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a b s t r a c t

A three-scale diffusionmodel for textileswas given in Goessens et al. (2015): consisting of a
fiber, yarn and roommodel. To analyze and simplify themodel, its characteristic timeswere
investigated in Goessens et al. (2015) [8, 9]. At these times the fiber and yarnmodel, and the
yarn and roommodel, respectively, tend to reach a partial equilibrium concentration. Here
an addition will be made to the model based upon the previous work. An overlap zone is
considered between the yarn and room level. Then the overlapping domain decomposition
technique is used to calculate the exchange of active ingredient from one level to another
in this zone. Themass balance for the systemwith the overlap zone is calculated and tested
in C-language.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider textiles wherein the fibers are coated with a polymer solution of an active ingredient (AI), e.g. an insect
repellent, a perfume or a healing substance. This substance can easily be replaced by other volatiles that first diffuse to the
outer boundary of the textile and from there on evaporate to the surrounding air. The application in mind has the purpose
to track the diffusion of an active component released by the fibers of an open textile structure, like a woven scrim, e.g. a
gauze bandage. Models and algorithms for this application were based on [1–4] and discussed in [5–7]. The model consists
of three levels, starting from the micro level of the fibers. Next the AI is diffusing to the yarn meso-level, considering the
concentration build up in a cross section of a yarn made out of fibers. Afterwards the AI is moving further to the outer
boundary of the textile and to the surrounding air represented by the room level. Upscaling from one level to another can
be done using volume averaging and/or the overlapping domain decomposition technique. In [8,9] the characteristic times
were calculated for amodel where only volume averagingwas used for upscaling. Now an addition is made using an overlap
zone where the exchange of AI from one level to another is happening. Solving the standard diffusion equations we know
which concentration is coming into this overlap zone at the left boundary, and we want to know how much is going to the
next level after upscaling in the overlap zone. Therefore we will investigate the relation between the Laplacian of both the
concentration and the flux at the left and right boundary of the overlap zone. That way we can express the characteristic
times, i.e. themoments and cumulants of the system in the overlap zone where concentration is averaged out in one level in
function of the other level. This gives an idea of how a perfect exchange of AI would look, or which properties of the textile
can influence this movement of substances to go faster or slower. Also it will be possible to implement the relation between
the left and right boundary of the overlap zone in the already existing C-code, which is using lsoda to solve the system.
The original C-code will be extended with the possibility of using domain decomposition for upscaling. For test purposes
the conservation of mass is recalculated for the new setting.
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We will calculate the relation between the left concentration and flux in function of the concentration and flux at the
right boundary. First we will do this for the simple one-dimensional case, afterwards for general dimensions d1 and d2 of
the two levels. Furthermore we will calculate these relations for a specific concentration function.

Based upon this, it becomes possible for future research to investigate what will happen if the setting is changing, e.g. a
different positioning of the levels and consequently the overlap zone, and what changes if we use the actual concentration
instead of the volume average in the overlapping zone equations.

2. One-dimensional overlap zone

The governing system of equations of the complete three-level model is
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with a homogeneous Neumann BC at the left boundaries and an evaporation flux at the right boundaries for the fiber and
yarn model (1)(a) and (1)(b):

∂Cf

∂ρ
(0, r, t) = 0, − Df

∂Cf

∂ρ
(ρmax, r, t) = vfy(Cf (ρmax, r, t) − Cy(r, t)), (2)

∂Cy

∂r
(0, t) = 0, − Dy

∂Cy

∂r
(Ry, t) = vyr(Cy(Ry, t) − Cr(0, t)). (3)

For the roommodel (1)(c) a homogeneous Neumann BC is present at the right boundary and at the left boundary there exists
an evaporation flux coming from the concentration in the yarn evaporating to the room:

D
∂Cr

∂x
(0, t) = αyrvyr(Cr(0, t) − Cy(Ry, t)),

∂Cr

∂x
(L, t) = 0. (4)

In the above system of Eqs. (1) the subscripts f , y and r stand for a quantity in the fiber, yarn and room respectively, C
represents the concentration of the AI, Df ,Dy and D are the respective diffusion coefficients, which are assumed to be
constant, vfy and vyr are the evaporation speeds from fiber to yarn and from yarn to room level resp. αyr is a constant of
proportion for the evaporation from yarn to room level. The constant τ is the tortuosity of the textile used. The term Γin
in (1)(b) is the volume averaged condensation/evaporation rate and is calculated as αfyvfy(Cf (ρmax) − Cy(r)) with αfy the
surface/volume ratio of the fiber.

As an upscaling method from fiber level to yarn level, volume averaging is used, the averaged outcome of one model
serves as boundary conditions for the other.

As described in [5] we will extend the domain of the yarn model with an overlap zone Ωo, i.e. a part of the domain of
the yarn will coincide with the domain of roommodel. There the PDE above is adapted with an extra sink-term Γout(t, Ωo)
which stands for the amount of AI that is removed from the meso-level due to diffusion to the macro-level. Also the BC at
the right boundary is changed to a homogeneous Neumann BC.

We are interested in the exchange of AI in this overlap zone, particularly the relation between the AI at the left boundary
of Ωo and that at its outer right boundary:
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,

where we used the Laplace transforms of the concentration of the AI in level 1 and 2, C1 and C2, and the Laplace transformed
flux of these concentrations, F1 and F2. We denote the left and right boundary of the overlap zone in the domain of level i by
Riℓ and Rir . We will work with the Laplace transformation of the quantities to be able to calculate the characteristic times of
the model as explained in [9,8].

For illustrative purpose we will explain the method used in the following sections with the one-dimensional diffusion in
one level from R = 0 to R = L. The relation between the left and right concentration and flux is then given by
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according to the PDE

∂C
∂t

(x, t) = D
∂2C
∂x2

(x, t), x ∈ [0, L].

To get to this matrix the equation is Laplace transformed

sLC(x, s) = D
∂2LC(x, s)

∂x2
,

and solved

LC(x, s) = A cosh


sx2

D


+ B sinh


sx2

D


.

Substituting x = 0 and x = L in this solution and (−D times) it’s derivative with respect to x for the flux gives 4 equations,
and 6 unknowns. Solving this system to LC(0, s) and LF(0, s) in function of LC(L, s) and LF(L, s) gives the above matrix.
For the more complex systems of equations this exchange matrix A will need further simplification using both Maple and
calculations by hand.

We will now introduce the overlap zone equations for two overlapping levels in one dimension as
∂C1

∂t
= D

∂2C1
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,

∂C2
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
,

where C̄1 and C̄2 stand for the mean concentration of AI in domain 1 and 2, resp., k is a constant of proportionality
corresponding to the rate of exchange between both levels.

The boundary conditions are

F1|R1r = 0, F2|R2l = 0.

Taking the Laplace transform of these equations and solving for LC1 and LC2 gives
LC1 = A cosh
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andmakes it possible to look at the left and right boundaries of bothdomains.Wewill denoteLCi andLFi at the left boundary
of domain i as LCiℓ and LFiℓ. This leads to ten equations each giving an expression for the ten unknowns LC1ℓ, LF1ℓ, LC2ℓ,
LF2ℓ, LC1r , LF1r , LC2r , LF2r , LC̄1 and LC̄2. However according to the BC’s we put LF1r = LF2ℓ = 0. Furthermore we have
the unknowns A, B, Ã and B̃. In total we end up with 10 equations for 12 unknowns, which leads to a solution with two
degrees of freedom. Solving this system for all unknowns except for LC2r and LF2r leads to a solution in function of the
latter two. In particular we are interested in the solutions for LC1ℓ and LF1ℓ, in order to be able to calculate the matrix of
interest A,

A =


(2k + s)s
k(k + s)

T +
k

k + s
(2k + s)s
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T 2
+
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T +
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 ,

where T = coth
√

k+s L
√
D

 √
k+s L
√
D

. The diagonal entries are equal whichmeans both concentration and flux of the AI at the left
boundary of domain 1 have the same dependence on concentration and flux respectively at the right boundary of domain
2. If there was a perfect exchange between the two overlap zones this matrix becomes (limk→∞)

A =


1 0
2Ls 1


,

where we see that the Laplace transformed concentration in both levels is the same at both boundaries and the flux changes
linearly with this concentration. The system thus acts as if there was only one level with double length. If we should want
to calculate the first moment of the system i.e. the mean position in time when a particle passes a certain position in space,
we are interested in the above matrix with s equal to zero

A =

1
2T (0) − 1

kL
0 1

 ,
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where we notice that the first moment and consequently also the residence time of the first level is the same as that of the
second system.

In a more general setting the diffusion coefficients of the two levels are not equal, and the exchange rate decreases with
the length of the overlap zone, which also doesn’t need to be equal in a more general case,
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,
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.

Following the same technique as above the needed matrix then becomes
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Here Di and Li are the diffusion coefficient and length of the overlap zone in the domain of level i and Ti = coth
√

Lis+k
√
Di

√
Li


√
Lis+k
√
Di

√
Li.

3. Two-dimensional cylindrical and one-dimensional Cartesian diffusion

The application in mind is described using three levels of diffusion, Eq. (1). The overlap zone is situated between the
last two levels, i.e. the yarn level which is described by a two-dimensional cylindrical equation and the room level which is
described by a one-dimensional Cartesian equation. In this overlap zone the governing equations of Eq. (1) are adapted to
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where R1 and R2 are the outer left and outer right boundary of the overlap zone of the yarn cylinder, h is the height of a yarn
cylinder, A is the area of the room’s wall perpendicular to the dimension, L is the length of the overlap zone of the room in
the direction of the dimension, D1 and the D2 are the respective diffusion coefficients. The proportionality constant q stands
for the discharge of the concentration in m3

s . The Laplace transformed system reads
−


s +

q
π

R2
2 − R2

1


h


LC1 +

D1

r
∂

∂r


r
∂LC1

∂r


= −

q
π

R2
2 − R2

1


h
LC̄2,

−


s +

q
AL


LC2 + D2

∂2

∂x2
(LC2) = −

q
AL

LC̄1,

with its solution
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where V1 = π
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
h, Li denotes LCi and Lim stands for LC̄i, i = 1, 2, I0 and K0 are the modified Bessel functions of

the first and second kind of order zero.
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Fig. 1. Overlap zone of two levels in the model.

with

Bn,m(r1, r2, C) = (−1)|n−m|+1
In
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Cr2
 +

Kn

√
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√
Cr2
 ,

a combination of In and Kn, i.e. the modified Bessel functions of first and second kind of order n.
Then for s = 0 the aimed matrix is

A =


1

√
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D2q

1
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A
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A
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√
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A
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 .

It is clear that the law of conservation of mass is satisfied since we get that hR1LF1ℓ = ALF2r .
For the limit q to infinity, i.e. the perfect exchange of material as if there were no two separate levels, the matrix is

A =

 1 0
s (AL + V1)

hR1

A
hR1

 .

4. Multidimensional diffusion in both levels

We now will investigate the most general setting possible, where both the yarn and room level have different given
dimensions d1 and d2 and different diffusion coefficients D1 and D2. We suppose that both overlap zones are oriented as in
Fig. 1.

The governing equations for the two overlapping levels are
∂C1

∂t
=
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∂
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
,

where Vdi is the volume of the overlap zone, Wdi is the codimension such that the total volume is that of the unit ball, q is
the exchange rate of AI from one level to another. In this setting the volume averages are calculated as

C̄i =
di

1rdi

 Rmax

Rmin

Cirdi−1 d r, i = 1, 2, 3.

This system of equations is Laplace transformed and solved as
L1(r, s) =

A1

r
d1
2 −1

I d1
2 −1


s + q1
D1

r


+
B1

r
d1
2 −1

K d1
2 −1


s + q1
D1

r


+
q1

s + q1
L2m(s),

L2(r, s) =
A2

r
d2
2 −1

I d2
2 −1


s + q2
D2

r


+
B2

r
d2
2 −1

K d2
2 −1


s + q2
D2

r


+
q2

s + q2
L1m(s),

where qi =
q

VdiWdi (1rdi )
, Li denotes LCi and Lim stands for LC̄i, Riℓ < r < Rir , the functions I di

2 −1
and K di

2 −1
are the Bessel

functions of first and second kind of order di
2 − 1, i = 1, 2. The matrix A again uses the combination of Bessel functions
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Bn,m for s = 0,

A =


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−

1
√
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
.

The limit situation for perfect exchange of the active ingredient corresponds to the matrix

A =

 1 0

sR1ℓ

d1


1rd2


Vd2Wd2

R1ℓVd1Wd1
+


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d1
− 1


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2r

Vd1Wd1d1R
d1−1
1ℓ

 .

Both mentioned matrices for general dimensions are according with the above results for more specific dimensions.

5. Application

With the abovematrices it is possible to calculate the exchange of concentration of the active ingredient for specific fluxes
and functions at the left boundary of the overlap zone of one of the domains. For example if we take the Dirac-function for
the concentration or the flux at one of the boundaries, respectively we can easily calculate the unknown concentration
and/or flux at the other boundary, see Table 1. Each of these values can be helpful in the determination of the characteristic
times of the system. We are particularly interested in the Area Under Curve (AUC), i.e. the concentration at s = 0, the first
moment, i.e. the mean flux and the first cumulant, i.e. the residence time. For the first setting s = 0 in 1

A11
gives the Laplace

transform of the concentration at the right boundary of the second domain, i.e. the AUC for this domain, which is the Dirac-
function itself. Since at the left boundary of the first domain there is a peak of concentration and the system is isolated at
the right boundary of the second domain, a concentration build up happens until everything stabilizes to the equilibrium
concentration at the right boundary, equaling the initial concentration C1ℓ. The second case lets us calculate the mean flux
and the residence time if the concentration of AI is taken away immediately at the right boundary of the second domain.

The mean flux, i.e. the first moment, equals
Vd1Wd1 d1R

d1−1
1ℓ

Vd2Wd2 d2R
d2−1
2r

, the residence time is

q1 + q2
q1q2

R2ℓ

R2r

d2
−

R2r

d2


q2
D2

B d2
2 +1, d22


R2r , R2ℓ,

q2
D2


B d2

2 ,
d2
2


R2r , R2ℓ,

q2
D2

 
R2ℓ

R2r

d2
− 1

−
1
q1

.

The third case gives the AUC for the first domain. This again is equal to the Dirac-function. The fourth case also can be used to
calculate the first moment and cumulant of the systemwith a similar result as above but with indices 1 and 2 interchanged.
Once the dimensions and other parameters of the system are known, we can numerically calculate the characteristic times
using these formulas.

6. Adaptation of C-code and mass balance in time domain

The system of Eqs. (1) was programmed in C code and solved using lsoda and fortran77. Using the input of Table 2
for the variables the plot in Fig. 2 was generated.

To solve this system numerically the ρ-domain was divided into nf intervals, the r-domain into ny intervals and the
x-domain into nr intervals. The time domain was divided in varying intervals using δt as default value, but these intervals
are adjusted during calculations by the lsoda-solver according to the given relative and absolute tolerances. The variable
hmax is the maximal stepsize for this solver. The mass balance was calculated as an extra control system on the solution and
is displayed as the constant orange line. Also the average fiber, yarn and room concentration are displayed. First the fiber
and yarn concentration coincide to an equilibrium concentration at approximately 102 s, afterwards at approximately 106 s
that concentration reaches the equilibrium concentration. In this case no overlap zone is used, but volume averaging is used
as an upscaling method assuming perfectly smooth exchange between the different levels.
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Table 1
Dirac-concentration or Dirac-flux at one of the boundaries.

Case Setting Result

1 C1ℓ = δ, F2r = 0 LC2r =
1

A11
LF1ℓ =

A21
A11

2 F1ℓ = δ, C2r = 0 LF2r =
1

A22
LC1ℓ =

A12
A22

3 C2r = δ, F1ℓ = 0 LC1ℓ =
1

A−1
11

LF2r = −
A21
A22

4 F2r = δ, C1ℓ = 0 LF1ℓ =
1

A−1
22

LC2r = −
A12
A11

Table 2
Input variables.

t0 1 × 10−8 αfy 1000
1t 1.01 αyr 100 or 0.0131111
tmax 1.0 × 1010 vfy 1
nf 20 vyr 1
ny 60 Df 1 × 10−10

nr 40 Dy 1 × 10−6

nyo 2 Dr 1 × 10−5

nr o 2 rel tol 1 × 10−6

ρmin 0 abs tol 1 × 10−13

ρmax 0.0001 hmax 10000
Ry 0.001 h 2.0
L 5 A 10.0
Cf (ρ, r, 0) 1
k 1 or 10000

Fig. 2. Solution without overlapping domain decomposition, but with volume averaging as upscaling between the three levels.

The complete model with overlapping domain decomposition is the adjusted version of (1) in the overlap zone:



∂Cf (ρ, r, t)
∂t

=
1
ρ

∂

∂ρ


ρDf

∂Cf (ρ, r, t)
∂ρ


, ρ ∈ [ρmin, ρmax] (a)

∂Cy(r, t)
∂t

=
1
r

∂

∂r


r
Dy

τy

∂Cy(r, t)
∂r


+ αfyvfy


Cf (ρmax, r, t) − Cy(r, t)


+ k


Cr − Cy(r, t)


, r ∈ [Ryo, Ry] (b)

∂Cr(x, t)
∂x

=
∂

∂x


D

∂Cr(x, t)
∂x


+ kαyr


Cy − Cr(x, t)


, x ∈ [0, Lo] (c)

(5)
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and (1) in the rest of the domain. The boundary conditions of (1) are changed to

∂Cf

∂ρ
(0, r, t) = 0, − Df

∂Cf

∂ρ
(ρmax, r, t) = vfy(Cf (ρmax, t) − Cy(r, t)),

∂Cy

∂r
(0, t) = 0,

∂Cy

∂r
(Ry, t) = 0,

∂Cr

∂x
(0, t) = 0,

∂Cr

∂x
(L, t) = 0,

where Cy and Cr denote the average concentrations in the overlap zone of the yarn and room level and Ryo is the radius in
the yarn corresponding to the beginning of the overlap zone. The factor k is the factor q

π(R2y−Ryo
2)h

we used previously for

mass balance purposes. Since it is easier for programming and notation we also used this k in the room model, adjusted
with the constant of proportion αyr which as a result slightly changes in physical meaning and thus in size. That is also the
reason why there is a second number for αyr in Table 2. With the second number the same mass balance concentration is
reached and the physical behavior is mimicked. There is also a second number in Table 2 for the constant kwhere it becomes
relatively big.With this large k it is possible tomimic the kinetical behavior of the problem as seen in the case of only volume
averaging as anupscalingmethod. In the above derivation of the exchangematrixA it became clear that for big k or q a perfect
smooth exchange is seen and the exchange matrix can be simplified as if there was no overlap zone. This is also visible in
Fig. 4.

The original code was adjusted with using a part of the r-domain as the overlap zone of the yarn, and a part of the
x-domain for the room overlap zone, each divided in smaller intervals, nyo and nr o resp., for numerical calculation purposes.
The fluxes were adapted and the extra source and sink terms were added to the concentration array in each space interval.
The adjusted number of equations was calculated in order to be able to allocate the memory needed by the band matrix
produced by the solver. The solution is visible in Fig. 3. Here the equilibrium concentration where the fiber and yarn level
solution coincide also seems to be reached at approximately 102 s which is according with what one would expect, since
the upscaling method between the fiber and yarn level has not been adapted. The concentration is, however, getting in
to the room at a later time but at a higher pace. Before the fiber and yarn concentration are getting to there equilibrium
concentration there is a build-up in the yarn concentration which is still behaving separately from the room concentration.
This can be explained by the used proportionality constant αyr which regulates how quick the concentration of AI is getting
into the room, and is obviously acting as an inhibitor in this system.

Again the mass balance is calculated and displayed as the constant yellow line.
For this mass conservation the three averages of each level, which are each displayed in the solution plot, are calculated

as

Cf =

 Ry
0 r d r

 ρmax
ρmin

Cf ρ d ρ Ry
0 r d r

 ρmax
ρmin

ρ d ρ
,

Cy =

 Ry
0 Cyr d r Ry
0 r d r

, Cr =

 L
0 Cr d x L
0 d x

.

Taking the correct integrals of Eqs. (5) gives the change in time of the averages over the complete domain Ci, i = f , y, r ,
which should sum up to zero for mass conservation. Using the BC’s and carrying out some basic calculations leads to the
mass balance equation:

Cr +
Lo
L

1

1 −


Ryo
Ry

2 αyr


Cy +

αfy

ρmax

ρ2
max − ρ2

min

2
Cf


= C,

where C is the mass balance constant visible in Figs. 3 and 4.

7. Conclusion and future work

A three-scale diffusion model for textiles consisting of a fiber, yarn and room model was further analyzed. Its
characteristic times, the first moment and cumulant, were calculated symbolically in an overlap zone. Between the different
levels this overlap zone is considered in an overlapping domain decomposition technique for upscaling the exchanged
concentration of AI. The original C-code was adjusted, results were interpreted and the mass balance was calculated. Later
on we will investigate what will happen if the setting is changing, e.g. a different positioning of the levels and consequently
the overlap zone, and what changes if we use the actual concentration instead of the volume average in the overlapping
zone equations.
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Fig. 3. Solution with overlapping domain decomposition as upscaling between the yarn and room level.

Fig. 4. Solution with overlapping domain decomposition as upscaling between the yarn and room level, with big k, mimicking the kinetical behavior as
seen in Fig. 2.
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