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a b s t r a c t

Efficient numerical methods for describing a garment’s mechanical behavior during wear
have been identified as the key technology for garment simulation. This paper presents
a finite-element mechanical contact model based on Mindlin–Reissner shell theory for
a three-dimensional human body and garment. In this model, the human body and the
garment are meshed as basic contact cells, these contact cells between the human body
and the garment are defined as the contact pair to describe the contact relationship,
and the mathematical formulation of the finite-element model is defined to describe the
strain–stress performance of the three-dimensional human body and garment system. By
using the solution given by the computer code and the programs specifically developed,
the calculations of the mechanics in the basic cells of the human body and the garment
have been able to be carried out. The simulation results show that the model of rationality,
a good simulation results and simulation efficiency.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The finite-element approach employing a shell element has been used by a number of researchers. It has a rigorous
mechanical basis and can be applied in different areas. Finite elements have been applied to yarn mechanics and fibrous
assemblies for decades, but a completely rigorous mechanical analysis approach using a finite-element model for a human
body and a garment has never been completed. In this paper, a finite-element mechanical contact model based on
Mindlin–Reissner shell theory for a three-dimensional (3D) human body and garment is reported.

A garment is a typical object with small bending rigidity compared with its in-plane rigidity, and as such has been
studied by a number of researchers. Typical numerical methods have been proposed to simulate the large displacement
and small strain problem of the draped cloth within the framework of continuum mechanics. The garment’s mechanical
simulation process needs to construct 3D garment geometric data and a mechanical analysis model. In order to construct
the meshed 3D garment data model, Wang reported a geometrical method to generate the 3D garment data to be used
in the mechanical analysis [1,2]. Gao reported a subdivision method to construct the 3D virtual garment [3]. Dai reported a
finite-elementmodel to simulate compression stockings using ABAQUS [4]. Zhang presented a numerical simulationmethod
using the finite-element method for garment pressure [5]. Terzopoulos et al. introduced a deformable model based on the
variational principle; the model was discretized by a finite-difference method [6]. Collier et al. studied the draping behavior
of fabrics by using a geometric nonlinear finite-element method based on classical plate theory [7]. However, only the
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Fig. 1. Architecture of the contact model.

geometrically nonlinear terms of the transverse displacement were included in their definition of the strains. Zhao et al.
proposed a geometric–physical model by combining thin-plate bending theory with the geometric constraints of fabric
inextensibility [8]. Kang et al. simulated the draping of woven fabric based on plate theory using the Mindlin–Reissner
hypothesis [9], Geometrical nonlinearity and orthotropy of the fabric were considered in their finite-element analysis. Gan
et al. developed a model using shell/plate elements, fabric deformation characterized by large displacements and rotations
but small strains, analyzed by using a geometric nonlinear finite-element method [10]. In recent years, some 3D clothing
computer-aided design (CAD) technologies have been reported too.Meng [11] reported an interactive virtual try-on clothing
design system, and Wang [12] introduced an interactive 3D garment design with constrained contour curves and style
curves.

However, the influences caused by the garment structure and the frictions between the human body and garment and the
transverse shear in garment are not taken into account in the studies mentioned above. This paper presents a finite-element
mechanical contact model based on Mindlin–Reissner shell theory for a 3D human body and garment, which can be used
to treat the garment as a flexible shell based on elasticity theory with the corresponding 3D human body–garment contact
model formulated. It can simulate the mechanical behavior of the human body and garment during wear. In this model, the
human body and garment are meshed as basic cells, contact cells between the human body and the garment are defined to
describe the contact relationship, and the mathematical formulation of the finite-element model is defined to describe the
strain–stress performance of the 3D human body and garment system. By using the solution given by the computer code
and the programs specifically developed, the calculations of the mechanics in the basic cells of the human body and the
garment have been able to be carried out. Results of themechanical behavior of human body and garment during wear have
obtained.

2. Finite-element mathematical formulations

Efficient numerical methods for describing a garment’s mechanical behavior during wear have been identified as the
key to the development of successful CAD systems for garment simulation. The finite-element method is used to solve this
problem because of its flexible shell based on elasticity theory.

The finite-element mechanical contact model based onMindlin–Reissner shell theory for a 3D human body and garment
includes some mathematical formulations. Fig. 1 shows the model architecture.

2.1. Contact model assumptions and descriptions

The relationship between a human body and a garment during wear is complex. In this system, considering the
requirement of computation and simulation, the model is based on following assumptions.

(a) The human body is a shell with very limited flexibility.
(b) The garment is an elastic, continuous shell with material linearity and geometric nonlinearity.
(c) The contact between the body and the garment is dynamic because of the contact feature that the magnitude of the

contact interface is comparable to the effective surfaces of the body and the garment [13].

To use finite-element methods (FEMs), the contact forces must be applied to each nodal point of the finite-element mesh.
Based on the assumptions above, the mesh cell of the 3D human body and garment is described by a four-node thin-plate
shell element. Fig. 2 shows the four-node thin-plate shell element.

A four-node thin-plate shell element has the performances about bending and dissepimental, it can be loaded in plate.
Every element can be translated and rotated in the x, y, and z axes. This gives a goodway to use this element to simulate a 3D
garment and human body. At the same time, using these types of element can decrease the model complexity and increase
the simulation efficiency.

According to the four-node thin-plate shell element, the 3D human body and garment can be described as a set of shell
elements; these shell elements are constructed as contact cells, and therefore the contact analysismodel between the human
body and the garment can be constructed.
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Fig. 2. Four-node thin-plate shell element.

Fig. 3. The external forces and internal stresses on the garment.

By the virtual displacement principle and continuum hypothesis [14], the contact balance equation between the human
body and the garment can be written as∫

v

τijδeijdV − WL − WI − WC =

∫
vG

τ G
ij δe

G
ijdV − WG

L − WG
I − WG

C

= 0, (1)

whereWL is the virtual work by the external force,WC is the virtual work by the contact force,WI is the virtual work by the
inertia force, and ui is the displacement.

Here,

WL =

∫
Sσ

fgδuidS +

∫
VG

ρggiδuidV (2)

WI =

∫
VG

−ρg üiδuidV ≈ 0 (3)

Wc =

∫
SGc

F δ
g uidS, (4)

where ρg is the mass density, fg is the friction, g is the acceleration due to gravity, and Fg is the contact force on garment.
Fig. 3 shows these definitions.

In the mathematical model, there are other restrictive conditions.

(a) The deformation in the direction of the shell thickness is ignored, and the normal on the surface during deformation is
still kept as the surface’s normal.

(b) Transverse bending of the shell and displacement in surface are out of the picture.
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Fig. 4. The two boundary points in the human body and garment.

2.2. Control equations

In order to compute the contact model of the human body and garment, some control equations are important.

2.2.1. Impenetrability conditions
In the simulation, in order to protect infiltration between the garment and the human body, the contact cell positions V G

and VH of the garment tSGC and the human body tSHC are not allowed to run through each other during the contact process.
So the impenetrability conditions are important. Fig. 4 shows the two boundary points in the human body and garment. P
is any point in the garment, and tg is the distance between P and Q at time t .

tg = g(txGP , t) =
txGP −

txHQ
 = min

txGP −
txH

 , (5)

where tgN is the distance between P and Q in the normal direction at time t .

tgN = g(txGP , t) = (txGP −
txHQ )tnH

Q , (6)

where txGP is the coordinate of point P at step t in tSG. So we can present the impenetrability condition, given in Eq. (7).

tgN = g(txGP , t) = (txGP −
txHQ )tnH

Q ≥ 0. (7)

2.2.2. Friction restriction
Similarly, according to the Coulomb friction model, there is a friction restrictive equation.

tFG
T

 =

tFG
1

2
+

tFG
2

21/2
≤ µ

tFG
N

 . (8)

Here, µ is the friction coefficient, tFG
T is the contact force in the cutting direction, and tFG

N is the contact force in the normal
direction.When

tFG
T

 < µ
tFG

N

, there is no relativemotion between the contact surfaces in the cutting direction, andwhentFG
T

 = µ
tFG

N

, there is relative motion between the contact surfaces in the cutting direction.

2.2.3. Constitutive equations of garment material
The constitutive equations are material dependent. For linearly elastic materials, the stress–strain relation may be given

by the generalized Hooke’s law [15], i.e.,

tsij = cijkltεkl, (9)

where cijkl are material constants, sij is a component of the second Piola–Kirchhoff stress tensor that is related to the Cauchy
stress componentσij(x), and εkl is a component of theGreen–Lagrange strain tensor to describe the deformation of geometric
nonlinearity, which consists of linear and nonlinear components:

teij =
tui,j +

tuj,i

/2, tηij =

tuk,i
tuk,j/2, (10)

where tui,j =
∂ tui
∂ tXj

.
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Fig. 5. Mid-surfaces of the four-node shell.

2.3. Finite-element equations in the contact system

Choosing the deformed configuration as the reference configuration, the position vector of a point Φ in the shell in the
current configuration is defined as

Φ (ε, η, ζ ) = φ (ε, η) + ζn (ε, η) (−h/2 ≤ ζ ≤ h/2) , (11)

where φ is a position vector locating points on the shell’s mid-surface (reference surface). The coordinate ζ measures the
distance between the mid-surface and points off the mid-surface along n. h is the shell thickness. ε and η are curvilinear
coordinates. The vector n is a unit vector normal to the shell mid-surface in the reference configuration.

The evolution of the director vectors n duringmotion of the shell depends on an orthogonal transformationmatrixΛ [16].
Let n = ΛE, where Λ is an orthogonal matrix such that ΛΛT

= I and E is an initially fixed unit vector. At any point on the
shell, this matrix is related to the unit director according to Λ = (E · n) I + E × n +

1
1+E·n (E × n) ⊗ (E × n), where ⊗

represents a tensor outer product operator.
In the four-node shell element, the kinematics variables consist of the displacement vector u and the director vector n.

Within a single element, the kinematics variables are approximated by interpolation.

u (ε, η) =

4−
1

N I (ε, η) uI ,

n (ε, η) =

4−
1

N I (ε, η) nI ,

where N I (ε, η) are the standard bilinear shape functions N I
= 1/4


1 + εεI

 
1 + ηηI


and uI and nI are the displacement

vector and the director of nodes, respectively.
Shear locking is commonly observed in the analysis of a thin plate or shell [14]. To avoid this phenomenon, the

interpolation method of the shear strain based on the assumed strain field is adopted [17]. This method prescribes the
shear to vary linearly between two opposite element edges.

γε =
1
2


(1 − η) γ B

ε + (1 + η) γ D
ε


γη =

1
2


(1 − ε) γ A

η + (1 + ε) γ C
η


where A, B, C, and D denote the middle points of the element edges, as shown in Fig. 5.

According to Eq. (11), the finite-element contact model in a 3D human body and garment can be described by the
following matrix equation:

K (φ, n) u = Fext − P (φ, n) . (12)

Here, K (φ, n) is the rigidity matrix:

K (φ, n) =

∫
V
BTDBdV . (13)

B is the strain matrix, P (φ, n) is the internal force, Fext is the external force, u is a function of the mid-surface displacement
vector 1φ, matrix variation 1Λ, 1φ is used to update the point position in the mid-surface, and 1Λ is used to update the
normal vector in the mid-surface.
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3. Numerical computations in contact model

3.1. Discretization of impenetrability conditions

At time t + 1t , Eq. (7) can be written as
t+1tgN = g(t+1txGP , t) = (t+1txGP −

t+1txHQ )t+1tnH
Q ≥ 0. (14)

The garment position function t+1txG and human body position function t+1txH can be written as
t+1txG =

txG + 1uG

t+1txH =
txH + 1uH ,

where 1uG and 1uH are displacement increments from time t to time t + 1t .
1uG

=
t+1tuG

−
tuG

1uH
=

t+1tuH
−

tuH .

From the equations above, the impenetrability conditions can be given as follows:
t+1tgN = (t+1txG −

t+1txH)t+1tnH

= (1uG
− 1uH)t+1tnH

+ (txG −
txH)t+1tnH

= uG
N − uH

N +
t gN ≥ 0 (15)

uG
N = 1uG

·
t+1tnH

uH
N = 1uH

·
t+1tnH

tgN = (txG −
txH)t+1tnH .

3.2. Discretization of friction conditions

The condition without relative slip in binder contact can be written as follows:

1uT = 1uG
T − 1uH

T = 0 when
tFG

T

 < µ
tFH

N

 . (16)

Here, 1uG
T and 1uH

T are tangential components of 1uA and 1uB, i.e., the tangential displacement increments of the contact
node from time t to time t + 1t . 1uT relativity tangential components of contact node.

The condition with relative slip in slither contact can be written as follows:
1uT = 1uG

T − 1uH
T ≠ 0 when

tFG
T

 = µ
tFG

N

 .
4. Modeling simulation and analysis

The contact analysis algorithm has two components.
(a) The definition of contact areas of the human body and garment.
(b) Computation of the contact model.

4.1. Simulation algorithm

The main algorithm for computational simulation of the finite-element contact model is as follows.

(1) Define the three-dimensional parameters of the garment and human body
(2) Define the material data used in the garment
(3) Mesh process and contact cell construction between human body and garment
(4) For each time step
(5) For every contact cell of the garment
(6) Calculate all impenetrability condition equations discretized at contact cells
(7) Calculate all friction condition equations discretized at contact cells
(8) Solve all position vectors of a point
(9) Calculate all normal vectors of a point
(10) Update every contact cell position vector for
(11) Store the strain–stress value during the simulation process to the data file
(12) Simulation results visualization and analysis
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Table 1
Material parameters of the human body.

Density (g/cm3) Tensile modulus (gf/cm2) Poisson’s ratio

0.6 205 0.3

Table 2
Material parameters of fabrics.

Fabric Density (g/cm3) Shear modulus (gf/cm2) Tensile modulus (gf/cm2) Thickness (cm) Bend modulus (gf/cm2)
Warp Weft Warp Weft

Nylon 0.408 2546.1 11867.7 13409.7 0.062 3.725 4.576
Cotton 0.404 1105.8 11712.5 11070.9 0.046 1.494 1.26

Fig. 6. Pressure distribution of cotton gilet front.

Fig. 7. Pressure distribution of nylon gilet, front.

4.2. Results and discussion

A finite-element analysis process has been implemented based on the method described above. The case studies aim to
illustrate the effectiveness of the model for describing the pressure distributions in a human body and in garments which
have different material properties or structure.

The material values of the human body are summarized in Table 1 [18].
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Fig. 8. Pressure distribution of cotton gilet, back.

Fig. 9. Pressure distribution of nylon gilet, back.

Fig. 10. Pressure distribution of the body wearing the cotton gilet, front.

Two sets of garments, which are made from a cotton gilet and a nylon gilet with the same style and size, and a cotton
one-piece dress are used in the numerical simulation.
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Fig. 11. Pressure distribution of the body wearing the nylon gilet, front.

Fig. 12. Pressure distribution of the body wearing the cotton gilet, back.

Thematerial parametersweremeasured by using theKawabata Evaluation System. Themeasured values are summarized
in Table 2 [19].

Figs. 6–15 show the simulation results during wear for garments with different material and different style.
Figs. 6 and 8 show the pressure distributions viewed from the front and back of the cotton gilet. Similarly, Figs. 7 and 9

show the pressure distributions viewed from the front and back of the nylon gilet. From the pressure contour plot, one can
see that the pressure is distributed unevenly over different parts of the body. Most of the areas covered by the clothing have
relatively low pressures, and high-pressure zones occur in the areas of the waist and upper chest with pressures.

Figs. 10 and 12 show the pressure distributions in the body wearing the cotton gilet. Similarly, Figs. 11 and 13 show the
pressure distributions in the body wearing the nylon gilet, which tend to be similar to those when wearing the cotton gilet.
However, the low-pressure zones are much greater and the high-pressure zones are much smaller. High-pressure zones are
observed in the waist and upper chest with pressure. Comparing the pressure contour plots, it is evident that the pressure
induced on the body by the denim garments is significantly higher than that by the knitted garments, suggesting that fiber
and fabric mechanical properties affect the garment pressure distribution and comfort perception.

Figs. 14 and 15 show the pressure distributions viewed from the front and back of the cotton one-piece dress. Most of
the areas covered by the clothing have relatively low pressures, but high-pressure zones occur in the areas of the waist and
upper chest. The contact is in the shoulder, chest, back, and buttocks. The difference in contact area between the cotton gilet
and the cotton one-piece dress is due to the garment structures.

These results indicate that the model is effective in describing the pressure distributions for both a human body and
garments that are made of materials with different physical properties or that have different structures.
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Fig. 13. Pressure distribution of the body wearing the nylon gilet, back.

Fig. 14. Pressure distribution of the body wearing the cotton one-piece dress, front.

Fig. 15. Pressure distribution of the body wearing the cotton one-piece dress, back.

5. Conclusions

This paper presents a finite-element mechanical contact model based on Mindlin–Reissner shell theory for a 3D human
body and garment. In thismodel, the human body and garment aremeshed as basic cells, contact cells between human body
and garment are defined to describe the contact relationship, and themathematical formulation of the finite-elementmodel
is defined to describe the strain–stress performance of the 3Dhuman body and garment system. According to the simulation,
the results can be summarized as follows. (1) Different garment materials will affect the simulation result, i.e., the finite-
element contact model based on Mindlin–Reissner shell theory has good expressive properties for different materials. (2)
The model can simulate the contact strain and displacement between a human body and a garment during wear. (3) Four-
nodes thin-plate shell elements have a simple structure, which is good for solving the physical equation, and the model has
good simulation efficiency.
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