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Abstract 

In accordance with the principle of using sufficiently the delayed information, and by making use of the nonlinear 
multisplitting and the nonlinear relaxation techniques, we present in this paper a class of asynchronous parallel nonlinear 
multisplitting accelerated overrelaxation (AOR) methods for solving the large sparse nonlinear complementarity problems 
on the high-speed MIMD multiprocessor systems. These new methods, in particular, include the so-called asynchnmous par- 
allel nonlinear multisplitting AOR-Newton method, the asynchronous parallel nonlinear multisplitting AOR-chord method 
and the asynchronous parallel nonlinear multisplitting AOR-Steffensen method. Under suitable constraints on the nonlinear 
multisplitting and the relaxation parameters, we establish the local convergence theory of this class of new methods when 
the Jacobi matrix of the involved nonlinear mapping at the solution point of the nonlinear complementarity problem is an 
H-matrix. (~ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Cons ide r  the nonl inear  complementa r i ty  p rob lem 

NCPOF) :  Find x >i 0 such that F (x )  >i 0 and xTF(x)=O. 
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Here, x = ( x b . . . , x n )  T is the unknown vector, F:Rn--~R',  F ( x ) = ( f l ( x ) , . . . , f ~ ( x ) )  x is a given 
differentiable nonlinear mapping, and the partial ordering "f>" is understood in accordance with the 
elements. Since this problem has bounteous practical application backgrounds, there has been a lot 
of research on sequential numerical methods in the literature. 

To solve this problem efficiently in the synchronous parallel computational environments, by 
equivalently transforming the NCP(F) into several lower-dimensional systems of nonlinear equa- 
tions through the multiple nonlinear splittings of the nonlinear mapping F :R" ~ R  ~, Bai and Wang 
[1] recently presented a class of synchronous parallel nonlinear multisplitting SOR (successive over- 
relaxation) methods by making use of the nonlinear relaxation technique. In the implementations of 
these methods, each processor of the multiprocessor system only need to solve a lower dimensional 
system of nonlinear equations. Hence, these methods have good parallelism, and they are feasible 
and efficient for solving the NCP(F) on the multiprocessor systems. However, since it is usually 
impossible to decompose the nonlinear mapping F:R'--+R" such that the computational workload 
of each of the resulted sub-systems of nonlinear equations is equally distributed, the mutual waits 
among the processors of the multiprocessor system are then inevitable in practical implementations. 
To avoid the mutual waits among the processors and to rise the parallel computational efficiency 
of these methods, by applying the principle of using sufficiently the delayed information, and con- 
sidering the concrete properties of the MIMD multiprocessor system, we propose in this paper a 
class of asynchronous parallel nonlinear multisplitting accelerated overrelaxation (AOR) methods for 
solving the NCP(F) in the asynchronous parallel computational environments. This class of methods 
is established by utilizing the nonlinear accelerated overrelaxation technique to the sub-systems of 
nonlinear equations equivalently reduced from the NCP(F). With suitable choices of its two arbitrary 
parameters, not only the convergence property of this class of new methods can be greatly improved, 
but also a series of useful asynchronous parallel nonlinear multisplitting relaxation methods, e.g., 
the asynchronous parallel nonlinear multisplitting Jacobi method, the asynchronous parallel nonlinear 
multisplitting extrapolated Jacobi method, the asynchronous parallel nonlinear multisplitting Gauss- 
Seidel method, the asynchronous parallel nonlinear multisplitting extrapolated Gauss-Seidel method 
and the asynchronous parallel nonlinear multisplitting SOR method, etc., can be generated. More- 
over, besides covering the synchronous parallel nonlinear multisplitting SOR-like methods discussed 
in [1], the new methods can also results the asynchronous parallel nonlinear multisplitting AOR- 
Newton-like methods, which include the asynchronous parallel nonlinear multisplitting AOR-Newton 
method, the asynchronous parallel nonlinear multisplitting AOR-chord method and the asynchronous 
parallel nonlinear multisplitting AOR-Steffensen method. Thereby, flexible and diverse choices are 
afforded for solving the NCP(F) on the MIMD multiprocessor systems. Because this new class of 
asynchronous parallel nonlinear multisplitting relaxation methods utilizes the most currently available 
components of the local approximate solutions of the NCP(F) to update the corresponding compo- 
nents of its global approximate solution in time and the processors of the MIMD multiprocessor 
system dose not need any mutual wait, it has the potential of exploiting the parallel computational 
efficiency of the multiprocessor system as far as possible. Under similar conditions to those in [1], 
we establish the local convergence theories of the new asynchronous parallel nonlinear multisplitting 
AOR methods. 



Z.-Z. Bail Journal of Computational and Applied Mathematics 93 (1998) 35~14 37 

2. Establishments of the methods 

Given a positive integer 0c (~ <~ n) and a nonlinear differentiable mapping F:Rn--~R n. A collec- 
tion of pairs (F~i),Ei) ( i=1,2 , . . . ,~)  is called a nonlinear multisplitting of the nonlinear mapping 
F : R  ~ ~ R "  if the following three conditions are satisfied: 
(a) F (° :R" x R ~ ~ R  ~, i = 1,2,..., 0c, are continuously differentiable mappings such that F(i)(x; x) =F(x)  

(Vx E Rn), i=  1,2,...,~; 
(b) ,/~, i = 1,2,..., ~, are nonempty subsets of the positive integer set { 1,2,..., n} such that U~l J~ = 

{1,2,...,n~; and 
(c) E~ = diag(e~ ), e(2),..., e~ i)), i = 1,2,..., ~, are nonnegative diagonal matrices such that 

e(i, _ ~ e~ .i) >/O, for j E,]i, • ^(i) 
J - [ 0, otherwise, E / = I  ej = 1, 

j = l , 2  . . . . .  n; i=  1,2,...,~. 

The matrices Ei(i= 1,2,... ,~) are called weighting matrices. Some concrete applicable examples 
of the nonlinear multisplitting (F~i),Ei) ( i=  1,2,..., ~) of the nonlinear mapping F:R~---~R" can be 
found in [4]. 

Assume that the referred multiprocessor system is made up of 0~ CPUs. To set up the new 
asynchronous parallel nonlinear multisplitting AOR methods, we introduce the following elementary 
notations: 
(1) for Vi E { 1,2,..., c~} and Vp E No := {0, 1,2,...}, j~o = {']i(P)}pENo is used to denote a sequence 

of subsets (may be empty) of the set .//; 
(2) for VmE{1,2, . . . ,n} and VpEN0, Nm(p):={i lmEJ~(p) ,  i=1,2,...,0~}; 
(3) for Vi E {1,2,..., c¢}, S(O={s~O(p),s~i)(p),...,s(f(p)}p~No is n infinite sequences of nonnegative 

integers. 
j(o and S(i)(i: 1 ,2  .... ,00 have the following properties: 

(a) for ViE {1,2,...,0~} and VmE {1,2,...,n}, the set {pEN0 ImEJi(p)}  is infinite; 
(b) for Vp E No, Ui~=l J,.(p) 5 ~ 0 (the empty set); 
(c) for ViE {1,2,...,0~}, \~mE {1,2,... ,n} and Vp ENo, s~)(p) <~ p; and 
(d) for ViE {1,2,...,0~} and VmE {1,2,...,n}, l imp~S~) (p )=oo .  
For Vp E No, if we define 

s (p )=  min S(im)(p), 
l <~m<~n 
1 <~i<~ct 

then it evidently holds that s(p) ~< p and lim,~o~ s(p)=oo.  
Now, we can describe the asynchronous parallel nonlinear multisplitting AOR method for solving 

the NCP(F) as follows: 

Method I. Given an initial vector x ° ER". Suppose that we have got approximations {xt}:=O of the 
solution x* o f  the NCP(F). Then, the (p + 1)th approximation x p+l t p + l  ,~p+l rP+l'~r of  X* 
can be calculated element by element by 

oz 

X p + I  ~ e ( i ) x  p'i (2.1) --m = ~ m m , m = l , 2  . . . .  , n ,  

i = 1  
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following asynchronous parallel nonlinear multisplitting AOR-Newton-like method for solving the 
NCP(F). 

Method II. Given an initial vector x ° E R". Suppose that we have got approximations {xt}~=o o f  
the solution x* of  the NCP(F). Then, the (p  + 1)th approximation x p+l of  x* can be determined 
by (2.1),(2.2),(2.5) and 

i (i) (D tT(i)g~sli)(P)" U p ' i )  
xmP' :XSm(P)+ 2 rI~m(XS~')(P);UPm'~) ' mEJ,(p),  i=1,2  . . . .  ,o~, 

where 

uP,  i =  ( . ~ f , i , . . . ,  .~p , /1 ,  X ~ ) ( p )  . . . .  ,xSn(ni)(p))T, 

for Vx=(xl,x2 . . . .  ,X,)T, V y = ( y l , y  2 . . . .  ,y,)T ER ~, 

g(m")(X; Y)=( f~  O(x; Y) - Y m)2 - f(m i)(X; Y)If(mO(X; Y)l -- YmlY~[, 
q(i) (~.  ram,A,, y) = f(~i)(X; y) (1 - -  sign(Xm))Xm 

Af-{X m - -  I1  - -  sign(f~(°(x; y))]f~mO(X; y)}H~)m(X; y), 

1 /fXm >0, 
sign(xm) = 0 ifXm =0, 

--1 i f  xm <O, 

and H(mi)m(X; y) denotes the ruth diagonal element of  some matrix H(i)(x; y)EL(R").  Here, again, 
r E [0, c~) is a relaxation factor and o9 E (0, oo) an acceleration factor. 

Corresponding to different choices of the matrices H(i)(x; y) ( i=  1,2,..., ~) in Method II, we can 
derive various practical programs for the NCP(F). For example, if we take 

(i) . _ _  (i) . n~m(X, y ) -  m ., 02f~mm(X, y ) ,  E J,.(p), i= 1,2,.. o~, p E No, 

then the asynchronous parallel nonlinear multisplitting AOR-Newton method for the NCP(F) can be 
obtained, since the nonlinear equation (2.3) is approximately solved by the Newton iteration. Here, 
Olf(~(x;y) and Ozf~(x ;y )  represent the mth partial derivatives of f~O(x;y) with respect to the 
variables x and y, respectively; and if we take 

(i) . f~O(x; y + h(im)(X; y)e,,) - f(mi)(X; y) 
H~m(X,Y)= h~)(x;y ) , mEJ~(p), i=1,2  . . . .  ,~, pENo,  

then the asynchronous parallel nonlinear multisplitting AOR-chord method for the NCP(F) can be 
got, because the nonlinear equation (2.3) is approximately solved by the chord iteration. Here, 
em- (0,..., 0, 1,0 .... ,0) a E R" represents the ruth unit vector in R", and h~)(x; y) E R ~ is the difference 
step-size. In particular, when 

h(i)(x; y ) =  f(mi)(x; y), mEJ/(p),  i= l , 2 , . . . , a ,  pENo, 
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this method further reduces to the asynchronous parallel nonlinear multisplitting AOR-Steffensen 
method for the NCP(F), as the nonlinear equation (2.3) is approximately solved by the Steffensen 
iteration. 

Analogously, with different choices of the parameter pair (r, co) in Method II, we can get another 
extensive sequence of practical asynchronous parallel nonlinear multisplitting relaxed Newton-like 
methods for solving the NCP(F) on the MIMD multiprocessor system. For the length of the paper, 
we will not enumerate them one by one, here. 

3. Preliminaries 

Let A=(amj)EL(R"). By diag(A) we denote the n x n diagonal matrix coinciding in its diag- 
onal with AcL(R"). For A=(amj), B=(bmj)EL(R"), we write A ~ B  if amj~bmj holds for all 
m,j=l,2,...,n. Calling A EL(R n) nonnegative if A~>0. By [A[=([amj[) we define the absolute 
value of AEL(R"); it is a nonnegative n x n matrix satisfying [AB[ ~ [A[[B[ for B EL(Rn). These 
notations can be immediately carried on the vectors in R". We denote by (A)=((amj))EL(R ~) the 
comparison matrix of A C L(R"), where 

[amj[ if m=j, 
(ami)=-[ami[ if m ~ j. 

We call A=(amj)EL(R")  an M-matrix if it is nonsingular with a,,j ~< 0 for m ~ j  and A -1/> 0. We 
call it an H-matrix if (A) is an M-matrix. Denote Da=diag(A) and BA=Da -A.  Then it evidently 
holds that (A)=[DA[-  [Ba[. Moreover, if AEL(R") is an H-matrix, then both Da and IDa[ are 
nonsingular and the spectral radius of the matrix [DA[-I[Ba[ is less than one, i.e., p([DAI-I[BA[) < 1. 
For the related properties about M-matrix and H-matrix, one can refer to [9, 4] for details. 

Given a matrix A EL(R"). For i = 1 , 2  . . . . .  ~, let ~a,i=diag(A), L~'A,i EL(R n) be strictly lower tri- 
angular matrices, ~Ua, i eL(R") be general matrices and Ei e L(R n) be nonnegative diagonal matrices 
such that 

(i) A=~A,i- £aA,~ - ~/rA,i, i = 1 , 2 , . . . , = ;  
(ii) ~A,i, i = l , 2 , . . . , 0 q  are nonsingular; and 

(iii) ~ i =  l& =I (the n x n identity matrix). 
Then, the collection of triples (~A, i -  £,e,g,'UA,i,Ei) ( i = 1 , 2 , . . . , ~ )  is called a multisplitting of the 
matrix A eL(R"). For details about this concept, one can refer to [1-4] and [10]. 

Consider a nonlinear differentiable mapping F:R"-+R " and its nonlinear multisplitting (F(i),Eg) 
(i = 1,2, . . . ,  ~). For each i e { 1,2, . . . ,  ~}, by OfF (° and ~32 F(i) w e  represent the partial derivatives of 
the nonlinear mapping F(O:R" x R" ~R  n with respect to its first and second variables, respectively. 
Obviously, it holds that for all x, y e R n, 

( Of~O(x; Y) ) OlF(i)(x; y)=(alf~))(x; y))  = \ ~ EL(R"), 

O2F(O(x; y) =(O2f~'j.(x,y))=(i) . ~( Of(mO(x;~ffyj Y)) EL(R") 
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and 

F' (x ) = O~F(°(x; x) + 02F(°(x; x) E L( R ~). 

Now, for an x* E R ~, by introducing matrices 

*; x*) , . . . ,  Ozf(i)(x* ;x *)), ~F,i=diag(O2F(°(x*;x*))=diag(Ozf~([)((.)x • • m> 

]-(f j ~ ~ ^ [ - O z f ~ ) ( x  ;x ) for j and m,jEJ i ,  
.~q'F,,=(L~j)) E L(R"), 

' ' ( u otherwise, 

f 0  for m > j  and m,jEJ i ,  
ffllF, i - - - - ( U ( ( j i ) ) E i ( R n ) ,  U(mfj i ) =  ~ 0 for m=j ,  (3.1) 

' (-a2f(m~.)(x*;x *) otherwise, 

~F,=(V(m(j'))EL(R,), v(S.O__,,(S,i) ~ ,,.(i), *. *~. Vm,j - - ' J m , j  - -  tJlJmjl,'a" , ~  ) ,  

r e , j =  1,2 . . . . .  n; i = 1 , 2  . . . .  ,~, 

we easily have 

F ' ( X * ) = ~ F , i -  ~fF, i -- 3UF, i, i = 1 , 2  . . . .  ,c¢. 

I f  the matrices NF, i (i = 1,2 . . . . .  ~) are nonsingular, then (NF, i -- ..~F,i, "VF, i,Ei) (i = 1,2 . . . .  , a)  clearly 
forms a multisplitting o f  the matrix F'(x* ) E L(R"). 

Correspondingly, if  we again introduce a nonlinear mappings G (0 : R" x R" ~ R "  (i = 1 ,2 , . . . ,  ~) in 
accordance with 

Gii)(x; y)'r=(g]i)(x; y),g~i)(x; y),...,g(,i)(x; Y)), 

g~.)(x; y ) = ( f j ( ) ( x ;  y )  - yj)2 _ fj¢')(x; y)l~(')(x; Y)I - YjIYJ[, (3.2) 

j = l , 2 , . . . , n ;  i = l , 2 , . . . , a ,  

then G(°:R" × R n--,R" ( i =  1 ,2 , . . . ,  a)  are clearly continuously differentiable, and satisfy 

G(i)(x;x)=G(x), VxER",  i = l , 2 , . . . , a ,  

with G:R'--~R n being defined by 

G(x) T = (gl (x), gz(x), • • •, g,(x)), 
(3.3) 

g j ( x ) = ( L ( x )  - x j )  - f j ( x ) l L ( x ) l  - x j l x j l ,  j =  1,2 . . . . .  n. 

That is to say, the collection o f  pairs (G(i),Ei) ( i = 1 , 2  . . . .  ,~)  naturally forms a nonlinear multi- 
splitting o f  the nonlinear mapping G : R" --.R'. Note that G : R n ---~R n is also differentiable due to the 
differentiability o f  the nonlinear mapping F : R" ~ R'. 

Now, let x* ER" be a solution o f  the NCP(F)  and (~a,i - Zfa, i,~v'6,i, Ei) ( i = 1 , 2 , . . . , ~ )  be a 
multisplitting o f  the matrix G'(x*)EL(R").  From [1] we immediately know that 

~G,i = - - 2 ( ~ F , i  + ~ F )  
~G,i=--2~. .~fF,  i (i= 1,2,...,~), 
3~'G,i = - - 2 ~ V F ,  i 
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where 

~F =: diag(Jq (x* ), J~(x*), . . . ,  f , (x*)) ,  
~ = diag(x*, x* , . . .  ,x,* ), 

and 

G ' (x* )=  - 2 ( ~ F ' ( x * )  + ~F) .  

With the above preparations, we are now ready to set up the local convergence theories of  Methods 
I and II. 

4. Local convergence theories 

In this section, under suitable conditions we will demonstrate local convergence theorems for 
Methods I and II by making use of  Theorems 1 and 2 in [2], respectively. 

Theorem 4.1. Let x* ER n be a solution o f  the NCP(F). Let (F(i),Ei) ( i=  1 ,2 , . . . , e )  be a nonlinear 
multisplitting o f  the nonlinear mapping F : R" ---+R n, and F (el : R ~ x R ~ ---+R" (i = 1,2, . . . ,  ct) be con- 
tinuously a2fferentiable in a neighborhood o f  (x*; x* ). Assume that F'(x* ) C L(R ~) is an H-matrix, 
and (NF,~ -- ~F,~, ~F,i,E~) ( i =  1,2 . . . . .  ~) is its multisplitting satisfying 

and 

D:=diag(F'(x*))=~F,i ,  i = 1 , 2  . . . .  ,~z, 

<F'(x*)>=I~F.,I- ]~'~F.il- I~F.il~lOl- IBI, i = 1 , 2 , . . . , ~ ,  

where the matrices ~F,i, ~F,i and ~ , i ,  i = 1 , 2  . . . . .  ct, are defined in (3.1), and B = D - F ' ( x * ) .  I f  

d,, =x~ + fm(X*)#O, m = l , 2 , . . . , n ,  

then x* E R n is an attraction point o f  Method I provided the relaxation parameters r and co satisfy 

2 
0~<r ~< co, 0 < e ) <  

1 + P([DI-'IBI)" 

Proof. Because x* cR"  is a solution of  the NCP(F), from [1] we know that (x*;x*) satisfies the 
NCP(F  (i)) ( i = 1 , 2  . . . .  ,c¢). That is to say, it holds that 

X* ~ O, F(i)(x*;x *) ~ O, (x*)TF(i)(x*;x*)=O, i =  1,2 . . . .  , e. 

Moreover, since it has been proved in [1] that for any fixed point x 6 R", the nonlinear complemen- 
tarity problems 

y >1 0, F(i)(x; y )  >1 0, yTF(i)(x; y ) =  0, i= 1,2 . . . . .  o~ 
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are, respectively, equivalent to the nonlinear systems of  equations 

G(°(x; y) = 0, i = 1,2 . . . . .  0¢, 

we see that any solution x* E R" of  the NCP(F) is evidently also a solution of the system of  nonlinear 
equations G(x) =0 ,  where G (i) : R" x R" ----+R n ( i  = 1 ,2  . . . . .  ~) are defined by (3.2), and G :R" ---~R" is 
defined by (3.3). 

On the other hand, in light of  the continuous differentiability of  the nonlinear mappings F (i) : R ~ x 
R n ---*R" (i = 1,2 . . . .  ,0¢) and the definitions of  the nonlinear mappings G (0 : R" xR" ---~R" (i = 1 ,2 , . . . ,  ~), 
we see that G (i) : R" x R" ----~R n ( i  = 1 , 2 , . . . ,  0¢) are also continuously differentiable in a neighborhood 
of (x*;x*). 

Now, observing that the nonlinear equation (2.3) is equivalent to the nonlinear equation 

g ( i ) (g t ' s ( i ) (p )"  ~ P ' i ) - - D  m E Ji(P), 
m \ ' ~  ' ~ m  2 - -  v ,  

in accordance with [2] we see that Method I is substantially the asynchronous parallel nonlinear mul- 
tisplitting AOR method for the system of  nonlinear equations G ( x ) = 0  with respect to the nonlinear 
multisplitting (G(i),Ei) ( i =  1 ,2 , . . . ,  ~) of  the nonlinear mapping G :R" ---~R". 

Furthermore, under the assumptions of  this theorem, we can demonstrate the validity of the fol- 
lowing four facts in an analogous way to [1]: 
(1) the matrices ~G,i, i =  1 ,2 , . . . ,  C¢, are nonsingular; 
(2) (a'(x*)>=l~,i l-  I~, ,I-  I~,;I--IO~l- In& i=1,2 , . . . ,c¢;  
(3) p(IDcI-'IBGI) <<. p(IOl-tlnl)<l; and 
(4) G'(x*) EL(R") is an H-matrix. 

Therefore, all assumptions of  Theorem 1 in [2] hold for the nonlinear mapping G : R " ~ R "  and 
its nonlinear multisplitting (G(i),E~) ( i=  1 ,2 , . . . ,  ~). According to Theorem 1 in [2], we easily know 
that the sequence {XP}p~No generated by Method I starting from any initial vector x ° E R" within a 
neighborhood of  x*, the solution of  the system of nonlinear equations G(x)=0 ,  converges to this 
x*. Hence, x* E R" is an attraction point of  Method I. Here, we remark that a solution of  the system 
of nonlinear equations G ( x ) = 0  is also a solution of the NCP(F). 

Theorem 4.2. Under the conditions o f  Theorem 4.1, we additionally assume that f o r  any i E {1,2, 
. . . , ~ }  and any m E { l , 2  . . . . .  n}, H~i)~(x;y) is continuously differentiable in a neighborhood o f  
(x*; x* ), and 

lim H~,,n(X,(i) " y ) = 8 2 f ~ ( x * ; x * )  
(x;y) --~ (x* ;x* ) 

holds. Then, x* E R" is an attraction point o f  Method  II provided the relaxation parameters r and 
co satisfy 

2 
0 -.< r -.< co, O<co<  

1 + p(IDI-'IBI)" 

Proof.  By making use of  Theorem 2 in [2], we can immediately fulfill the proof of  this theorem. [] 

At the end of  this section, we particularly point out that the local convergence theorems about 
the asynchronous parallel nonlinear multisplitting AOR-Newton method, the asynchronous parallel 
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nonlinear multisplitting AOR-chord method and the asynchronous parallel nonlinear multisplitting 
AOR-Steffensen method stated in section two can be set up in a quite similar way to Theorem 4.2. 
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