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1. Stability and convergence of linear multistep methods

Linear multistep methods are one of the most frequent choices to approximate the solution of initial value problems.
Their convergence is investigated almost only with respect to the infinity norm (or some variants of it), see e.g. the ‘‘bible’’
of numerical solution of initial value problems [1]. Our focus is on a different type of convergence. We use the kC1 norm
which is defined as

∥uN∥kC1 = max
0≤i<k

|ui| + max
k≤i<N

1
h

|ui − ui−1| .

This norm can capture the possible spurious oscillations of the numerical approximation which are typical e.g. for the
weakly stable linear multistep methods. The name refers to its continuous counterpart ∥u∥C1 = |u(0)| + max |u̇(t)|.

We organized the paper as follows. After this introductory part in Section 2 we state and prove our main result about
the kC1 convergence of LMMs. Finally, in Section 3 we list several remarks.

Without loss of generality we consider the scalar autonomous initial value problem (IVP){
u(0) = u0 ,

u̇(t) = f (u(t)) ,
(1)

where t ∈ [0, T ], u0
∈ R is the initial value, u : [0, T ] → R is the unknown function and we assume that f is Lipschitz

continuous.
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In practice we have to use a numerical method to approximate the solution of (1) since finding the solution analytically
is impossible in most of the cases. There are many possible choices, one is the application of a linear multistep method
(LMM).

Linear multistep methods can be given in the following way:⎧⎨⎩ui = c i , i = 0, . . . , k − 1
1
h

∑k
j=0 αjui−j =

∑k
j=0 βjf (ui−j) , i = k, . . . , n + k − 1 = N ,

(2)

where h = T/N is the step size, αj, βj ∈ R, α0 ̸= 0 are the coefficients of the method and the constants c i are some
approximations of the solution on the first k time levels. When the latter ones are known (usually calculated by a one-
step method or recursively by lower order members from the same family of the LMM we want to use) the method can
‘‘run’’, we can calculate the next approximation and so on. To get ui which approximates the solution at the ith time level
u(i · h), we only need to know the previous k approximations. Thus the formula represents a k-step method. Note that
while k is fixed for the method, n, N = k + n − 1 and h can vary as the grid gets finer.

The first characteristic polynomial associated to (2) is defined as

ϱ(z) =

k∑
j=0

αjzk−j .

Usually, two types of root-conditions are defined.

Definition 1.1. The method is said to be strongly stable if for every root ξi ∈ C of the first characteristic polynomial
|ξi| < 1 holds except for ξ1 = 1, which is a simple root.

A not strongly stable method is said to be weakly stable if for every root ξi ∈ C of the first characteristic polynomial
|ξi| ≤ 1 holds and if |ξi| = 1, then it is a simple root, moreover ξ1 = 1.

In the following we rewrite LMMs (2) into the form for which we can define stability in the general sense [2,3]. A
method can be represented with a sequence of operators FN : XN → YN , where XN , YN are k + n dimensional normed
spaces with norms ∥·∥XN , ∥·∥YN respectively and

(FN (uN ))i =

⎧⎨⎩ui − c i , i = 0, . . . , k − 1
1
h

∑k
j=0 αjui−j −

∑k
j=0 βjf (ui−j) , i = k, . . . , n + k − 1 = N .

Finding the approximating solution means that we have to solve the non-linear system of equations FN (uN ) = 0. FN can
be represented in the following way:

FN (uN ) = ANuN − BN f (uN ) − cN ,

where uN = (uk,un)T = (u0, . . . , uk−1, uk, . . . , un+k−1)T ∈ Rk+n, uk ∈ Rk, un ∈ Rn,
f (uN ) = (f (u0), f (u1), . . . , f (un+k−1))T ∈ Rk+n, cn = (c0, c1, . . . , ck−1, 0, . . . , 0)T ∈ Rk+n,

AN =

(
I 0
Ak An

)
, BN =

(
0 0
Bk Bn

)
,

where I ∈ Rk×k is the identity matrix, Ak,Bk ∈ Rn×k, An,Bn ∈ Rn×n,

Ak =
1
h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αk . . . α2 α1
0 αk . . . α2
...

. . .
. . .

...

0 . . . . . . αk
0 . . . . . . 0
...

. . .
. . .

...

0 . . . . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
An =

1
h

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α0 0 . . . . . . . . . 0
α1 α0 0 . . . . . . 0
α2 α1 α0 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 . . . 0 αk . . . α0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and Bk, Bn are the same as Ak, An, except that we have to omit the factor 1

h and the α-s have to be changed to β-s.
Formally, for k = n the definition of these matrices are contradicting to each other however, k is always a fixed number
and with that Ak too, while n is a running index which means that An denotes a family of matrices not a single one. If
this is still not enough for the Reader to dissolve the contradiction then let us assume that k < n.

Definition 1.2. We call a method stable in the norm pair
(
∥·∥Xn , ∥·∥Yn

)
if for all IVPs (1) ∃S ∈ R+

0 and ∃N0 ∈ N such
that ∀N ≥ N0 , ∀uN , vN ∈ Rk+n the estimate

∥uN − vN∥XN ≤ S ∥FN (uN ) − FN (vN )∥YN
(3)

holds.
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To define stability in this way has a definite profit. It is general in the sense that it works for almost every type of
numerical method approximating the solution of ODEs and PDEs as well. Convergence can be proved by the popular recipe
‘‘consistency + stability = convergence’’

∥ϕN (ū) − ūN∥XN
≤ S∥FN (ϕN (ū)) − FN (ūN )∥YN

= S∥FN (ϕN (ū))∥YN
→ 0 ,

where ū, ūN denote the solution of the original problem (1) and the approximating problem FN (uN ) = 0 respectively,
ϕN : X → XN are projections from the normed space where the original problem is set, thus ϕN (ū) − ūN represents the
error (measured in XN ). Finally, ∥FN (ϕN (ū))∥YN

→ 0 is exactly the definition of consistency in this framework. We note
that the existence of ūN (from some index) is also the consequence of stability, see [2, Lemmas 24. and 25.], cf. [3, Lemma
1.2.1]. There are many versions of Definition 1.2 which require the stability estimate only in some neighborhood, see [2].
As we defined it is satisfactory for the IVP (1) since we assumed global Lipschitz continuity, for detailed explanation see [3,
first Example in Section 1.1.4].

In the following we introduce norm pairs which are interesting for us. We start with some norm notations: for k ∈ N
fixed, uN ∈ Rk+n, the k∞ norm is defined as

∥uN∥k∞ = max
0≤i≤k−1

|ui| + max
k≤i≤N

|ui| .

It is known that strongly and weakly stable LMMs are stable in the norm pair (∥·∥k∞ , ∥·∥k∞), cf. [4]. Stability in the norm
pair

(
∥·∥k∞ , ∥·∥k$

)
where ∥·∥k$ denotes a k-Spijker norm, was first investigated in [5], see [3, Example 2 in Section 1.1.4]

for a more available reference and [6,7] for its extensions.
Here we focus on a different norm pair. First, we introduce EN ∈ RN×N

EN =

(
I 0
Ek En

)
where Ek ∈ Rn×k, En ∈ Rn×n are

Ek =
1
h

⎛⎜⎜⎜⎜⎜⎝
0 . . . 0 −1
0 0 . . . 0
...

. . .
. . .

...
...

. . .
. . .

...

0 . . . . . . 0

⎞⎟⎟⎟⎟⎟⎠ and En =
1
h

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . . . . 0

−1 1 0 . . . 0

0 −1 1 0
...

...
. . .

. . .
. . .

...

0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎠ .

Note that En represents the linear part of the explicit Euler method (without the initial step). Second, if A is a regular
matrix and ∥·∥⋆ is a norm, then ∥u∥A,⋆ = ∥Au∥⋆ defines a norm. Then the kC1 norm can be expressed as

∥uN∥kC1 = ∥ENuN∥k∞ = ∥uN∥EN ,k∞ .

In the next section we formulate and prove our statements about the convergence of LMMs with respect to this norm.

2. kC1 norm convergence of linear multistep methods

Our intention is to investigate the order of the kC1 convergence of LMMs.

Definition 2.1. An LMM is said to be kC1 convergent with order γ ifϕN (ū) − ūN

kC1 = O (hγ ) → 0 .

Note that if we have k∞ convergence with order γ , then⏐⏐⏐⏐O (hγ ) − O (hγ )

h

⏐⏐⏐⏐ ≤ O
(
hγ−1)

thus we may lose one order with respect to the kC1 norm. The question is whether we lose it indeed. Note that if m ∈ N is

fixed (independent of n), then |ϕN (ū)m − ūm| = O
(
hγ+1

)
and

⏐⏐⏐⏐ϕN (ū)m+1 − ūm

h

⏐⏐⏐⏐ =

⏐⏐⏐⏐ϕN (ū)m+1 − ϕN (ū)m
h

+ O (hγ )

⏐⏐⏐⏐, which

plays an important role in the proof of the main result where we need to modify the usual consistency proof.
The first step toward convergence is the appropriate choice of the stability. The natural choice is to pick the

(∥·∥kC1 , ∥·∥k∞) norm pair. But it will not work directly. First we show that each LMM is stable ‘‘in its own sense’’.

Lemma 2.1. Consider a weakly or strongly stable LMM with its associated matrix AN . Then it is stable in the norm pair(
∥·∥AN ,k∞ , ∥·∥k∞

)
.
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Proof. Our starting point is the identity

FN (uN ) − FN (vN ) = AN (uN − vN ) − BN (f (uN ) − f (vN )) . (4)

Taking (elementwise) absolute value of (4) and using the Lipschitz continuity we can estimate the right side. Note that
≤ is also meant elementwise.

|FN (uN ) − FN (vN )| = |AN (uN − vN ) − BN (f (uN ) − f (vN ))| ≥

|AN (uN − vN )| − |BN∥f (uN ) − f (vN )| ≥ |AN (uN − vN )| − L|BN∥uN − vN |

Thus

|FN (uN ) − FN (vN )| + L|BN ||uN − vN | ≥ |AN (uN − vN )| .

Taking k∞ norms and using the triangle inequality we have

∥uN − vN∥AN ,k∞ = ∥AN (uN − vN )∥k∞ ≤ ∥FN (uN ) − FN (vN )∥k∞ + L ∥BN∥k∞ ∥uN − vN∥k∞

where we can use the known stability estimate

∥uN − vN∥k∞ ≤ S ∥FN (uN ) − FN (vN )∥k∞

for the right side to arrive at the required stability estimate

∥uN − vN∥AN ,k∞ ≤ C ∥FN (uN ) − FN (vN )∥k∞ . □ (5)

Note that AN is similar to EN since both represent a numerical differentiation. In particular, for one-step and Adams
methods AN = EN . In these cases we already obtained kC1 convergence with the same order as in the k∞ case since we
rely on the same type of consistency.

Lemma 2.2. Consider a strongly stable LMM with its associated matrix AN . Then ∃C > 0 such that ∀un ∈ Rn the following
inequality is valid:

∥un∥En,∞ ≤ C ∥un∥An,∞ . (6)

Proof. The statement is equivalent toEnA−1
n


∞

≤ C .

Note that

EnA−1
n =

1
α0

k∏
i=2

(In − ξiHn)
−1

where In ∈ Rn×n is the identity matrix and Hn ∈ Rn×n is defined as

Hn =

⎛⎜⎜⎜⎜⎝
0 0 . . . . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

⎞⎟⎟⎟⎟⎠ ,

and ξi, i = 1, . . . , k are the roots of the first characteristic polynomial, see [4, formula 3.5 in the proof of Lemma 3.1.]
or [7]. Finally, we can use that

(In − ξiHn)
−1

= In + ξiHn + · · · + (ξiHn)
n−1

=

⎛⎜⎜⎜⎜⎝
1 0 . . . . . . 0
ξi 1 0 . . . 0
ξ 2
i ξi 1 . . . 0
...

. . .
. . .

. . .
...

ξ n−1
i . . . ξ 2

i ξi 1

⎞⎟⎟⎟⎟⎠
resulting in(In − ξiHn)

−1


∞
≤

1 − |ξi|
n

1 − |ξi|
< Ci

since |ξi| < 1. □
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Theorem 2.1. Consider a strongly stable k-step LMM whose order of convergence is γ with respect to the k∞ norm. Assume
that the starting values are calculated with a one-step method with the same order. Then it is convergent with respect to the
kC1 norm and its order is also γ .

Proof. The main idea is to split the error into two parts and apply Lemmas 2.1 and 2.2. We assume that the one-step
method is determined by GN and GN (wN ) = 0. Thus c i = wi = ūi, 0 ≤ i < k.

∥ϕN (ū) − ūN∥kC1 = ∥ϕN (ū) − ūN∥EN ,k∞ ≤

(
ϕN (ū)k
wn

)
−

(
wk
wn

)
EN ,k∞

+

(
wk

ϕN (ū)n

)
−

(
wk
ūn

)
EN ,k∞

(7)

1. For the first term of the sum in (7) we can directly use Lemma 2.1.(
ϕN (ū)k
wn

)
−

(
wk
wn

)
EN ,k∞

≤ C1

GN

((
ϕN (ū)k
wn

))
− GN

((
wk
wn

))
k∞

= C1

GN

((
ϕN (ū)k
wn

))
k∞

.

To estimate the latter expression we have to modify slightly the usual consistency argument. We assume that GN
can be written as

(GN (uN ))i =

{
u0 − c0 if i = 0 ,
ui − ui−1

h
− g(ui−1, ui) if 1 ≤ i ≤ N

where g is Lipschitz continuous in both variables. Then

(
GN

((
ϕN (ū)k
wn

)))
i
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕN (ū)0 − c0 = 0 if i = 0 ,
ϕN (ū)i − ϕN (ū)i−1

h
− g(ϕN (ū)i−1, ϕN (ū)i) if 1 ≤ i < k

wk − ϕN (ū)k−1

h
− g(ϕN (ū)k−1, wk) if i = k

wi − wi−1

h
− g(wi−1, wi) = 0 if k < i ≤ N

Observe that
⏐⏐⏐⏐ϕN (ū)i − ϕN (ū)i−1

h
− g(ϕN (ū)i−1, ϕN (ū)i)

⏐⏐⏐⏐ = O (hγ ) if 1 ≤ i < k, which follows from the fact that the

one-step method is consistent with order γ . Furthermore,⏐⏐⏐⏐wk − ϕN (ū)k−1

h
− g(ϕN (ū)k−1, wk)

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐wk − wk−1 + O
(
hγ+1

)
h

− g(wk−1, wk) + O
(
hγ+1)⏐⏐⏐⏐⏐ = O (hγ )

where we used the Lipschitz continuity of g . These two facts show thatGN

((
ϕN (ū)k
wn

))
k∞

= O (hγ ) .

2. For the second term of the sum in (7) first we use Lemma 2.2 to obtain(
wk

ϕN (ū)n

)
−

(
wk
ūn

)
EN ,k∞

= ∥ϕN (ū)n − ūn∥En,∞ ≤ C2 ∥ϕN (ū)n − ūn∥An,∞

= C2

(
wk

ϕN (ū)n

)
−

(
wk
ūn

)
AN ,k∞

,

then we exploit that wk = ūk and we use Lemma 2.1 arriving at(
wk

ϕN (ū)n

)
−

(
wk
ūn

)
AN ,k∞

≤ C3

FN ((
wk

ϕN (ū)n

))
− FN

((
ūk
ūn

))
k∞

= C3

FN ((
wk

ϕN (ū)n

))
k∞

Similarly to the previous case we have to modify the usual consistency proof.

(
FN

((
wk

ϕN (ū)n

)))
i
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wi − ci = 0 if 1 ≤ i < k ,
1
h

(α0ϕN (ū)i + · · · + αi−kϕN (ū)k + αi−k+1wk−1 + · · · + αkwi−k) −

(β0f (ϕN (ū)i) + · · · + βi−kf (ϕN (ū)k) + βi−k+1f (wk−1) + · · · + βkf (wi−k))

if k ≤ i < 2k
1
h

∑k
j=0 αjϕN (ū)i−j −

∑k
j=0 βjf (ϕN (ū)i−j) if 2k ≤ i ≤ N
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Fig. 1. k∞ error vs. h (left) and kC1 error vs. h (right) on a log–log scale. The IVP is y(0) = 1 , ẏ(t) = λ (y(t) − sin 3t) + 3 cos 3t with T = 1,
λ = −10, the solution is sin 3t + eλt . y1 was determined by the classical Runge–Kutta second order method. Midpoint method (solid line), which is
only weakly stable; Adams–Bashforth 2 (dashed line). The Midpoint method seems to be a second order method wrt. both norms, but it is more
sensitive to roundoff errors especially wrt the kC1 norm.

Observe that
⏐⏐⏐⏐1h ∑k

j=0 αjϕN (ū)i−j −
∑k

j=0 βjf (ϕN (ū)i−j)
⏐⏐⏐⏐ = O (hγ ) because the method is consistent of order γ .

Furthermore,⏐⏐⏐⏐⏐1h (α0ϕN (ū)i + · · · + αi−kϕN (ū)k + αi−k+1wk−1 + · · · + αkwi−k) −

(β0f (ϕN (ū)i) + · · · + βi−kf (ϕN (ū)k) + βi−k+1f (wk−1) + · · · + βkf (wi−k))

⏐⏐⏐⏐⏐ =⏐⏐⏐⏐⏐⏐1h
k∑

j=0

αjϕN (ū)i−j −

k∑
j=0

βjf (ϕN (ū)i−j) + O (hγ )

⏐⏐⏐⏐⏐⏐ = O (hγ ) .

These facts imply thatFN ((
wk

ϕN (ū)n

))
k∞

= O (hγ ) .

These estimates complete the proof. □

3. Conclusions

Our results which culminated in Theorem 2.1 are sharp from one point of view, but loose from another one. In this
section we list the important points where the strengths and weaknesses of these results reveal themselves.

• Note that inequality (6) is not valid for weakly stable LMMs because a counterexample can be constructed in exactly
the same way as in [7].

• It is unfortunately not true that

∥uN∥kC1 = ∥uN∥EN ,k∞ ≤ C ∥uN∥AN ,k∞

since Ek − EnA−1
n Ak the lower-left block of ENA−1

N contains a factor
1
h
. This was the reason that we could not apply

directly stability in the norm pair (∥·∥kC1 , ∥·∥k∞).
• It is clear that this line of proof cannot be used for weakly stable methods. However, the numerical experiments

suggest that the statement of Theorem 2.1 is also valid for weakly stable methods. See Fig. 1.
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• In practice it is usual to use a one-step method with order of only γ −1 to produce the starting values (or recursively
by lower order members from the same family of the LMM we want to use). It is well known that these choices of
the starting values will result in the required order of convergence if we use the k∞ norm. The question is what is
the situation if we use the kC1 norm? The numerical results suggest that we can use them in this case also without
losing an order.

• If we want to compare the kC1 norm to other norms then it is appropriate to compare the families of norms and not
the individual members. We will call the ∥·∥a family of norms not weaker than the ∥·∥b family of norms if: ∃c1 ∈ R+

such that ∀N ∈ N, ∀uN ∈ RN+1

c1 ∥uN∥a ≥ ∥uN∥b .

We will call the ∥·∥a family of norms stronger than the ∥·∥b family of norms if it is not weaker and it is not true that
the ∥·∥b family of norms is not weaker than the ∥·∥a family of norms. Comparing two families of norms the relation
can be decided usually by taking N → ∞.
It is easy to show that the ∥·∥kC1 family is stronger than the ∥·∥k∞ family, since we can choose c1 = 2, while
taking N → ∞ we can see that it means that the ∥·∥C1 norm cannot be overestimated by the ∥·∥∞ norm.
Similarly the ∥·∥kC1 family is stronger than the ∥·∥kH1 family, where the latter norm is the discrete H1 norm:

max0≤i<k |ui| +

√
1
h

∑N
i=k(ui − ui−1)2. Basically, this comes from the fact when N → ∞, we have to compare the

L2(0, 1) norm with the L∞(0, 1) norm.
• Surprisingly, the kC1 norms are not equivalent for different k-s. Let us assume that k1 < k2. Consider the vector uN :

(uN )i = 0 if 0 ≤ i < k1, and (uN )i = 1 if k1 ≤ i ≤ N . Then ∥uN∥k1C1 =
1
h , while ∥uN∥k2C1 = 1.

To summarize, we showed that strongly stable LMMs are convergent in the kC1 norm under the assumption that the
method is convergent in the k∞ norm, moreover, the order is the same. In the last section we compared different types of
norms to emphasize the strength of our result, moreover, we asked two open questions which can lead to the completion
of this theory.
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