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a b s t r a c t

In this paper, we consider an extension to the compound Poisson risk model for which
the occurrence of the claim may be delayed. Two kinds of dependent claims, main claims
and by-claims, are defined, where every by-claim is induced by the main claim and may
be delayed with a certain probability. Both the expected discounted penalty functions
with zero initial surplus and the Laplace transforms of the expected discounted penalty
functions are obtained from an integro-differential equations system. We prove that the
expected discounted penalty function satisfies a defective renewal equation. An exact
representation for the solution of this equation is derived through an associated compound
geometric distribution, and an analytic expression for this quantity is given for when the
claim amounts from both classes are exponentially distributed. Moreover, the closed form
expressions for the ruin probability and the distribution function of the surplus before
ruin are obtained. We prove that the ruin probability for this risk model decreases as the
probability of the delay of by-claims increases. Finally, numerical results are also provided
to illustrate the applicability of our main result and the impact of the delay of by-claims on
the expected discounted penalty functions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the classical risk model, in which claims occur according to a Poisson process, has been extensively
analyzed; see Bowers et al. [1, Chapter 13], [2,3] and references therein. Ruin probabilities and many ruin related quantities
such as the marginal and the joint defective distributions of the time to ruin, the deficit at ruin and the surplus prior to ruin
have been analytically studied.

A unified approach to studying together the above fundamental risk quantities in just one function has been proposed
in the seminal paper [4], by introducing the expected discounted penalty function for the classical risk model. Soon after,
much of the literature on the expected discounted penalty function for the compound Poisson risk model was extensively
developed, for instance in [5–7].

In reality, insurance claimsmay be delayed for various reasons. Since thework in [8], riskmodels with this special feature
have been discussed by many authors in the literature. For example, Yuen and Guo [9] studied a compound binomial model
with delayed claims and obtained recursive formulas for the finite time ruin probabilities. Xiao and Guo [10] obtained the
recursive formula for the joint distribution of the surplus immediately prior to ruin and the deficit at ruin in this model.
Xie and Zou [11] studied an extension to the risk model proposed in Yuen and Guo [9]. Xie and Zou [12] also studied the
expected present value of total dividends in a risk model with delayed claims under stochastic interest rates.

All risk models described in the paragraph above were discrete time risk models. Motivated by these papers, we explore
analogous problems, but in the compound Poisson riskmodelwith delayed claims. In our riskmodel, two kinds of dependent
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claims, main claims and by-claims, are defined, where every by-claim is induced by themain claim andmay be delayedwith
a certain probability. This kind of specific dependent riskmodelmay be of practical use: for instance, a seriousmotor accident
causes different kinds of claims, such as ones for car damage, injury, and death; some can be dealt with immediately while
others need a period of time to be settled. We study the expected discounted penalty function for this risk model and obtain
many ruin related quantities through the expected discounted penalty function.

Themodel proposed in this paper is a generalization of the compound Poisson riskmodel. Hence our results in this paper
include the corresponding results for the compound Poisson risk model obtained in [4]. The work of this paper can also be
seen as a complement to the works of Yuen and Guo [9] and Xiao and Guo [10].

It is obvious that the incorporation of the delayed claims makes the problem more interesting. It also complicates
the derivation of the expected discounted penalty function. Our aim is to give an exact representation for the expected
discounted penalty function in the risk model with delayed claims. The paper is structured as follows. A brief description
of the delayed claims risk model is considered in Section 2. In Section 3, we derive an integro-differential equations system
for the expected discounted penalty function. Both the expected discounted penalty functions with zero initial surplus
and the Laplace transforms of the expected discounted penalty functions are obtained in Section 4. Then the defective
renewal equation for the expected discounted penalty function is obtained and an exact representation for the solution
of this equation is derived through an associated compound geometric distribution in Section 5. The explicit results for the
expected discounted penalty functions with positive initial surplus are given when the claim amounts from both classes
are exponentially distributed in Section 6. Moreover, the closed form expressions for ruin probability and the distribution
function of the surplus before ruin are obtained. We also prove that the ruin probability for this risk model decreases as the
probability of the delay of by-claims increases in this section. Finally, in Section 7, numerical results are also provided to
illustrate the applicability of our main result and the impact of the delay of by-claims on the expected discounted penalty
functions.

2. Model description and notation

Here, we consider a continuous time model which involves two kinds of insurance claims, namely the main claims and
the by-claims. Let the aggregatemain claims process be a compound Poisson process and {N(t); t ≥ 0} be the corresponding
Poisson claim number process, with intensity λ. Its jump times are denoted by {Ti}i≥1 with T0 = 0. The main claim amounts
{Yi}i≥1 are assumed to be independent and identically distributed (i.i.d.) positive randomvariableswith commondistribution
F . Let {Xi}i≥1 be the by-claim amounts, assumed to be i.i.d. positive random variables with common distribution G. Themain
claim amounts and by-claim amounts are independent and their means are denoted by µF and µG, respectively.

In this risk model, we assume the claim occurrence process to be of the following type: there will be a main claim Yi
in every epoch Ti of the Poisson process and the main claim Yi will induce a by-claim Xi. Moreover, the by-claim Xi and its
associated main claim Yi may occur simultaneously with probability θ , or the occurrence of the by-claim Xi may be delayed
to Ti+1 with probability 1 − θ . If the occurrence of the by-claim Xi is delayed to Ti+1, we assume that the occurrence of the
delayed by-claim Xi is independent of the occurrence of next main claim Yi+1. When θ = 1, that means that the main claim
and its associated by-claim occur simultaneously in every epoch. Actually, this case is very similar to the classic compound
Poisson risk model. In our set-up, there is a by-claim, X , occurring simultaneously with the main claim Y . Hence, the only
difference is that we use Y + X as our claim amount random variable while the compound Poisson risk model simply
considers Y .

In this set-up, the surplus process U(t) of this risk model is defined as

U(t) = u + ct −

N(t)−
i=1

Yi − R(t), (2.1)

where u is the initial capital, c the constant rate of the premium, and R(t) is the sum of all by-claims Xi that occurred before
time t .

Now, we consider the number of claims that occurred before time t . From the definition of the aggregate main claims
process, the number ofmain claims that occurred before time t isN(t). The lastmain claim that occurred before time t is YN(t).
The main claim YN(t) will induce a by-claim XN(t). If by-claim XN(t) and its associated main claim YN(t) occur simultaneously,
the number of by-claims that occur before time t is also N(t). The probability of this event is θ . If the occurrence of by-claim
XN(t) is delayed, the number of by-claims that occur before time t is N(t) − 1. The probability of this event is 1 − θ . From
these discussions, it follows that

E


N(t)−
i=1

Yi + R(t)


= E


N(t)−
i=1

Yi


+ E[R(t)] = λtµF + θλtµG + (1 − θ)e−λt

∞−
n=1

(λt)n

n!
(n − 1)µG

= λtµF + θλtµG + (1 − θ)e−λt


λteλt

−

∞−
n=1

(λt)n

n!


µG

= λtµF + θλtµG + (1 − θ)e−λt(λteλt
− (eλt

− 1))µG

= λtµF + λtµG − (1 − θ)µG(1 − e−λt).
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Thus in order to guarantee the positivity of the security loading, we assume that

λ(µF + µG) < c. (2.2)

We define the time of ruin by T = inf{t ≥ 0 : U(t) < 0} (T = ∞ if the set is empty). Let |U(T )| and U(T−) be the deficit
at ruin and the surplus immediately before ruin, respectively. The expected discounted penalty function Φ(u) is defined as

Φ(u) = E[e−δTw(U(T−), |U(T )|)I(T < ∞)|U(0) = u], u ≥ 0, (2.3)

where I(A) is the indicator function of a set A, w(x1, x2), 0 ≤ x1, x2 < ∞, is the penalty function, and δ is a non-negative-
valuedparameter.We remark that choosingdifferent formsof thepenalty functionw(x1, x2) in Eq. (2.3) gives rise to different
information relating to the deficit at ruin and the surplus before ruin. A special case of the expected discounted penalty
function (with δ = 0 and w(x1, x2) = 1) is the well-known ultimate ruin probability φ(u) = P(T < ∞|U(0) = u), u ≥ 0.
The financial explanations of w(x1, x2) can be found in [4].

3. The system of integro-differential equations

In order to derive the system of integro-differential equations for the expected discounted penalty functions, we need
to consider an auxiliary risk model. With all else being the same, we consider a slight change in the risk model. Instead of
having one main claim and a by-claim with probability θ in the first epoch T1, another by-claim is added in the first epoch.
We denote the corresponding expected discounted penalty function for this auxiliary model by Φ1(u) which is very useful
in the derivation of Φ(u).

We are interested in the expected discounted penalty function Φ(u). Consider what will happen in the first epoch T1.
Obviously therewill be amain claim Y1. Themain claim Y1 will induce a by-claim X1. If the by-claim X1 also occurs in the first
epoch T1, the surplus process U(t) will renew itself with a different initial reserve. The probability of this event is θ . If the
occurrence of the by-claim X1 is delayed to T2, U(t) will not renew itself in this case but will transfer to the auxiliary model
described in the paragraph above. The probability of this event is 1 − θ . Remember that the expected discounted penalty
function for the auxiliary model is Φ1(u). Taking what happened at T1 into account, we can set up the following equation
for Φ(u) and Φ1(u):

Φ(u) = θ

∫
∞

0
λe−(λ+δ)t

∫ u+ct

0
Φ(u + ct − y)dF ∗ G(y) +

∫
∞

u+ct
w(u + ct, y − u − ct)dF ∗ G(y)


dt

+ (1 − θ)

∫
∞

0
λe−(λ+δ)t

∫ u+ct

0
Φ1(u + ct − y)dF(y) +

∫
∞

u+ct
w(u + ct, y − u − ct)dF(y)


dt, (3.1)

where ∗ denotes the distribution functions convolution. With the auxiliary model, similar analysis gives

Φ1(u) = θ

∫
∞

0
λe−(λ+δ)t

∫ u+ct

0
Φ(u + ct − y)dF ∗ G ∗ G(y) +

∫
∞

u+ct
w(u + ct, y − u − ct)dF ∗ G ∗ G(y)


dt

+ (1 − θ)

∫
∞

0
λe−(λ+δ)t

∫ u+ct

0
Φ1(u + ct − y)dF ∗ G(y) +

∫
∞

u+ct
w(u + ct, y − u − ct)dF ∗ G(y)


dt.

(3.2)

Setting s = u + ct in (3.1), (3.2) and differentiating with respect to u, we get the following system of integro-differential
equations:

cΦ ′(u) = (λ + δ)Φ(u) − λθ

∫ u

0
Φ(u − y)dF ∗ G(y) + w2(u)


− λ(1 − θ)

∫ u

0
Φ1(u − y)dF(y) + w1(u)


, (3.3)

cΦ ′

1(u) = (λ + δ)Φ1(u) − λθ

∫ u

0
Φ(u − y)dF ∗ G ∗ G(y) + w3(u)


− λ(1 − θ)

∫ u

0
Φ1(u − y)dF ∗ G(y) + w2(u)


(3.4)

where w1(u) =


∞

u w(u, y − u)dF(y), w2(u) =


∞

u w(u, y − u)dF ∗ G(y), and w3(u) =


∞

u w(u, y − u)dF ∗ G ∗ G(y).

4. The Laplace transform

Henceforth,we focus our interest on the expected discounted penalty functionsΦ(u) andΦ1(u). Their Laplace transforms
can be derived as follows.

As in [13], we define an operator Γr of a real-valued function f , with respect to a complex number r , to be

Γr f (x) =

∫
∞

x
e−r(y−x)f (y)dy, x ≥ 0.



J.-h. Xie, W. Zou / Journal of Computational and Applied Mathematics 235 (2011) 2392–2404 2395

It is clear that the Laplace transform of f , f̃ (s), can be expressed as Γsf (0), and that for distinct r1 and r2,

Γr1Γr2 f (x) = Γr2Γr1 f (x) =
Γr1 f (x) − Γr2 f (x)

r2 − r1
, x ≥ 0.

If r1 = r2 = r ,

Γr1Γr2 f (x) =

∫
∞

x
(y − x)e−r(y−x)f (y)dy, x ≥ 0.

The properties for this operator can be found in [13–16].
For Re s ≥ 0, we define

b̃F (s) =

∫
∞

0
exp(−sy)dF(y), b̃G(s) =

∫
∞

0
exp(−sy)dG(y),

b̃F∗G(s) =

∫
∞

0
exp(−sy)dF ∗ G(y), b̃F∗G∗G(s) =

∫
∞

0
exp(−sy)dF ∗ G ∗ G(y).

Note that b̃F∗G(s) = b̃F (s) · b̃G(s) and b̃F∗G∗G(s) = b̃F∗G(s) · b̃G(s).
We also define the Laplace transforms of Φ(u) and Φ1(u) as

Φ̃(s) =

∫
∞

0
exp(−su)Φ(u)du, Φ̃1(s) =

∫
∞

0
exp(−su)Φ1(u)du.

Define w̃i(s) to be the Laplace transforms of wi(u) for i = 1, 2, 3. Taking Laplace transforms of (3.3) and (3.4) and making
some simplifications, we obtain

c(−Φ(0) + sΦ̃(s)) = (λ + δ)Φ̃(s) − λθ(Φ̃(s)b̃F∗G(s) + w̃2(s)) − λ(1 − θ)(Φ̃1(s)b̃F (s) + w̃1(s)),

c(−Φ1(0) + sΦ̃1(s)) = (λ + δ)Φ̃1(s) − λθ(Φ̃(s)b̃F∗G∗G(s) + w̃3(s)) − λ(1 − θ)(Φ̃1(s)b̃F∗G(s) + w̃2(s)),
which can further be simplified to

Φ̃(s) =
(cs − δ − λ + λ(1 − θ)b̃F∗G(s))(w̃(s) − cΦ(0)) − λ(1 − θ)b̃F (s)(w̃∗(s) − cΦ1(0))

−(cs − δ − λ)2 − λb̃F∗G(s)(cs − δ − λ)
, (4.1)

Φ̃1(s) =
(cs − δ − λ + λθ b̃F∗G(s))(w̃∗(s) − cΦ1(0)) − λθ b̃F∗G∗G(s)(w̃(s) − cΦ(0))

−(cs − δ − λ)2 − λb̃F∗G(s)(cs − δ − λ)
, (4.2)

where
w̃(s) = λ(θw̃2(s) + (1 − θ)w̃1(s)), w̃∗(s) = λ(θw̃3(s) + (1 − θ)w̃2(s)).

In order to obtain Φ̃(s) and Φ̃1(s), for the further sake of deriving Φ(u) and Φ1(u), we only need to find Φ(0) and Φ1(0).
Note that the denominators on the right-hand side of (4.1) and (4.2) coincide. Now we discuss analytically the roots of

the equation

(cs − δ − λ)2 + λb̃F∗G(s)(cs − δ − λ) = 0. (4.3)

Proposition 4.1. Let δ be strictly positive; then Eq. (4.3) has exactly two distinct positive real roots, say, ρ1(δ), and ρ2(δ) =

(λ + δ)/c. Further, ρ1(δ) and ρ2(δ) are the only roots on the right half of the complex plane.

Proof. Noting that Eq. (4.3) can be rewritten as (cs − δ − λ)2 + λb̃F∗G(s)(cs − δ − λ) = (cs − δ − λ)l(s) = 0, where
l(s) = cs − δ − λ + λb̃F∗G(s), it is easy to check that l(0) = −δ < 0 and lims→+∞ l(s) = +∞. Also,

l′(s) = c + λb̃′

F∗G(s) > c − λ(µF + µG) > 0,

and then l(s) is an increasing function of s. Hence, l(s) = 0 has exactly one positive real root, say, ρ1(δ). Then ρ1(δ) is also
one positive real root of Eq. (4.3). Note that (λ+ δ)/c is another positive real root of Eq. (4.3), say, ρ2(δ). Moreover, it is easy
to see that ρ1(δ) ≠ ρ2(δ). We conclude that Eq. (4.3) has exactly two distinct positive real roots, say, ρ1(δ) and ρ2(δ).

Now, we prove that ρ1(δ) is the exactly one positive real root of equation l(s) = 0 on the right half of the complex plane.
When s is on the half-circle: |z| = r(r > 0) and Re(z) ≥ 0 on the complex plane, |cs− λ − δ| > λ = λb̃F∗G(0) > |λb̃F∗G(s)|
for r sufficiently large; while for s on the imaginary axis, Re(z) = 0, |cs − λ − δ| > λ ≥ |λb̃F∗G(s)|. That is to say, on the
boundary of the contour enclosed by the half-circle and the imaginary axis, |cs − λ − δ| > |λb̃F∗G(s)|. Then we conclude,
by Rouché’s theorem, that on the right half of the complex plane, the number of roots of the equation l(s) = 0 equals the
number of roots of the equation cs−λ− δ = 0. Furthermore, the latter has exactly one root on the right half of the complex
plane. It follows that l(s) = 0 has exactly one positive real root, say, ρ1(δ), on the right half of the complex plane. It is easy
to see that ρ2(δ) = (λ+ δ)/c is the exactly one positive real root of equation cs−λ− δ = 0 on the right half of the complex
plane.

It follows from all of the above that Eq. (4.3) has exactly two distinct positive real roots, say, ρ1(δ) and ρ2(δ), on the right
half of the complex plane. This completes the proof. �
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Note that ρ1(δ) → 0+ as δ → 0+. In the rest of the paper, the ρi(δ) are simply denoted by ρi, for i = 1, 2 and δ > 0.
Since Φ̃(s) is finite for Re s ≥ 0, its numerator is zero if s = ρ1 and ρ2, i.e.,

(cρi − δ − λ + λ(1 − θ)b̃F∗G(ρi))(w̃(ρi) − cΦ(0)) − λ(1 − θ)b̃F (ρi)(w̃
∗(ρi) − cΦ1(0)) = 0, i = 1, 2.

By solving this linear equation system for Φ(0) and Φ1(0), we get

Φ(0)

=
b̃F (ρ1){−w̃(ρ2)g(ρ2) + λ(−1 + θ)b̃F (ρ2)w̃∗(ρ2)} − b̃F (ρ2){−w̃(ρ1)g(ρ1) + λ(−1 + θ)b̃F (ρ1)w̃∗(ρ1)}

c(b̃F (ρ2)g(ρ1) − b̃F (ρ1)g(ρ2))
, (4.4)

Φ1(0) =
w̃∗(ρ2)

c
+

g(ρ2)(w̃(ρ2) − cΦ(0))

λc(1 − θ)b̃F (ρ2)
(4.5)

where g(s) = λ + δ − λb̃F∗G(s) + λθ b̃F∗G(s) − cs.

5. The defective renewal equation for the expected discounted penalty function

In this section, our goal is to show that the expected discounted penalty function also satisfies a defective renewal
equation in the compound Poisson risk model with delayed claims. To identify the form of this defective renewal equation,
we first analyse the Laplace transform of Φ(u).

After some calculations, (4.1) can be rewritten as

Φ̃(s) =
f̃1(s) + f̃2(s)

−(h̃1(s) − h̃2(s))
, (5.1)

where f̃1(s) = −cΦ(0)(cs−λ−δ), f̃2(s) = (cs−λ−δ)w̃(s)+λ(1−θ)(b̃F∗G(s)w̃(s)− b̃F (s)w̃∗(s))+λc(1−θ)(Φ1(0)b̃F (s)−
Φ(0)b̃F∗G(s)), h̃1(s) = (cs − δ − λ)2, h̃2(s) = −λb̃F∗G(s)(cs − δ − λ). Define the functions f1(u), f2(u), h1(u) and h2(u) to
be the inverse image functions of f̃1(s), f̃1(s), h̃1(s), and h̃2(s), i.e., Γsf1(0) = f̃1(s), Γsf2(0) = f̃2(s), Γsh1(0) = h̃1(s), and
Γsh2(0) = h̃2(s). We use the Lagrange interpolating theorem to rewrite (5.1), which will eventually lead to the defective
renewal function for the expected discounted penalty function.

Lemma 5.1. The Laplace transform Φ̃(s) of the expected discounted penalty function satisfies

Φ̃(s) =
ΓsΓρ2Γρ1h2(0)

c2
Φ̃(s) −

ΓsΓρ2Γρ1 f2(0)
c2

. (5.2)

Proof. With Φ̃(s) analytic for Re s ≥ 0, the numerator of (5.1) is zero if s = ρ1 and ρ2. Therefore, it follows that
f̃1(ρi) = −f̃2(ρi) for i = 1, 2. It is easy to see that f̃1(s) is a polynomial of degree 1 in s. Using the Lagrange interpolating
theorem, one deduces

f̃1(s) = f̃1(ρ1)


s − ρ2

ρ1 − ρ2


+ f̃1(ρ2)


s − ρ1

ρ2 − ρ1


= −

f̃2(ρ1)(s − ρ2) − f̃2(ρ2)(s − ρ1)

ρ1 − ρ2
,

which implies

f̃1(s) + f̃2(s) =
(s − ρ2)(f̃2(s) − f̃2(ρ1)) − (s − ρ1)(f̃2(s) − f̃2(ρ2))

ρ1 − ρ2

= (s − ρ1)(s − ρ2)
ΓsΓρ2 f2(0) − ΓsΓρ1 f2(0)

ρ1 − ρ2

= (s − ρ1)(s − ρ2)ΓsΓρ2Γρ1 f2(0). (5.3)

A similar procedure is used to find an alternative expression for the denominator −(h̃1(s) − h̃1(s)) of Φ̃(s). From
Proposition 4.1, we know that h̃1(ρi) = h̃2(ρi) for i = 1, 2. Also, it is easy to see that h̃1(s) is a polynomial of degree 2
in s. Using the Lagrange interpolating theorem, one knows that

h̃1(s) = h̃1(0)
(s − ρ1)(s − ρ2)

ρ1ρ2
+ s


h̃1(ρ1)

ρ1

s − ρ2

ρ1 − ρ2
+

h̃1(ρ2)

ρ2

s − ρ1

ρ2 − ρ1



= h̃1(0)
(s − ρ1)(s − ρ2)

ρ1ρ2
+ s


h̃2(ρ1)

ρ1

s − ρ2

ρ1 − ρ2
+

h̃2(ρ2)

ρ2

s − ρ1

ρ2 − ρ1


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= h̃1(0)
(s − ρ1)(s − ρ2)

ρ1ρ2
+ (s − ρ1)(s − ρ2)


h̃2(ρ1)

ρ1

1
ρ1 − ρ2

+
h̃2(ρ2)

ρ2

1
ρ2 − ρ1


+ h̃2(ρ1)

s − ρ2

ρ1 − ρ2
+ h̃2(ρ2)

s − ρ1

ρ2 − ρ1
.

Therefore, using Property 6 of the Dickson–Hipp operator of Li and Garrido [4], h̃1(s) − h̃2(s) becomes

h̃1(s) − h̃2(s) = h̃1(0)
(s − ρ1)(s − ρ2)

ρ1ρ2
+ (s − ρ1)(s − ρ2)


h̃2(ρ1)

ρ1(ρ1 − ρ2)
+

h̃2(ρ2)

ρ2(ρ2 − ρ1)



−


h̃2(s) − h̃2(ρ1)

s − ρ2

ρ1 − ρ2
− h̃2(ρ2)

s − ρ1

ρ2 − ρ1


= (s − ρ1)(s − ρ2)


Γ0Γρ2Γρ1h1(0) −


h̃2(s)

(s − ρ1)(s − ρ2)

−
h̃2(ρ1)

(s − ρ1)(ρ1 − ρ2)
−

h̃2(ρ2)

(s − ρ2)(ρ2 − ρ1)


= (s − ρ1)(s − ρ2)(Γ0Γρ2Γρ1h1(0) − ΓsΓρ2Γρ1h2(0)). (5.4)

It is easy to prove that Γ0Γρ2Γρ1h1(0) = c2 which implies that (5.4) becomes

h̃1(s) − h̃2(s) = (s − ρ1)(s − ρ2)(c2 − ΓsΓρ2Γρ1h2(0)). (5.5)

Combining (5.3) and (5.5) with Φ̃(s) =
f̃1(s)+f̃2(s)

−(h̃1(s)−h̃2(s))
, one deduces Φ̃(s) = −

ΓsΓρ2Γρ1 f2(0)
c2−ΓsΓρ2Γρ1 h2(0)

which leads to (5.2). This
completes the proof. �

Using Lemma 5.1, we are now in a position to derive the defective renewal equation for Φ(u).

Theorem 5.1. Φ(u) satisfies the following defective renewal equation:

Φ(u) = κδ

∫ u

0
Φ(u − y)ζ (y)dy + ϑ(u), (5.6)

where

κδ =
λ

c
Γ0Γρ1bF∗G(0), ζ (y) =

Γρ1bF∗G(y)
Γ0Γρ1bF∗G(0)

,

and

ϑ(u) = −
[λ(1 − θ)(Γρ2Γρ1A2(u) − Γρ2Γρ1A1(u)) + λc(1 − θ)(Φ1(0)Γρ2Γρ1bF (u) − Φ(0)Γρ2Γρ1bF∗G(u)) − cΓρ1w(u)]

c2
,

A1(u) and A2(u) are the inverse image functions of b̃F (s)ω̃∗(s) and b̃F∗G(s)ω̃(s), i.e., ΓsA1(0) = b̃F (s)ω̃∗(s) and ΓsA2(0) =

b̃F∗G(s)ω̃(s).

Proof. From the definition of the Dickson–Hipp operator Γ , one deduces

ΓsΓρ2Γρ1h2(0) = λ(λ + δ)ΓsΓρ2Γρ1bF∗G(0) +

λc


sb̃F∗G(s)−ρ2 b̃F∗G(ρ2)
s−ρ2

−
sb̃F∗G(s)−ρ1 b̃F∗G(ρ1)

s−ρ1


ρ1 − ρ2

= λ(λ + δ)ΓsΓρ2Γρ1bF∗G(0)

+ λc


b̃F∗G(s) − ρ2ΓsΓρ2bF∗G(0)

ρ1 − ρ2
−

b̃F∗G(s) − ρ1ΓsΓρ1bF∗G(0)
ρ1 − ρ2



= λ(λ + δ)ΓsΓρ2Γρ1bF∗G(0) + λc


ρ1ΓsΓρ1bF∗G(0) − ρ2ΓsΓρ2bF∗G(0)
ρ1 − ρ2


= λ(λ + δ)ΓsΓρ2Γρ1bF∗G(0) + λc(ΓsΓρ1bF∗G(0) − ρ2ΓsΓρ2Γρ1bF∗G(0))

= λcΓsΓρ1bF∗G(0). (5.7)
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Let Ã1(s) = b̃F (s)w̃∗(s) and Ã2(s) = b̃F∗G(s)w̃(s). From the definition of the Dickson–Hipp operator Γ , we can deduce

ΓsΓρ2Γρ1 f2(0) = λ(1 − θ)(ΓsΓρ2Γρ1A2(0) − ΓsΓρ2Γρ1A1(0)) + λc(1 − θ)(Φ1(0)ΓsΓρ2Γρ1bF (0)

− Φ(0)ΓsΓρ2Γρ1bF∗G(0)) − (λ + δ)ΓsΓρ2Γρ1w(0) +

c


sw̃(s)−ρ2w̃(ρ2)
s−ρ2

−
sw̃(s)−ρ1w̃(ρ1)

s−ρ1


ρ2 − ρ1

= λ(1 − θ)(ΓsΓρ2Γρ1A2(0) − ΓsΓρ2Γρ1A1(0)) + λc(1 − θ)(Φ1(0)ΓsΓρ2Γρ1bF (0)

− Φ(0)ΓsΓρ2Γρ1bF∗G(0)) − (λ + δ)ΓsΓρ2Γρ1w(0) +
c(ρ1ΓsΓρ1w(0) − ρ2ΓsΓρ2w(0))

ρ2 − ρ1

= λ(1 − θ)(ΓsΓρ2Γρ1A2(0) − ΓsΓρ2Γρ1A1(0)) + λc(1 − θ)(Φ1(0)ΓsΓρ2Γρ1bF (0)
− Φ(0)ΓsΓρ2Γρ1bF∗G(0)) − cΓsΓρ1w(0)

= −c2Γsϑ(0). (5.8)

Therefore, substituting (5.7) and (5.8) into (5.2), one deduces

Φ̃(s) =
λ

c
Φ̃(s)ΓsΓρ1bF∗G(0) + Γsϑ(0). (5.9)

Inverting the Laplace transform in (5.9), one finds

Φ(u) =
λ

c

∫ u

0
Φ(u − y)Γρ1bF∗G(y)dy + ϑ(u)

=
λ

c
Γ0Γρ1bF∗G(0)

∫ u

0
Φ(u − y)

Γρ1bF∗G(y)
Γ0Γρ1bF∗G(0)

dy + ϑ(u)

which corresponds to (5.6).
For (5.6) to be a defective renewal equation, it remains to show that κδ < 1. Let us first assume that δ > 0. By comparing

(5.7) at s = 0 to the expression for κδ , it follows that κδ =
Γ0Γρ2Γρ1 h2(0)

c2
. From (5.5) at s = 0,

κδ =
Γ0Γρ2Γρ1h2(0)

c2
= 1 −

h̃1(0) − h̃2(0)
c2ρ1ρ2

= 1 −
δ(δ + λ)

c2ρ1ρ2
< 1,

given that ρ1(δ) > 0 and ρ2(δ) > 0. For δ = 0, we know that

κ0 =
λ

c
Γ0Γ0bF∗G(0) =

λ

c
(µF + µG) < 1,

where the inequality is derived via (2.2). �

Now, we define an associated compound geometric distribution function K(u) = 1 − K(u) as follows:

K(u) =
ϵ

1 + ϵ

∞−
n=1


1

1 + ϵ

n

Z
∗n

(u), u ≥ 0,

where ϵ = (1− κδ)/κδ , Z
∗n

(u) is the tail of the n-fold convolution of Z(u) = 1− Z(u) =
 u
0 ζ (y)dy. Explicit solutions of the

defective renewal equation (5.6) can be derived directly by applying Theorem 2.1 of [5].

Proposition 5.1. The expected discounted penalty functionΦ(u) satisfying the defective renewal equation (5.6) can be expressed
as

Φ(u) =
1
ϵ

∫ u

0
[1 − K(u − y)]dB(y) +

B(0)
ϵ

[1 − K(u)], (5.10)

or

Φ(u) =
1
ϵ

∫ u

0
B(u − y)dK(y) +

1
1 + ϵ

B(u), (5.11)

where B(u) = ϑ(u)/κδ .

Proof. The proof is straightforward using Theorem 2.1 of [5] and Eq. (5.6). �
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Remarks. When θ = 1, that is to say, in any time period, the main claim and its associated by-claim occur simultaneously.
Actually, this risk model is the compound Poisson risk model and the claim amounts are {Yi + Xi}i≥1 with common
distribution function F ∗ G(x). In this case, Eq. (5.6) may be simplified as

Φ(u) =
λ

c

∫ u

0
Φ(u − x)

∫
∞

x
e−ρ1(y−x)dF ∗ G(y)dx +

λ

c

∫
∞

u
e−ρ1(x−u)

∫
∞

x
w(x, y − x)dF ∗ G(y)dx.

This equation is consistent with Eq. (2.34) in [4]; the only difference is that we use X + Y as our claim amount random
variable while Gerber and Shiu [4] consider X .

6. Explicit results for exponential claim size distributions

We now consider the case where the claim amounts from both classes are exponentially distributed, with distribution
functions F ∼ Exp(ν) and G ∼ Exp(ω), respectively, where ν = 1/µF and ω = 1/µG; then b̃F (s) = ν/(ν + s) and
b̃G(s) = ω/(ω + s). Moreover, if ν ≠ ω, then

F ∗ G(x) = 1 −
νe−ωx

− ωe−νx

ν − ω
, F ∗ G ∗ G(x) = 1 −

ω2e−νx
+ νe−ωx(ν + νωx − ω(2 + xω))

(ν − ω)2
,

and if ν = ω, then

F ∗ G(x) = e−xν(exν − 1 − xν), F ∗ G ∗ G(x) =
1
2
e−xν(2exν − 2 − 2xν − x2ν2).

From (5.2), we know that

Φ̃(s) =
(s − ρ1)(s − ρ2)ΓsΓρ2Γρ1 f2(0)

−(cs − δ − λ)2 − λb̃F∗G(s)(cs − δ − λ)
. (6.1)

It turns out that (6.1) can be transformed to another expression by multiplying both the denominator and numerator by
(s + ν)(s + ω):

Φ̃(s) =
(s + ν)(s + ω)(s − ρ1)(s − ρ2)ΓsΓρ2Γρ1 f2(0)

(s + ν)(s + ω){−(cs − δ − λ)2 − λb̃F∗G(s)(cs − δ − λ)}
, (6.2)

where in the numerator of (6.2)

(s + ν)(s + ω)ΓsΓρ2Γρ1 f2(0) = (s + ν)(s + ω)[λ(1 − θ)(ΓsΓρ2Γρ1A2(0) − ΓsΓρ2Γρ1A1(0)) − cΓsΓρ1w(0)]

+ λc(1 − θ)


(s + ω) ×

[
νΦ1(0)

(ρ1 + ν)(ρ2 + ν)
−

νωΦ(0)
(ρ2 + ν)(ρ1 + ω)(ρ2 + ω)

−
νωΦ(0)

(ρ1 + ν)(ρ2 + ν)(ρ1 + ω)

]
+

νωΦ(0)
(ρ1 + ω)(ρ2 + ω)


.

The common denominator of (6.2), denoted by D4(s), is a polynomial of degree 4 with the leading coefficient −c2, given by

D4(s) = −(cs − δ − λ)2(s + ν)(s + ω) − λνω(cs − δ − λ),

which has four roots on the complex plane and all the complex roots are in conjugate pairs. Noting that s = ρ1 and s = ρ2
are two roots, we have

D4(s) = −c2(s − ρ1)(s − ρ2)

2∏
i=1

(s + Ri).

Note also that all Ri’s have positive real parts, since, otherwise, they would also be roots of Eq. (4.3), which is a contradiction
to the conclusion of Proposition 4.1.

Furthermore, if R1, R2 are distinct, we obtain, by partial fractions, that

1
(s + R1)(s + R2)

=
a1

s + R1
+

a2
s + R2

,
s + ω

(s + R1)(s + R2)
=

b1
s + R1

+
b2

s + R2

(s + ν)(s + ω)

(s + R1)(s + R2)
= 1 +

c1
s + R1

+
c2

s + R2
,
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where a1 = 1/(R2 − R1), a2 = 1/(R1 − R2), bi = (ω − Ri)ai, and ci = (ν − Ri)(ω − Ri)ai, for i = 1, 2. Then (6.2) can be
simplified to

Φ̃(s) = λc(1 − θ)


νωΦ(0)

(ρ1 + ω)(ρ2 + ω)

2−
i=1

ai
s + Ri

+

2−
i=1

bi
s + Ri

[
νΦ1(0)

(ρ1 + ν)(ρ2 + ν)

−
νωΦ(0)

(ρ2 + ν)(ρ1 + ω)(ρ2 + ω)
−

νωΦ(0)
(ρ1 + ν)(ρ2 + ν)(ρ1 + ω)

]

+


1 +

2−
i=1

ci
s + Ri


[λ(1 − θ)(ΓsΓρ2Γρ1A2(0) − ΓsΓρ2Γρ1A1(0)) − cΓsΓρ1w(0)],

where Φ(0), Φ1(0) can be derived from (4.4) and (4.5).
Accordingly, explicit expressions for Φ(u), when the claim sizes from both of the classes are exponentially distributed,

are given by

Φ(u) = λc(1 − θ)


νωΦ(0)

(ρ1 + ω)(ρ2 + ω)

2−
i=1

aie−Riu +

2−
i=1

bie−Riu
[

νΦ1(0)
(ρ1 + ν)(ρ2 + ν)

−
νωΦ(0)

(ρ2 + ν)(ρ1 + ω)(ρ2 + ω)
−

νωΦ(0)
(ρ1 + ν)(ρ2 + ν)(ρ1 + ω)

]
+ λ(1 − θ)(Γρ2Γρ1A2(u) − Γρ2Γρ1A1(u)) − cΓρ1w(u)

+

2−
i=1

cie−Riu∗{λ(1 − θ)(Γρ2Γρ1A2(u) − Γρ2Γρ1A1(u)) − cΓρ1w(u)}, (6.3)

where ∗ denotes the operation of convolution which is different from the distribution functions convolution.
Now, we discuss the special case δ = 0. In this situation,

D4(s) = −(cs − λ)2(s + ν)(s + ω) − λνω(cs − λ) = 0

has four roots, namely

s1 = ρ1 = 0, s2 = ρ2 =
λ

c
, s3 = −R1 =

λ − cν − cω − Λ

2c
, s4 = −R2 =

λ − cν − cω + Λ

2c
,

where Λ =


(cν + cω − λ)2 − 4c(cνω − λν − λω). The positive relative security loading condition, c > λ(1/ω + 1/ν),
implies that only s2 is positive. This result also confirms the conclusion of Proposition 4.1.

Example 6.1. Assume that δ = 0,w(x1, x2) = 1; then (6.3) is the ruin probability φ(u). Accordingly, we havew1(u) = F̄(u),
w2(u) = F ∗ G(u), and w3(u) = F ∗ G ∗ G(u). From (6.3), we obtain the ruin probability

φ(u) = e
(λ−cν−cω−Λ)u

2c
λ(λ(ω + ν) − cων){λ2

+ cω(c(ω + 2θν − ν) − Λ) + λ(c(ν + 2ω) − Λ)}

cωνΛ(λθ + cω)(c(ω + ν) − λ + Λ)

+ e
(λ−cν−cω+Λ)u

2c
λ(λ(ω + ν) − cων){λ2

+ cω(c(ω + 2θν − ν) + Λ) + λ(c(ν + 2ω) + Λ)}

cωνΛ(λθ + cω)(λ − c(ω + ν) + Λ)
, u ≥ 0. (6.4)

Two extreme cases of (6.4) are

φ(u) = e
(λ−cν−cω−Λ)u

2c
λ(λ(ω + ν) − cων){λ2

+ cω(c(ω − ν) − Λ) + λ(c(ν + 2ω) − Λ)}

c2ω2νΛ(c(ω + ν) − λ + Λ)

+ e
(λ−cν−cω+Λ)u

2c
λ(λ(ω + ν) − cων){λ2

+ cω(c(ω − ν) + Λ) + λ(c(ν + 2ω) + Λ)}

c2ω2νΛ(λ − c(ω + ν) + Λ)
, for θ = 0,

φ(u) =
e

(λ−cν−cω−Λ)u
2c λ[(ω + ν)(Λ − λ) − c(ν2

+ ω2)] + e
(λ−cν−cω+Λ)u

2c λ[(ω + ν)(Λ + λ) + c(ν2
+ ω2)]

2cωνΛ
,

for θ = 1.

Another value of interest in Example 6.1 is the impact of the delay of by-claims on the ruin probability. We can prove the
following result.

Theorem 6.1. For the risk model considered in Example 6.1, the ruin probability, φ(u), decreases as the probability of the delay
of the by-claims increases, i.e., ruin probability is an increasing function of θ .
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Proof. Differentiating φ(u) with respect to θ , we can get

d
dθ

[
e

(λ−cν−cω−Λ)u
2c

λ(λ(ω + ν) − cων){λ2
+ cω(c(ω + 2θν − ν) − Λ) + λ(c(ν + 2ω) − Λ)}

cωνΛ(λθ + cω)(c(ω + ν) − λ + Λ)

+ e
(λ−cν−cω+Λ)u

2c
λ(λ(ω + ν) − cων){λ2

+ cω(c(ω + 2θν − ν) + Λ) + λ(c(ν + 2ω) + Λ)}

cωνΛ(λθ + cω)(λ − c(ω + ν) + Λ)

]
= e

(λ−cν−cω−Λ)u
2c

λ(λ(ω + ν) − cων)(λ + cω){2c2ων − cλ(ω + ν) + λ(Λ − λ)}

cων(c(ω + ν) − λ + Λ)(λθ + cω)2

+ e
(λ−cν−cω+Λ)u

2c
λ(λ(ω + ν) − cων)(λ + cω){2c2ων − cλ(ω + ν) − λ(Λ + λ)}

cων(λ − c(ω + ν) + Λ)(λθ + cω)2
.

Assume

Λ1 =
λ(λ(ω + ν) − cων)(λ + cω){2c2ων − cλ(ω + ν) + λ(Λ − λ)}

cων(c(ω + ν) − λ + Λ)(λθ + cω)2
,

Λ2 =
λ(λ(ω + ν) − cων)(λ + cω){2c2ων − cλ(ω + ν) − λ(Λ + λ)}

cων(λ − c(ω + ν) + Λ)(λθ + cω)2
.

The positive relative security loading condition, c > λ(1/ω+1/ν), implies that λ(ω+ν)− cων < 0, c(ω+ν)−λ+Λ > 0,
and λ − c(ω + ν) + Λ < 0. Moreover,

2c2ων − cλ(ω + ν) + λ(Λ − λ) = 2c(cων − λ(ω + ν)) + λ(c(ω + ν) − λ + Λ) > 0,
2c2ων − cλ(ω + ν) − λ(Λ + λ) = 2c(cων − λ(ω + ν)) + λ(c(ω + ν) − λ − Λ) > 0.

From these discussions, it follows that Λ1 < 0 and Λ2 > 0. According to the definitions of Λ1 and Λ2, we know that

|Λ1|

|Λ2|
=

(2c2ων − cλ(ω + ν) + λ(Λ − λ))(c(ω + ν) − λ − Λ)

(2c2ων − cλ(ω + ν) − λ(Λ + λ))(c(ω + ν) − λ + Λ)
,

and moreover,

(2c2ων − cλ(ω + ν) + λ(Λ − λ))(c(ω + ν) − λ − Λ) − (2c2ων − cλ(ω + ν) − λ(Λ + λ))(c(ω + ν) − λ + Λ)

= 4cΛ(λ(ω + ν) − cων) < 0,

and then |Λ1|
|Λ2|

< 1. Also, it is easy to see that λ − cν − cω − Λ < λ − cν − cω + Λ < 0. Hence

d
dθ

[
e

(λ−cν−cω−Λ)u
2c

λ(λ(ω + ν) − cων){λ2
+ cω(c(ω + 2θν − ν) − Λ) + λ(c(ν + 2ω) − Λ)}

cωνΛ(λθ + cω)(c(ω + ν) − λ + Λ)

+ e
(λ−cν−cω+Λ)u

2c
λ(λ(ω + ν) − cων){λ2

+ cω(c(ω + 2θν − ν) + Λ) + λ(c(ν + 2ω) + Λ)}

cωνΛ(λθ + cω)(λ − c(ω + ν) + Λ)

]
> 0,

and then the ruin probability is an increasing function of θ .
Since the probability of the delay of the by-claim is 1 − θ , the ruin probability decreases as the probability of the delay

of the by-claims increases. This completes the proof. �

Example 6.2. Assume that δ = 0, w(x1, x2) = I(x1 ≤ x); then (6.3) is the distribution function of the surplus before ruin,
denoted by F(u, x). Accordingly, we have

w1(u) =

∫
∞

u
w(u, s − u)dF(s) =

∫
∞

u
I(u ≤ x)dF(s) = I(u ≤ x)

∫
∞

u
dF(s) = I(u ≤ x)F̄(u),

w2(u) = I(u ≤ x)F ∗ G(u), w3(u) = I(u ≤ x)F ∗ G ∗ G(u). Hence, when ν = ω, by (4.4) and (4.5), we have

F(0, x)

=
e−xνλ(λ + cν)(x2(θ − 1)θν2

− 2xν − 4) + e−x( λ
c +ν)λcν(1 − θ)(2 + 2xν + x2θν2) + 2λ(2λ + c(1 + θ)ν)

2cν(λθ + cν)
,

(6.5)

and

F1(0, x) =
e−xνλ(x2(θ − 1)θν2

− 2xν − 4) − e−x( λ
c +ν)λθ(2 + 2xν + x2θν2) + 2λ(2 + θ)

2(λθ + cν)
. (6.6)
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Then, by (6.3), F(u, x) can be derived for when 0 ≤ u < x as

F(u, x) =
cλ{2λ(θ − 1)(λ − cθν)(ν2

− R1R2) + e−
λ
c (x−u)−xνc2ν2R1R2(θ − 1)(2 + 2xν + θx2ν2) + 2e−uνχ1}

2R1R2ν(λ + cν)2

+
cλ{e−uR1−xνR2(R1 − ν)2 − e−uR2−xνR1(R2 − ν)2 − e−xν(R1 − R2)(R1R2 − ν2)}χ2

2R1R2ν(R1 − R2)(λ + cν)2

+
λ2c(θ − 1){ξ1(R1) − ξ1(R2)}

2ν(R1 − R2)(λ + cν)2(λθ + cν)
+

cλ{e−uR2R1ξ2(R2) − e−uR1R2ξ2(R1)}

R1R2ν(R1 − R2)(λ + cν)2

−
e−uνcλ(1 + θ + uθν)

ν
+

e−xνcλ{4 + 2xν + x2(1 − θ)θν2
}

2ν
, (6.7)

where ξ1(s) = 2e−us(cν2(λθ + cν)+ s(2λ2
+ 3cλν + c2θν2))− e−us−x( λ

c +ν)cν(2+ 2xν + x2θν2){ν(θλ+ cν)− s(λ+ c(2−

θ)ν)}−e−us−xν(λ+cν)2(4+2xν+x2(1−θ)θν2)s, ξ2(s) = λν2(θ −1)(cθν−λ)+s2(2λ2
+cλν(2+θ +θ2)+c2ν2(1+θ))−

sν(3λ2
+2cλν(2+θ+θ2)+c2ν2(1+2θ)),χ1 = R1R2


θ((2λ2

+ c2ν2)(1 + uν) + cλν(4 + 3uν)) − ν(uλ(λ + cν) − c2ν)

,

χ2 = 2c2ν2(1 + θ + θxν) + λ2(4 + 2xν + x2(1 − θ)θν2) + cλν(4 + 2xν + θ2(2 + 2xν − x2ν2) + θ(2 + x2ν2)), and for
when u ≥ x as

F(u, x) =
cλ2(1 − θ)(λ − cθν)(R1R2 − ν2)

R1R2ν(λ + cν)2
+

cλ(e−uR1−xνR2(R1 − ν)2 − e−uR2−xνR1(R2 − ν)2)χ2

2R1R2ν(R1 − R2)(λ + cν)2

+
cλ2(θ − 1)(cθν − λ)[e−(u−x)R1R2(R1 − ν)2 − e−(u−x)R2R1(R2 − ν)2]

R1R2ν(R1 − R2)(λ + cν)2
+

e−uνcxλ2ν(θ − 1)χ3

2(λ + cν)2

+
cλ{2e−(u−x)R1γ1(R1) − e−uR1−xνγ2(R1) + e−uR1−x( λ

c +ν)γ3(R1) − 2e−uR1γ4(R1)}

2R1ν(R2 − R1)(λ + cν)2(λθ + cν)

+
cλ{2e−(u−x)R2γ1(R2) − e−uR2−xνγ2(R2) + e−uR2−x( λ

c +ν)γ3(R2) − 2e−uR2γ4(R2)}

2R2ν(R1 − R2)(λ + cν)2(λθ + cν)

+
cλ{2ν(λ + cν)2(e−uR1−x(ν−R1)R2γ5(R1) − e−uR2−x(ν−R2)R1γ5(R2)) − e−xνχ4}

2R1R2ν(R1 − R2)(λ + cν)2
, (6.8)

where γ1(s) = λ(θ −1)(ν − s)2(cθν −λ)(λθ + cν), γ2(s) = λ(1−θ)s2(λ+ cν)2[4+2xν +θ(1−θ)x2ν2
], γ3(s) = s[ν(λθ +

cν)−s(λ+c(2−θ)ν)]cνλ(θ−1)(2+2xν+x2θν2), γ4(s) = λ(1−θ)ν2(cθν−λ)(λθ+cν)−s2[2λ3
+c(5−θ(1−θ−θ2))λ2ν+

c2(2+3θ+θ2)λν2
+c3ν3(1+θ)]+sν[2cθ3λ2ν+cλνθ2(3λ+4cν)+cν(3λ2

+cλν+c2ν2)+θ(3λ3
+cλ2ν+4c2λν2

+2c3ν3)],
γ5(s) = s(1 + xθν) − ν(1 + θ + xθν), χ3 = c[x2θν2

+ 2x(1 − θ)ν − 2 − uν(2 + xθν)] − λ[x(θ − 2 − xθν) + u(2 + xθν)],
χ4 = λ(1 − θ)(R1 − R2)(R1R2 − ν2)[λ(2 + 2xν + x2θν2) + cν(2xν − θ(2 + 2xν − x2ν2))].

On the other hand, when ν ≠ ω, by (4.4) and (4.5), we have

F(0, x) =
1

cν(λ + cν)(λθ + cω)


e−xν λ(λ + cν)(λ + cω)(ν2θ(θ − 1) + ω(ν − ω))

(ν − ω)2

+ e−xω λν2(λ + cν)(λ + cω)(ω − ν + ωθ(1 − θ)(1 + x(ω − ν)))

(ν − ω)2ω

+
λ(λ + cν)(λ(ν + ω) + cω(θν + ω))

ω
+ e−x( λ

c +ν) cλνω(1 − θ)(λ + cν)(ω − (1 − θ)ν)

(ν − ω)2

− e−x( λ
c +ω) λc(θ − 1)ν2(λ + cν)(ν + xθνω − ω(1 + θ + xθω))

(ν − ω)2


, (6.9)

and

F1(0, x) =
λ

ν(ν − ω)2(λθ + cω)
((ν − ω)2(ν(1 + θ) + ω) + e−xνω(ω(ν − ω) + θν2(θ − 1))

+ e−xων2(ν(xωθ(θ − 1) − 1) + ω(1 + θ + xθω − θ2(1 + xω))) − e−x( λ
c +ν)θνω(ω − ν(1 − θ))

− e−x( λ
c +ω)θν2(ν + xθνω − ω(1 + θ + xθω))). (6.10)

Hence, the expression for F(u, x) can also be given by (6.3).
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a b

Fig. 1. (a) Ruin probabilities in Example 6.1. (b) The distribution functions, F(0, x), in Example 6.2.

7. Numerical illustrations

Let λ = 1, c = 2, F ∼ Exp(2), G ∼ Exp(1.5). The positive relative security loading condition (2.2) is obviously fulfilled.
In this case, R1 = 2.5 and R2 = 0.5.

Fig. 1(a) shows the ruin probabilities Φ(u) in Example 6.1, for different values of u ∈ [0, 5] and θ = 0, 0.25, 0.5, 0.75, 1.
From this graph, we can see that, as expected, these ruin probabilities decrease as the initial surplus u increases. Moreover,
with fixed u, ruin probabilities increase as θ increases. This result confirms the conclusion of Theorem 6.1.

Fig. 1(b) shows the distribution functions of the surplus before ruin, F(0, x) in Example 6.2, for different values of
x ∈ [0, 3] and θ = 0, 0.25, 0.5, 0.75, 1. From this graph, we can see that, with fixed x, these distribution functions also
increase as θ increases.

With fixed θ = 0.75, the F(u, x) in Example 6.2 can be derived for when 0 ≤ u < x as

F(u, x) = −0.4e−2.5(u+x)
− 0.16667e−2.5u

− 2.05556e−0.5u
+ 0.8e−0.5u−2.5x

− 2e0.5u−2.5x

+ e−1.5x(5.6 + 3.6x) − e−0.5u−1.5x(3.57778 + 2.3x) + e0.5u−2x(1.66667 − 1.5x)
+ e−2.5u−2x(0.33333 − 0.3x) + e−2.5u−1.5x(0.46667 + 0.3x) + e−0.5u−2x(−0.66667 + 0.6x),

and for when u ≥ x as

F(u, x) = −0.3e−2.5(u+x)
− 0.1e−0.5u−2.5x

+ 0.2e−2.5u+0.5x
+ e−2.5u−2x(0.275 − 0.225x)

− e−0.5u−2x(0.291667 + 0.075x) + e−0.5u−1.5x(1.42222 − 0.05x) + e−2.5u−1.5x(0.23333 + 0.15x)
+ e−0.5u−x(−1 + 0.675x) − 0.075e−2.5u+xx + 0.18e−2.5(u−x)(0.346668 + 0.80000x − x2)
+ e−0.5(u−x)(49.5 − 27x + 6.75x2) + e−0.5u(−49.5306 + 2.25x − 1.125x3)
+ e−2.5u(−0.339533 − 0.15x + 0.075x3).

8. Concluding remarks

In this paper, we study the compound Poisson risk model with delayed claims. Two kinds of dependent claims: main
claims and by-claims, are defined. In this risk model, there will be a main claim Yi in every epoch Ti of the Poisson process
and the main claim Yi will induce a by-claim Xi. Moreover, the by-claim Xi and its associated main claim Yi may occur
simultaneously with probability θ , or the occurrence of the by-claim Xi may be delayed to Ti+1 with probability 1− θ . If the
occurrence of the by-claim Xi is delayed to Ti+1, we assume that the occurrence of the delayed by-claim Xi is independent
of the occurrence of the next main claim Yi+1. The results obtained in this paper show (although the risk process is neither
a compound renewal nor a compound Poisson one) that the expected discounted penalty function satisfies the defective
renewal equation. The results also illustrate the impact of the delay of by-claims on the expected discounted penalty
function.

We also derive the explicit expressions for the expected discounted penalty functions when the claims from both classes
are exponentially distributed. The results may be extended if, for example, the claim size distributions for both classes are
Erlang(n), or more generally, from the Kn(n ∈ N+) family.
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