55 25.11 26.67

Table 3
Image denoising results by denoising Algorithm 4.2 for some test images with additive white Gaussian noise of σ = 20.

w Barbara Lena Woman Pepper Bridge Boat

0 28.57 30.46 33.03 30.38 26.26 28.87
0.3 28.63 30.51 33.06 30.44 26.33 28.95
0.6 28.70 30.56 33.10 30.52 26.38 29.03
0.8 28.72 30.64 33.21 30.60 26.30 29.05
0.9 28.71 30.71 33.34 30.68 26.17 29.06

If the parameters of CLCHMM are given, we can estimate Fk,i,j,b as the conditional mean as

ŵ(F [k, i, j, b]) =

1−
m=0

pSk,i,j,b|wk,i,j,b(m|wk,i,j,b = w)
σ 2
(k,i,j,b),m

σ 2
(k,i,j,b),m + σ 2

n
Gk,i,j,b (4.7)

b ∈ {H1L,H2L, LH1,H1H1,H2H1, LH2,H1H2,H2H2}.

The algorithm can be summarized as follow:

Algorithm 4.1 (Denoising Algorithm). Step 1. 2-dimension tight wavelet frames decompose the observation image g up to
level J .
Step 2. The parameters θ of CLCHMM based on frame domain is calculated by EM algorithm.
Step 3. For each subband (except the lowpass residual), estimate F using (4.7).

Step 4. Invert tightwavelet frames to obtain the denoised image f̂ from the processed subbands and the lowpass LLJ residual.

We can improve Algorithm 4.1 as follows: Let w be a weight between 0 and 1. The linear combination (1 − w)f + wf̂
will be considered as a new noisy image. Using Algorithm 4.1, we obtain a new denoised image. We vary the weightw and
use Algorithm 4.1 iteratively as follows:

Algorithm 4.2. Weight denoising algorithm
Step 1. Set the weight vectorw = [0, 0.3, 0.6, 0.8, 0.9].

Step 2. For k = 1, . . . , length(w) do: Replace f by (1 − w)f + wf̂ . Apply Algorithm 4.1 to f to obtain f̂ .

Step 3. Output f̂ .

We perform our experiments on the well-known images Lena and Barbara. The noisy images with different noise levels
are generated by adding Gaussian white noise to the original noise-free images. For comparison, we implement the famous
denoising methods: Visu Shrink, Sure Shrink, Bayes Shrink, Adaptive Bayes Shrink, HMT (based on wavelet transform) and
Wiener 2 [32]. The experimental results in PSNR are shown in Tables 1–3. The results indicate that our algorithms have
a better PSNR. The experimental results prove that the presented CLCHMM can effectively characterize the intrascale and
cross-orientation correlations of the coefficients in wavelet frames domain and have a positive effect on image denoising.
Figs. 3 and 4 are presented for visual inspection of these results. The original noise-free image, the noisy image, the denoised
imagewithAlgorithm4.1 for Lena andBarbara are shown from the left of the figure to the right, respectively. From the figures
we can see that Algorithm 4.1 retains the edges and detail of the images.



X. Yang et al. / Journal of Computational and Applied Mathematics 235 (2011) 2112–2136 2133

a b c

Fig. 3. (a) Original Lena image. (b) Noisy image with σ = 20. (c) Denoising image.

a b c

Fig. 4. (a) Original Barbara image, (b) Noisy image with σ = 20, (c) Denoising image.

(a) Original City. (b) LL subband. (c) LH1 sanband. (d) LH2 subband. (e) H1L subband.

(f) H1H1 subband. (g) H1H2 subband. (h) H2L subband. (i) H2H1 subband. (j) H2H2 subband.

Fig. 5. Decomposition of image of the City.

4.2. Application of tight wavelet frames (II): image compression

In this subsection, the devised transforms are applied to achieve compression for still images including a remote sensing
image at a low rate. The optimizationmodel of FIR filters aiming at the characteristics of a remote sensing image is presented,
along with some experimental results.

The image City is shown as follows. From Fig. 5, we can observe that the major information of the image is kept in
low-frequency subband (LL), while the texture information of the image is kept in high-frequency subbands, respectively,
(LH1, LH2,H1L,H1H1,H1H2,H2L,H2H1,H2H2). Sincewavelet frames possess 2 ormoremother functions, they bear relatively
high flexibility and a greater capability to handle high-frequency information.

For image compression, the masks of tight wavelet frames should be characterized in the following two aspects: on one
hand, in the frequency area, the energy of the entire image should center in the low-frequency subband; on the other hand,
the energy of the high-frequency subbands should center in a small portion of the coefficients. The energy in frequency area
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(a) Conclusion 4.1. (b) Conclusion 4.2. (c) Conclusion 4.3. (d) Conclusion 4.4.

Fig. 6. Reconstruction of the image City based on the wavelet frames transform (Bpp = 0.5).

can be presented by the sum of the square power of all subbands of tight wavelet frames coefficients.We present an optimal
model of tight wavelet frames aiming at image compression.

Model 4.1 (The Model of the Optimal Filters). An objective function is introduced as follows:

f (t0, t1, . . . , tn) =

∑
j,k,m


7∑

i=1
(Di

j,k,m)
r


∑
j,k,m


(Cj,k,m)r +

7∑
i=1
(Di

j,k,m)
r

 , r ≥ 2 (4.8)

min f (t0, t1, . . . , tn) (4.9)

and constraint conduction

h(0) = 1, h(j)(−1) = 0, 0 ≤ j ≤ J, (4.10)

g(i)(1) = 0, f (i)(1) = 0, 0 ≤ i ≤ K (4.11)

where Cj,k,m are coefficients of low-frequency subband (LL), Di
j,k,m, i = 1, 2, . . . , 8 are coefficients of high-frequency sub-

bands (LH1, LH2,H1L,H1H1,H1H2,H2L,H2H1,H2H2), given the constraint condition that if mask h of scale function has the
sum rules of J , and if masks g, h of mother functions have the vanishing moments of K . If the objective function can reach
its minimum value, the preponderant amount of energy is concentrated in the low-frequency part.

Model 4.1 is constrained on nonlinear optimization problem. The parameters of masks of tight wavelet frames in this
paper provide high degrees of freedom to optimize the masks with respect to Model 4.1. We will present algorithm of
Model 4.1.

Algorithm 4.3 (Algorithm ofModel 4.1).
Step 4.1. Utilizing the filters obtained from Theorems 3.2, 3.5 and 3.6, a coefficients matrix can be got after tight wavelet
frame transformations.
Step 4.2. Solving the constrained nonlinear optimization models (4.8), (4.10) and (4.11) by Sequential Quadratic
Programming (SQP) [33], we get the value of parameterizations of filters.
Step 4.3. Utilize the filters obtained from the above step to compress wavelet frames coefficients through the bit-plane
prediction coding method. Then, calculate the PSNR value of the reconstructed image.
Step 4.4. Set the group of solutions got by Step 2 as the original population. Then, the fitness function is defined by the PSNR
of reconstruction of the image, we use the genetic algorithm [34], and get the optimal solutions of filters.

Note: In Algorithm 4.3, parameterizations of filters may be selected more than 1, thus it may be applicable in more than 2
dimensions.

The following results of experiments are acquired by Algorithm 4.3.

Conclusion 4.1. If mask h of scale function satisfies h(1) = 1 in Step 4.4 of Algorithm 4.3, an optimal filter among the filters
in Example 3.1 can be acquired by Algorithm 4.3 as follows.

h−3 = 0.3012351745597467, h−2 = 0.2510783697534620, h−1 = −0.05231821603352702, h0 = 0,
g−3 = 0, g−2 = 0, g−1 = −0.2510783697534620, g0 = 0.4978339170524394,
f−3 = −0.3012351745597467, f−2 = −0.2510783697534620, f−1 = 0.05231821603352702, f0 = 0.
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Table 4
Comparisons of the PSNR of compressed images.

Image Bpp Conclusion 4.1 Conclusion 4.2 Conclusion 4.3 Conclusion 4.4 Example 5.3 Example 5.4

0.5 23.5660 26.8618 26.5886 27.2626 27.1421 26.0136
Lena 0.25 21.5470 24.6486 23.7462 23.8702 23.8367 24.4742

0.125 19.6944 23.0994 16.5751 16.0117 15.9520 22.6960

0.5 21.4846 23.1386 23.0504 23.3257 23.3423 23.1806
Barbara 0.25 19.5023 21.9454 21.0979 21.0585 20.0388 21.4397

0.125 18.0856 20.6072 15.7232 14.9092 14.6454 20.3385

0.5 18.9610 20.1095 21.2854 21.8824 21.9495 19.5639
City 0.25 17.2868 18.8362 18.1760 18.3710 18.3380 18.2775

0.125 16.5887 17.9895 12.2047 12.1877 12.1498 17.3963

Conclusion 4.2. If mask h of scale function satisfies h(1) = 1 in Step 4.4 of Algorithm 4.3, an optimal filter among the filters
in Example 3.2 can be acquired by Algorithm 4.3 as follows.

h−2 = −0.0075582613974531, h−1 = 0.0080082255739456, h0 = 0.4995487948021224,
g−2 = 0.2426558270751309, g−1 = −0.2571017986629554, g0 = 0.0155599822901763,
f−2 = −0.2427735111762980, f−1 = 0.2572264888237020, f0 = 0.

Conclusion 4.3. An optimal filter among the filters in Example 3.1 can be acquired by Algorithm 4.3.

h−3 = 0.3028971268912868, h−2 = −0.2477388684431995, h−1 = −0.0506562637019869, h0 = 0,
g−3 = 0, g−2 = 0, g−1 = 0.2477388684431995, g0 = 0.5044817263785997,
f−3 = −0.3028971268912868, f−2 = 0.2477388684431995, f−1 = 0.0506562637019869, f0 = 0.

Conclusion 4.4. An optimal filter among the filters in Example 3.2 can be acquired by Algorithm 4.3.

h−2 = 0.1504810560179085, h−1 = −0.3191739410721348, h0 = 0.1600876715921230,
g−2 = 0.05496105927950028, g−1 = −0.1165737293447069, g0 = −0.4383132747518949,
f−2 = −0.1602038272245381, f−1 = 0.3397961727754619, f0 = 0.

The Conclusions 4.1–4.4 and Examples 5.3 and 5.4 from [27] are applied to achieve compression. The method of coding
is based on the bit-plane prediction algorithm. In Table 4, we provide the performance of Conclusions 4.1–4.4 and Examples
5.3 and 5.4 [27]. The best result of each transform has been blackened. From Table 4, we can see that Conclusion 4.2 has the
six best results. In other words, the transforms proposed in this paper are comparable to Examples 5.3 and 5.4.

Fig. 6 are the corresponding reconstructed images. The compression effect of each conclusion can be seen visually. As
can be seen from the reconstructed images, the presented transforms keep the pattern of texture of remote sensing images.
However, there still exists an issue. In this paper, we use the coding method of wavelet frame coefficients the same as
biorthogonal wavelet transforms. Based on both inter-band and intra-band correlation of wavelet frame coefficients, we
may study a highly efficient prediction model with bi-plane methods. We will continue working on this study in the future.

5. Conclusion and future research

In this paper, we discuss tight wavelet frames constructed via multiresolution analysis (MRA). The mask para-
meterizations for tight wavelet frames with two symmetric/antisymmetric generators are constructed, which are of
arbitrary lengths and of arbitrary symmetric/antisymmetric centers. Additionally, we explore the applicability of newly
designed tight wavelet frames to image compression and denoising. Experimental results show that the presented
transforms have a better performance. The paper focuses only on the construction of masks, while the properties of the
corresponding wavelet and scaling function (e.g., the smoothness and approximation ability etc.) are significant as well. We
will give a more in-depth study in our future work.
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